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Abstract 

This paper presents a stereo algorithm using dynamic 
programming technique. The stereo matching problem, that is, 
obtaining a correspondence between right and left images, can be 
cast as a search problem. When a pair of stereo images is 
rectified, pairs of corresponding points can be searched for within 
the same scanlines. We call this search intra-scanline search. This 
intra-scanline search can be treated as the problem of finding a 
matching path on a two dimensional (2D) search plane whose axes 
are the right and left scanlines. Vertically connected edges in the 
images provide consistency constraints across the 2D search 
planes. Inter-scanline search in a three-dimensional (3D) search 
space, which is a stack of the 2D search planes, is needed to 
utilize this constraint. 

Our stereo matching algorithm uses edge-delimited intervals 
as elements to be matched, and employs the above mentioned two 
searches: one is inter-scanline search for possible 
correspondences of connected edges in right and left images and 
the other is intra-scanline search for correspondences of 
edge-delimited intervals on each scanline pair. Dynamic 
programming is used for both searches which proceed 
simultaneously in two levels: the former supplies the consistency 
constraints to the latter while the latter supplies the matching 
score to the former. An interval-based similarity metric is used to 
compute the score. 

1. Introduction 

Stereo is a useful method of obtaining depth information. 
The key problem in stereo is a search problem which finds the 
correspondence points between the left and right images, so that, 
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given the camera model (ie., the relationship between the right 
and left cameras of the stereo pair), the depth can be computed 
by triangulation. In edge-based techniques, edges in the images 
are used as the elements whose correspondences to be found 
[3,4,6]. Even though a general problem of finding 
correspondences between images involves the search within the 
whole image, the knowledge of the camera model simplifies this 
image-to-image correspondence problem into a set of 
scanline-to-scanline correspondence problems. That is, once a 
pair of stereo images is rectified so that the epipolar lines are 
horizontal scanlines, a pair of corresponding edges in the right 
and left images should be searched for only within the same 
horizontal scanlines. We call this search intra-scanline search. 
This intra-scanline search can be treated as the problem of 
finding a matching path on a two-dimensional (2D) search plane 
whose vertical and horizontal axes are the right and left 
scanlines. A dynamic programming technique can handle this 
search efficiently [2,3,7]. 

However, if there is an edge extending across scanlines, the 
correspondences in one scanline have strong dependency on the 
correspondences in the neighboring scanlines, because if two 
points are on a vertically connected edge in the left image, their 
corresponding points should, most likely, lie on a vertically 
connected edge in the right image. The intra-scanline search alone 
does not take into account this mutual dependency between 
scanlines. Therefore, another search is necessary which tries to 
find the consistency among the scanlines, which we call 
inter-scanline search. 

By considering both intra- and inter-scanline searches, the 
correspondence problem in stereo can be cast as that of finding 
in a three-dimensional (3D) search space an optimal matching 
surface that most satisfies the intra-scanline matches and 
inter-scanline consistency. Here, a matching surface is defined by 
stacking 2D matching paths, where the 2D matching paths are 
found in a 2D search plane whose axes are left-image column 
position and right-image column position, and the stacking is done 
in the direction of the row (scanline) number of the images. The 
cost of the matching surface is defined as the sum of the costs of 
the intra-scanline matches on the 2D search planes, while 
vertically connected edges provide the consistency constraints 
across the 2D search planes and thus penalize those 
intra-scanline matches which are not consistent across the 
scanlines. Our stereo matching uses dynamic programming for 
performing both the intra-scanline and the inter-scanline 
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searches, and both searches proceed simultaneously in two levels. 
This method reduces the computation to a feasible amount. 

2. Use of Inter-Scanline Constraints 

As mentioned above, for a pair of rectified stereo images, 
matching edges within the same scanline (ie., the intra-scanline 
search) should be sufficient in principle. However, in practice, 
there is much ambiguity in finding correspondences solely by the 
intra-scanline search. To resolve the ambiguity, we can exploit 
the consistency constraints that vertically connected edges across 
the scanlines provide. Suppose a point on a connected edge a in 
the right image matches with a point on a connected edge v in the 
left image on scanline t. Then, other points on these edges should 
also match on other scanlines. If edges u and v do not match on 
scanline t, they should not match on other scanlines, either. We 
call this property inter-scanline consistency constraint. Thus, our 
problem is to search for a set of matching paths which gives the 
optimal correspondence of edges within scanlines under the 
inter-scanline consistency constraint. 

A few methods have been used to combine the 
inter-scanline search with the intra-scanline search. Henderson 
[7] sequentially processed each pair of scanlines and used the 
result of one scanline to guide the search in the next scanline. 
However, this method suffers by that the errors made in the 
earlier scanlines significantly affect the total results. 

