A ROBOT PLANNING STRUCTURE USING PRODUCTION RULES

Ralph P. Sobek*

Laboratoire d'Automatique et d'Analyse des Systemes du C.N.R.S.
7, avenue du Colonel-Roche
F-31077 Toulouse CEDEX,

Abstract

Robot plan generation is a field which engen-
dered the development of Al languages and rule-
based expert systems. Utilization of these latter
concepts permits a flexible formalism for robot
planning research. We present a robot plan-genera-
tion architecture and its application to a real-
world mobile robot system. The system undergoes
tests through its utilization in the IIILARE robot
project (Ciralt, et jal , 1984). Though the article
concentrates on planning, execution monitoring and
error recovery are discussed. The system includes
models of its synergistic environment as well SR of
its sensors and effectors (i.e. operators). Its
rules embody both planning specific and domair
specific knowledge. The system gains generality
and adaptiveness through the use of planning vari-
ables which provide constraints to the plan genera-
tion system. It is implemented in an efficient
compiled Production System language (PS1).

INTRODUCTION

In general, a problem is a situation for which
an organism (or program) does not have a ready
response. Problem solving, involves 1) sensing and
identification of a problem, 2) formulation of the
problem in workable terms, 3) utilization of rele-
vant information, and 4) generation and evaluation
of hypotheses. A planner is a program that at-
tempts to deal with points 2 through 4. In this
paper we present a rule-based plan generation sys-
tem called FPS (for Flexible Planning System).
This system undergoes tests in a real-world robotic
environment (the HILARE proiect [Giralt, et al,
1984]).

In such an environment what is a plan? It has
to be a flexible and extensible structure which
permits quick adaptation to unexpected situations.
It must permit goa1-directed as well as data-di-
rected processing. Goal simultaneity and interac-
tion must be verified during planning and before
attempted execution. In a real-world environment a
multitude of error situations may arise. Besides
correction of planning errors a planner must try to
determine when an error is recoverable or when
replanning is necessary. Planners must be able to

The author is presently on visit from the Univer-
sity of California at Berkeley. This research is
supported in part by Agence de I'Informatique
contract 84/723.

select processing strategies appropriate to each
situation encountered and be able to handle complex
goal descriptions.

FPS is rule-based principally for the follow-
ing reasons. Production System (PS) rules allow
for a neat solution to the frame problem when we
use the STRIPS assumption (Waldinger, 1981) in that
all updates in tbe model are done explicitly
through rules. Since rules can react in one PS
cycle PSs can adapt to new situations very rapidly,
the rules acting like deamons. In planning or
execution monitoring this fact allows the system to
deal with unexpected/serependi tious situations. In
addition, rule interactions may permit parallel
searchs for a best solution or may allow rapid
responses to recognized problem situations (e.g.
planning goal conflicts). In a PS the addition of
knowledge is incremental. Therefore, the evolution
of our robotic environment will be easily charac-
terizable to FPS. Also, in the future our use of a
PS architecture will permit FPS to organize and
generalize the plans that it has created as new
rules.

Sore may say that PSs are inefficient. It has
been shown that by the use of compilatior
strategies significant gains in execution speed are
attainable (Gupta and Forgy, 1983). FPS is imple-
mented in the PS] production system language
(Sobek, 1983). It does not have to sacrifice effi-
ciency for flexibility in its representation since

PS] is a compiled PS. Rule patterns are compiled
into a parallel-match tree similar to but more
general than OPS (Forgy, 1982). The advantages of
PSs have been adequately described in (Davis and
King, 1976). Some planners and expert systems have
opted for a frame-based approach (Minsky, 1975).
It should be noted that there is a similarity
between PSs and frame-based systems.

PLANNING STRUCTURE

We present a robot planner (FPS) which deals
with the dynamics of a plan. FPS has in its ances-
try STRIPS (Fikes, et al_> 1971), NOAH (Sacerdoti,
1977), and especially JASON (Sobek, 1975). It
generalizes these planners in representation and
flexibility. FPS is used in a real-world mobile-
robot 'blocks-world' paradigm: the HILARE project.
Superficially, FPS is similar to NOAH and its gen-
eralization JASON in that they are goa 1-orien ted.
Where plans for NOMH consist of a directed graph of
procedures (procedural net), in FPS plans may be

