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ABSTRACT 

A system is described that integrates vision and 
tactile sensing in a robotics environment to perform 
object recognition tasks. It uses multiple sensor systems 
(active touch and passive stereo vision) to compute 
three dimensional primitives that can be matched 
against a model data base of complex curved surface 
objects containing holes and cavities. The low level 
sensing elements provide local surface and feature 
matches which arc constrained by relational criteria 
embedded in the models. Once a model has been 
invoked, a verification procedure establishes confidence 
measures for a correct recognition. The three dimen* 
sional nature of the sensed data makes the matching 
process more robust as does the system's ability to sense 
visually occluded areas with touch. The model is 
hierarchic in nature and allows matching at different lev­
els to provide support or inhibition for recognition. 

1. INTRODUCTION 
Robotic systems are being designed and built to perform com­

plex tasks such as object recognition, grasping, parts manipulation, 
inspection and measurement. In the case of object recognition, 
many systems have been designed that have tried to exploit a single 
sensing modality [1,2,3,4,5,6]. Single sensor systems are neces­
sarily limited in their power. The approach described here to over­
come the inherent limitations of a single sensing modality is to 
integrate multiple sensing modalities (passive stereo vision and 
active tactile sensing) for object recognition. The advantages of 
multiple sensory systems in a task like this are many. Multiple sen­
sor systems supply redundant and complementary kinds of data that 
can be integrated to create a more coherent understanding of a 
scene. The inclusion of multiple sensing systems is becoming more 
apparent as research continues in distributed systems and parallel 
approaches to problem solving. The redundancy and support for a 
hypothesis that comes from more than one sensing subsystem is 
important in establishing confidence measures during a recognition 
process, just as the disagreement between two sensors will inhibit a 
hypothesis and point to possible sensing or reasoning error. The 
complementary nature of these sensors allows more powerful 
matching primitives to be used. The primitives that are the out­
come of sensing with these complementary sensors are throe 
dimensional in nature, providing stronger invariants and a more 
natural way to recognize objects which are also three dimensional in 
nature [7]. 

Most object recognition systems are model based discrimina­
tion systems that attempt to find evidence consistent with a 
hypothesized model and for which there is no contradictory evi­
dence [4]. Systems that contain large amounts of information 
about object structure and relationships potentially reduce the 

number of false recognitions. However, the model primitives must 
be computable from the sensed data. More complex object models 
are being built [8] but they are of limited power unless the sensing 
systems can uncover the structural primitives and relationships they 
contain. The approach used here allows complex and rich models 
of objects that extends the kinds of generic objects that can be 
recognized by the system. This is due to the rich nature of the sur­
face and feature primitives the sensors compute. Surfaces are the 
actual parts of an object that we see; the primitive computed is 
exactly this. Holes and cavities are important visual and tactile 
features; these are also computed by integrating touch and vision. 
Further, the system described here is viewpoint independent. The 
problems caused by visual occlusion are overcome by the ability to 
use active touch sensing in visually occluded areas. 

The domain that the system works in is one of common 
kitchen items; pots, pans, cups, dishes, utensils and the like. This is 
a rich domain and in fact contains objects representative of many 
other domains as well. The objects arc planar as well as volumetric, 
contain holes and have concave and convex surfaces. They are also 
decomposable into separate components that have functional 
semantic meaning; handles are distinct geometric parts that are 
used for grasping, a cup's central cavity is used to hold liquids, a 
spout allows one to pour a liquid, a lid covers a cavity. By basing 
the models of these objects on geometry and topology the system is 
extensible beyond this domain. The objects are modeled in a 
hierarchical manner which allows the matching process to proceed 
at different levels with support or inhibition from higher or lower 
levels of mode! matching. 

Figure 1 is an overview of the system. The vision system con­
sists of a pair of stereo mounted CCD cameras. They are mounted 
on a 4 DOF camera frame (X, Y, pan, tilt) under computer control. 
The tactile system consists of a one fingered tactile sensor attached 
to the wrist of a PUMA 560 robot. The control module is the 
overall supervisor of the system. It is responsible for guiding and 
directing the vision and tactile sensing modules. It also communi­
cates with the model data base during the recognition cycle as it 
tries to interpret the scene. It is able to use both low level reason­
ing about sensory data and high level reasoning about object struc­
ture to accomplish this task. Both kinds of reasoning are needed 
and the system's ability to toggle between the two kinds of reason­
ing makes it powerful. The high level reasoning allows us to use 
the object model as a guide for further active sensing which is 
accomplished by the low level sensing modules. 

The recognition cycle consists of initial low level sensing 
which limits the number of object models consistent with the 
sensed data. The low level sensing elements provide data for local 
surface and feature matches which are constrained by relational cri­
teria embedded in the models. The system is able to eliminate 
models that lack the structure uncovered by the low level sensing 
elements. The system then invokes an object model that IS globally 
consistent with the sensed data and proceeds to verify this model 
by further active sensing. Verification is done at different levels 
(component, feature, surface, patch) and according to different 
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confidence measures at each level. The remaining sections of this 
paper are a detailed explanation of the various parts of the system. 