Baker [2] first processed each pair of scanlines 
independently. After all the intra-scanline matching was done, he 
used a cooperative process to detect and correct the matching 
results which violate the consistency constraints. Since this 
method, however, does not use the inter-scanline constraints 
directly in the search, the result from the cooperative process is 
not guaranteed to be optimal. Baker suggested the necessity of a 
search which finds an optimal result satisfying the consistency 
constraints in a 3D search space, but a feasible method was left 
as an open problem. 

A straightforward way to achieve a matching which 
satisfies the inter-scanline constraints is to consider all matchings 
between connected edges in the right and left images. However, 
since the typical number of connected edges is a few to several 
hundred in each image, this brute force method is usually 
infeasible. 

We propose to use dynamic programming, which is used for 
the intra-scanline search, also for the inter-scanline search. These 
two searches are combined as shown in figure 1. One is for the 
correspondence of all connected edges in right and left images, 
and the other is for the correspondence of edges (actually, 
intervals delimited by edges) on right and left scanlines under the 
constraint given by the former. The scheme to use dynamic 
programming in two levels was first employed in the recognition 
of connected spoken words [10]. They used one search for the 
possible segmentation at word boundaries and the other for the 
time-warping word matching under the constraint given by the 

Figure 1. Two searches involved in stereo matching. 

former. In connected word recognition, however, the pattern to 
be processed is a single ID vector. In our case, a connected edge 
crosses over multiple scanlines (ie., ID vectors). This means that 
we need a 3D search space which is a stack of 2D search planes 
for intra-scanline matching. 

Dynamic programming [1] solves an N-stage decision 
process as N single-stage processes. This reduces the 
computational complexity to the logarithm of the original 
combinatorical one. In order to apply dynamic programming, 
however, the original decision process must satisfy the following 
two requirements. First, the decision stages must be ordered so 
that all the stages whose results are needed at a given stage 
have been processed before them. Second, the decision process 
should be Markovian: that is, at any stage the behavior of the 
process depends solely on the current state and does not depend 
on the previous history. It is not obvious whether these 
properties exist in the problem of finding correspondences 
between connected edges in stereo images, but we clarify them in 
the following sections. 

3. Correspondence Search Using Two-Level Dynamic 
Programming 

3.1. Intra-scanline search on 2D plane 

The problem of obtaining a correspondence between edges 
on the right and left epipolar scanlines can be solved as a path 
finding problem on a 2D plane. Figure 2 illustrates this 2D search 
plane. The vertical lines show the positions of edges on the left 
scanline and the horizontal ones show those on the right scanline. 
We refer to the intersections of those lines as nodes. Nodes in 
this plane correspond to the stages in dynamic programming 
where a decision should be made to select an optimal path to that 
node. In the intra-scanline search, the stages must be ordered as 
follows: When we examine thecorresponden.ee of two edges, one 
on the right and one on the Left scanline, the edges which are on 
the Left of these edges on each scanline must already be processed. 
For this purpose, we give indices tor edges in left-to-right order 
on each scanline: [0:M] on the right and [0:N] on the left. Both 
ends of a scanline are also treated as edges for convenience. It is 
obvious that the condition above is satisfied if we process the 
nodes with smaller indices first. Legal paths which must be 



1122 Y. Ohta and T. Kanade 

considered are sequences of straight line segments from node 
(0,0) at the upper left corner to node (M,N) at the lower right 
corner on a 2D array [0:M,0:/V]. They must go from the upper left 
to the lower right corners monotonically due to the 
above-mentioned condition on ordering. This is equivalent to the 
no-reversal constraints in edge correspondence: that is, the order 
of matched edges has to be preserved in the right and left 
scanlines. This constraint excludes from analysis thin objects such 
as wires and poles which may result in positional reversals in the 
image. A path has a vertex at node m=(m,a) when right edge m 
and left edge n are matched. 

The cost of a path is defined as follows. Let D(m,k) be the 
minimal cost of the partial path from node K to node m. D(m,0) is 
the cost of the optimal path to node m from the origin (0,0). A 
primitive path is a partial path which contains no vertices and it is 
represented by a straight line segment as shown on figure 2. It 
should be noted that a primitive path actually corresponds to 
matching the intervals delimited by edges at the start and end 
nodes rather than edges themselves. The cost of a path is the 
sum of those of its primitive paths. Let d((m,k) be the cost of the 
primitive path from node k to node m. (Our actual definition of 
d(m,k) will be given in section 4.) Obviously, d(m,k)>D(m,k) and on 
an optimal path ̂ (m,k)sD(m,k). 

Figure 2. 2D search plane for intra-scanline search. 
Intensity profiles are shown along each axis. The 
horizontal axis corresponds to the left scanline and the 
vertical one corresponds to the right scanline. Vertical 
and horizontal lines are the edge positions and path 
selection is done at their intersections. 