1104 R Sobcck

desaibed PF a directed geaph of pre cesses. Eah
prooess cortairs its state in p structure called a
"planning node" each with its assodated god (s=e
Tabke 1). A proosss characterizes tbe dyanics of
apla’lslepvmneﬂeplannngru:brep&eemm

dala aspects. A process pets its nodes entries
filled from three principal sources: 1) freir tbhe
parent node, ?) when an operator is selected for a
node, or 3) by tbe executive, critic, task cormunk
cation, ad scheduling rules. The processes are
rra’@d by a tasking executive wbidb aranges tbe
processes on a priority agadh taking into acoourt
for eadb prooess the importance, success, cost
eqpanded, ad esimated allocated cost. Tre inter-
mecess coordination ad high-Hevel conflict reso-
lution konedge are called planning specific ad
ae represerted in rules. For eanpe:

If all sibling cbildren of a pocess have

its preconditions then dhedk if
tbe process can be decorposed into sub-
prooesses .

Cos]Pattem

CHd Instantiations

Freconditi

Continuation Conditions

Post-Conditons (including goda pattem)
Constraint Conditions

Parent

Children assodated by eadh decomposiion

Importance]
Allocated Cost Estimate
Cogt Bpadd
. Suoess Kae for eadb Post-Condition
Ermor Recovery Handes: reason, source,
locally recoverable
Operaior List
Script

Table 1.

DR PNopOXNTOOWNA

Planning Node Entries

Simple goals in FPS may consist of a relation-
al predicate,”. (INROOM BLOCK1 RM3), its nega-
tion, or tbe application of a specific operator to
a goal. Compound goals may be conjunctions or
eeouences of goals. Compound goals let FPS search
for possible, conflicts whereas sequences specify an
explicit required ordering of the goals involved.

A relational predicate may also contain "plan-
ning variables" similar to tbose developed by the
author in (Sobek, 1975) and tbose reinvented in
STPE (Wilkins, 1963). These variables do not actu-
ally contain values; they may specify restrictions
upon the allowed values (bindings) that their posi-
tions in a predicate may take, e.g. in tbe predi-
cate (NROOM ROBOT $RV) the variable $RM may speci-
fy a number of possible instantiations for the
predicate. The planning variables serve three

Tbe sibling processes are all children of a
process which are conjoined by the same goal in-
stantiation ofthe parent. The parent process might
have multiple instantiations for its goal descrip-
tion and then would have a disjunctive group of
siblings for each instantiation.

functions: 1) ar rltr.Tnr.tive to disjunctive goals
with similar disjuncts, 2) a method for the post-
ponement of decisions, and 3) constraint expres-
sions.

Constraints mav be attached to goals, planning
nodes, and operators. Constraints are similar to
goals except that they must be satisfied for the
preconditions of a possible operator as well as
during and after tbe operator's execution. They
are taken into account in the node expansion proce-
dure p.rd can cause the insertion of additional plan
steps beforeanode.

Plarrirg involves iteratier of voc*e expansion
with plan criticism. Criticism may start as soon
as a node is expanded, which eases a shortcoming of
NOAH. NOM could only apply its critics at the end
of each expansion cycle. The critics in FPS are
considered a major part of the planner's "planning
executive." They contain knowledge that is rele-
vant to tbe entire planning process, i.e. both
planning specific and domain specific. Corcomitant
and overlapping with critics are heuristic rules.
For example:

hi. If multiple choices are possible
then select one which minimizes
cost, effort, or distance

H 2. If robot moves an object then it
should not block a door

Hl is a general rule whereas H? is domain specific.

The planner" presents a model of the robot's
possible actions within its environment: it cur-
rently does not node! the robot's interactions.
There is no representation for other purposive
(goal oriented) organisms or causality other than
tbe robot's. The possible actions are modelled by
operators.

Operators are dynamically selected for each
planning node; no a priori connection between oper-
ators and goals exists. Associated with operators

are preconditions (environmental context), continu-
ation conditions, post-conditions, and constraints.
The operators are ordered in a specialization/
generalization hierarchy. Operators may have
scripts which specifv how they should be reduced;
the scripts may define conditionals, parallel
paths, goals, constraints, and sub-operator appli-
cations. If they contain subgoals then a sub-
process will be created for each subgoal. Other-
wise, the script will be checked by "critics"
against tbe surrounding plan structure.

An example operator is GOTCROOM (see Fig. 1).
Given a room ?r as argument, if the robot is in an
adjoining room then it will try to apply sequen-
tially the two sub-scripts GOICDOCR and GOTHRUDOOR
These latter two scripts are subordinate to
QOICRCM only in the current node's dynamic con-
text: a different call sequence would create
another hierarchy of goals and operators. FPS
would fan out from the goal state, e.g.
(NROOM ROBOT RM]), using the connexity graph pro-
vided by OQONNECTS until it finds the current state.