Vector i represents a primitive path coming to node m. 
When i=0, the primitive path is horizontal, as shown at (a) in 
figure 2. It corresponds to the case in which a visible part in the 
left image is occluded in the right image. When y-0, the primitive 
path is vertical, as shown at (b). When i>l and/or J>1, the 
primitive path skips or ignores beyond i-l and/or y'-l edges on 
the right and/or left scanlines as shown at (c) in the figure. Such 
a path corresponds to the case where some edges have no 
corresponding ones on the other scanline because of noise. 

The path with cost D(M,0) gives the optimal correspondence 
between a pair of scanlines. 

3.2. Inter-scanline starch in 3D space 

The problem of obtaining a correspondence between edges 
under the inter-scanline consistency constraints can be viewed as 
the problem of finding a set of paths in a 3D space which is a 
stack of 2D planes for intra-scanline search. Figure 3 illustrates 
this 3D space. The side faces of this space correspond to the 
right and left images of a stereo pair. The cost of a set of paths 
is defined as the sum of the costs of the individual paths in the 
set. We want to obtain an optimal (ie., the minimal cost) set of 
paths satisfying the inter-scanline constraints. A pair of 
connected edges in the right and left images make a set of 2D 
nodes in the 3D space when they share scanline pairs. We refer 

Figure 3. 3D search space for intra- and inter-scanline 
search. 
This may be viewed as a rectangular solid seen from 
above. The side faces correspond to the right and left 
stereo images. Connected edges in each image form sets 
of intersections (nodes) in this space. Each set is called a 
3D node. Selection of a set of paths is done at every 3D 
node. 
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to this set of 2D nodes as a single 3D node. The optimal path on a 
2D plane is obtained by iterating the selection of an optimal path 
at each 2D node. Similarly, the optimal set of paths in a 3D space 
is obtained by iterating the selection of an optimal set of paths at 
each 3D node. Connected edges, 3D nodes, and sets of paths 
between 3D nodes are illustrated in figure 3. 

As described in section 2, the decision stages must be 
ordered in dynamic programming. In the intra-scanline search, 
their ordering was straightforward; it was done by ordering 
edges from left to right on each scanline. A similar consideration 
must be given to the inter-scanline search in 3D space where the 
decision stages are the 3D nodes. A 3D node is actually a set of 
2D nodes, and the cost at a 3D node is computed based on the 
cost obtained by the intra-scanline search on each 2D search 
plane. This leads to the following condition: When we examine the 
correspondence of two connected edges, one in the right and one 
in the Left image, the connected edges which are on the Left of 
these connected edges in each image must already be processed. 

A connected edge u1 is said to be on the left of u2, if all 
the edges in U1 on the scanlines which u1 and u2 share are on 
the left of those in u2- The "left-of" relationship is transitive; if 
there is a connected edge u3 and u1 is on the left of u3 and u3 is 
on the left of u2, then u1 is on the left of u2 The order of two 
connected edges which do not satisfy both the relations described 
above may be arbitrarily specified. We assign an ordering index 
from left to right for every connected edge in an image. This 
ordering is possible without contradiction when a connected edge 
never crosses a scanline more than once and when two connected 
edges never intersect each other. Our edge-linking process is 
devised so that it does not make such cases. 

C(u) is minimized on the function i(t). A 3D node u-i(t) gives the 
start node of the 3D primitive path on scanline t. The 
inter-scanline constraints is represented by i(t). For example, if 
i(t) is independent of i(t--l), there are no constraints between 
scanlines and the search represented by equation (2) becomes 
equivalent to a set of intra-scanline searches which are 
performed independently on each scanline. Intuitively, \(t) must be 
equal to i(t-l) in order to keep the consistency constraint. 

The iteration starts at u=(0,0) and computes C(u) for each 
3D node u in ascending order of u. At each 3D node the i(t)'s 
which give the minimum are recorded. The sequence of 2D 
primitive paths which forms the 3D primitive path is also recorded 
on each scanline. The set of paths which gives C(U) at the 3D 
node U«-(C/,l/) (which is the 3D node formed by the right ends of 
stereo images) is obtained as the optimal set. It should be noted 
that when there are no connected edges except for the right and 
left sides of the images, the algorithm (2) works as a set of 
intra-scanline searches repeated on each scanline independently. 
In this sense, the 3D algorithm completely contains the 2D one. 

3.3. Consistency constraints in int«r-scanlin« 

Using the term 3D node defined in the previous section, we 
can describe the inter-scanline consistency constraints as follows: 
For any 3D node, either all corresponding 2D nodes are the 
vertices on the set of paths in the 3D search space or none of 
them are the vertices on the set of paths. We need to represent 
this constraints as the relation between \(t) and i(f-l) in equation 
(2). To do this, let us consider the example in figure 4. Suppose 
we are trying to obtain a set of 3D primitive paths which reach to 
node u. In order to satisfy the consistency constraints above, all 
the starting points of these paths should be the same 3D node; 
that is i(t)-i(t-l). The cases when the starting point is a different 
3D node are shown as case2 and case3 in the figure. In case2, a 
new 3D node appears at scanline t and the starting point changes 
to the new one. Of course, it is possible that the starting point 
does not change to the new 3D node. This will happen if the cost 
of the paths having vertices on the 3D node is higher than the 
cost of the paths not having vertices on it. In case3, the 3D node 
u-i(f-l) disappears on scanline t and the starting point is forced 



1124 Y. Ohta and T. Kanade 

to move elsewhere. 
Let us denote the 3D node u-i(t), from which the 3D 

primitive path starts and reaches to the 3D node u on scanline t, 
by frm(u;t). Then the following rules should be satisfied in each 
case. 

(3) 

The rules in case2 and case3 require that the decision at 
3D node u depend on decisions at preceding 3D nodes. 
Unfortunately, a decision system with such a property is not 
Markov urn. as described in section 2, and therefore there is no 
guarantee of obtaining an optimal solution by using dynamic 
programming. This means if we search for a solution using 
dynamic programming with those rules, the result might be poorer 
than that of the 2D algorithm. 

In order to assure optimality in dynamic programming, we 
modify the rules in (3) as follows. 

(4) 

The new rule for case2 requires the new 3D node on 
scanline t be on the right of the 3D node that is the starting point 
on scanline t-1. For case3, the new starting node on scanline t 
should be on the left of that on scanline t-1. It should be noted 
that though the new rules are always satisfied when the rules in 
equation (3) are satisfied, the converse is not true. Thus, under 
the new rules, the consistency constraint might not be satisfied at 
all places. In other words, the constraints represented by the 
rules in equation (4) are weaker than those of equation (3). 
However, since we can expect to obtain an optimal solution in 
dynamic programming, we can expect better results by the 3D 
search algorithm than by the 2D search algorithm. 

4. Experiments 

Implementation of the stereo algorithm which has been 
presented requires a method of detecting edges, linking them into 
connected edges, and ordering the connected edges. We do not 
describe, however, the details of the method in this paper 
because of space limitation and it can be found elsewhere [9J 

The computation of cost in our search algorithm is based on 
the cost of a primitive path on the 2D search plane. We define the 
cost of a 2D primitive path as the similarity between intervals 
delimited by edges in the right and left images on the same 
scanline. If we let a1 ... ak and bl ... 61 be the intensity values of 
the pixels which comprise the two intervals, then the mean and 
variance of all pixels in the two intervals are computed as: 

Figures 5, 6, and 7 show the original stereo pair, edges, 
and connected edges for the "white house" scene, respectively. 
The image size is 388x388 pixels and the intensity resolution is 8 
bits. This example is an interesting and difficult one because it 
includes both buildings and highly textured trees. Many connected 
edges are obtained around the building while few are obtained in 
the textural part. The disparity maps obtained by the 2D and 3D 
search algorithms are shown in figure 8. Since the maps are 
registered in the right image coordinates, the disparity values for 
pixels on the right wall of the central building, which is visible in 
the right image but occluded in the left, are undetermined. 
Considerable improvements can be observed at the boundaries of 
buildings. In the textural part, the two algorithms provide 
approximately the same results. 

We counted the number of positions where the consistency 
constraint, described in section 3.3, is not satisfied. It is 436 in 
the 2D search and 32 in the 3D search. These numbers 
quantitatively show a significant improvement achieved by the 3D 
search algorithm. The reason why the inconsistency is not 
completely removed in the 3D case is that we used "weaker" 
rules for the constraint as described earlier. 

5. Conclusion 

In this paper, we have described a stereo algorithm which 
searches for an optimal solution in a 3D search space using 
dynamic programming. The algorithm has been applied to urban 
aerial images successfully. Perhaps one of the major reasons that 
our algorithm works well for such a complex images is as follows. 
For images which contain long connected edges such as linear 
structures in urban scenes, our 3D search scheme works 
effectively to enforce the consistency constraint. When images do 
not contain long connected edges, our stereo algorithm reduces to 
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the ordinary 2D search which works efficiently to match isolated 
edges within each scanline pair. In other words, when 
inter-scanline constraints are available, our algorithm fully utilizes 
them, otherwise it works as the 2D search. This feature will be 
less obvious in segment-based algorithms, such as in [8], which 
depend heavily on the connectivity of edges. 
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(a) result of 2D search 

(b) result of 3D search 

Figure 8. Disparity map obtained for the "white house" 
stereo pair (figure 5). 
Both are registered in the right image coordinates. 