GOTOROOM
argument:
preconditions: (NROOM RCBOT ?r2)

(CONNECTS 2d 7r 7r2) +

script: (SEQ EOICDOCR ?d)
» @OTHRLDOCR 7d))
post-conditions: (NROOM RCBOT ?r)*

NOT (NROOM RCEOT ?7r2)

- primary result (goal condition)
* . static” data

Figure 1. GQOICROCOM operator specification

The search could be breadth-first, depth-first or
depending on the situation it could even require
heuristic rules which would remember efficient
routes once found. After a route is found the two
sub-ordinate scripts are tried in order to assure
that the robot can get to and through the door. If
there are multiple doors to a room, each would
cause two parallel descendant nodes to be created.

An operator's goal is specified to the system
as the primary post-condition. The above operator
can also be invoked to get the robot out of a
particular room. Each time that an operator
succeeds with respect to a goal its correspondent
level of importance or competence is rewarded.

EXECUTION MONITOR

What distinguishes planning from execution
monitoring is that in the former a coherent plan-
ning structure is established, whereas in the lat-
ter the necessary verifications of coherence must
come from the real-world environment. Note that a
large part of the representation for both planning
and execution monitoring must be the same in both
in order to facilitate their communication and
sharing of models. Thus, execution monitoring uses
the same planning structures to establish when
error recovery should be initiated. An error situ-
ation is detected when there is a discrepancy be-
tween an operator's expected possible outcomes and
the real-world responses (Srinivas, 1977). These
discrepancies are analysed by execution-error
critics which determine whether the error is 1)
unimportant, 2) has a fixed solution, or that 3)
replanning will be necessary.

CONGLUSION

FPS combines domain-independent plan
structuring critics with domain specific con-
straints and critics. They watch over a general
and flexible plan structure. Since the system is
rule-based, heuristics may be added at any level;
for the moment few exist. Their usefulness should
become apparent when FPS performs error recovery
and replanning. Current work includes making the
system more robust and the addition of the execu-
tion monitor.

R. Soteeck 1105

Acknowledgements

The author would like to thank everyone
involved with the HILARE project for providing the
necessary support for a real-world testbed for FPS.

REFERENCES

Davis, R. and J. King. An Overview of Production
Systems, in E. W. Elcock and D. Michie (Eds.)
Machine Intel 1igence, 8 (Wiley, New York,
1976), 300-332.

Fikes, R. et al.- Learning and Executing Gener-
alized Robot Plans, in N. Nilsson and B.
Webber (Eds.) Readings in Artificial Intel 1i-
gence (Tioga Publishing, Palo Alto, CA, 1981),
231-249.

Forgy, C. Rete: A Fast Algorithm for the Many
Pattern/Many Object Pattern Match Problem,
Artificial Intelligence, 19 (1982) 17-37.

Ciralt, G. et al. An Integrated Navigation and
Motion Control System for Autonomous Multisen-
sory Mobile Robots, in M. Brady and R. Paul
(Eds.) Robotics Research: The First Interna-
tional Symposium (MIT Press, Mass.), 191-214.

Gupta, A. and C. Forgy. Measurements on Production
Systems, Technical Report CMU-CS-83-167,
Carnegie-Mellon University, December 1983.

Minsky, M. Framework for Representing Knowledge,
in P. Winston (Ed.) The Psychology of Computer
Vision (McGraw-Hill, 1975).

Sacerdoti, E. A Structure for Plans and Behavior,
Elsevier, North-Holland, New York, 1977.

Sobek, R. Automatic Generation and Execution of
Complex Robot Plans, Master's Project Report,
Electrical Engineering and Computer Sciences
Dept., University of California, Berkeley
(September 1975).

. Achieving Generality and Efficiency in
a Production System Architecture. LAASCNRS
Internal Memo, 1983.

Srinivas, S. Error Recovery in Robot Systems.
Ph.D. Thesis, Computer Science Dept.,
California Institute of Technology (1977).

Waldinger, R. Achieving Several Goals Simulta-
neously, in N. Nilsson and B. Webber (Eds.)
Readings in Artificial Intel ligence (Tioga
Publishing, Palo Alto, CA, 1981), 250-271.

Wilkins, D. Representation in a Domain-Independent
Planner, IJCAI-83, Karlsruhe, West Germany,
1983, 733-740.