2. STRUCTURE OF THE OBJECT MODELS 
Objects are modeled as collections of surfaces, features and 

relations, organized into four distinct hierarchic levels. A 
hierarchic model allows us to do matching on many different levels, 
allowing support or inhibition for a match from lower and higher 
levels. It also allows us to nicely separate the low level or bottom 
up kinds of sensing from the top down or knowledge driven sens­
ing. 

The four levels of the model are the object level, the 
component/feature level, the surface level, and the patch level. 
Figure 2 is a partial description of the model of a coffee mug. The 
details of the model are described below. 

2.1. OBJECT LEVEL 
The top level of the hierarchy is composed of a list of all 

»ojcct nodes in the data base. An object node corresponds to an 
.nstance of a single rigid object. Associated with this node is a list 
containing a bounding box description of the object and a list of all 
the components (subparts) and features of this object which make 
up the next level of the hierarchy. For gross shape classification, a 
bounding box volumetric description of the object is included. The 
bounding box is a rectangular parallelepiped whose size is deter­
mined by the maximum extents of the object in the X, Y and Z 
directions of the model coordinate system. A complexity attribute 
is also included for each object which is a measure of the number 
of features and components that comprise an object. 

2.2. COMPONENT/FEATURE LEVEL 
The second level of the model is the component/feature level. 

Each object consists of a number of component (subpart) nodes 
that are the result of a functional and geometric decomposition of 
an object. The components of c coffee mug are the body of the 
mug, the bottom of the mug, and the handle A teapot consists of 
a body, bottom, spout, handle and lid. They are the major subdivi­
sions of an object, able to be recognized both geometrically and 
functionally. Each component also has an attribute list consisting of 
its bounding box, surface area, and priority. The priority field is an 
aid for recognition in which the components are ordered as to their 
likelihood of being sensed. High priorities are assigned large com­
ponents or isolated components in space that protrude (handles, 
spouts). The protruding parts may show up as outliers from the 
vision analysis. Obscured components, such as a coffee mug bot­
tom when in a normal pose, are assigned lower priorities. The 
priority is used to aid the matching probabilistically. If the object is 
in a regular pose, then certain parts of the object are more prom­
inent which can- aid the matching process. Each component node 
contains a list of one or more surfaces that make up this functional 
component and that constitute the next level of the hierarchy. 

Features are entities that are useful in the recognition process. 
The features modeled are holes and cavities. These features are 
important in discrimination tasks for humans and are able to be 
sensed by the low level sensing. Holes are modeled as right 
cylinders with a defined axis, centroid and regular cross section. 
Each hole node contains the hole's axis vector, centroid vector, and 
a boundary curve that contains the cross section. This curve also 
encloses a two dimensional area ( a •slice'' through the hole). The 
hole node contains the inertial axes of this 2D slice computed from 
its central moments. By defining holes in this manner, we are 
treating them as a negative volumetric entity, which has implica-
tions in matching. Volumetric elements have an object centered 
coordinate system that contains an invariant set of orthogonal axes 
(inertial axes). By discovering such entities and computing these 
axes, transformations between model and world coordinates can be 
effected which is a requirement of viewpoint independent matching. 

Cavities are features that are similar to holes but are not com­
pletely surrounded by surfaces. Cavities may only be entered from 
one direction while holes can be entered from either end along 
their axis. An example is the well of the coffee mug where the 
liquid is poured. These features are modeled as containing an axis 
vector, a depth, a bottom point and a boundary curve. The boun­
dary curve is closed as in a hole, allowing for a computation of 
inertial axes for the cavity opening. 

2.3. SURFACE LEVEL 
The surface level consists of surface nodes that embody the 

constituent surfaces of a component of the object. The objects are 
modeled as collections of surfaces. The sensing elements that are 
used are vision and touch both of which sense surface information. 
Each surface contains attributes such as bounding box, surface area, 
a flag indicating whether the surface is closed or not and a symbolic 
description of the surface such as planar, cylindrical or curved. The 
surfaces are decomposed according to continuity constraints. Each 
surface is a smooth entity containing no surface discontinuities. 
The surfaces contain a list of the actual bicubic surface patches that 
comprise this surface. 

2.4. PATCH LEVEL 
Each surface is a smooth entity represented by a grid of bicu­

bic spline surfaces that retain C2 continuity on the composite sur­
face [9]. Each patch contains its parametric description as well as 
an attribute list for the patch. Patch attributes include, surface 
area, mean normal vector [10], symbolic form (planar, cylindrical, 
curved) and bounding box. Patches constitute the lowest local 
matching level in the system. The patches themselves are 
represented in matrix form as a matrix of coefficients for a Coons* 
patch. 

2.5. RELATIONAL CONSTRAINTS 
It is not enough to model an object as a collection of 

geometric attributes. One of the more powerful approaches to 
recognition is the ability to model relationships between object 
components and to successfully sense them. The relational con­
straints between geometric entities place strong bounds on potential 
matches. The matching process is in many ways a search for con­
sistent. between the sensed data and the model data. Relational 
consistency enforces a firm criteria that allows incorrect matches to 
be rejected. This is especially true when the relational criteria is 
based on three dimensional entities which exist in the physical 
scene as opposed to two dimensional projective relationships which 
vary with viewpoint. 

In keeping with the hierarchical nature of the model, relation­
ships exist on many levels of the model. The first level at which 
relational information is included is the component level. Each 
component contains a list of adjacent components, where adjacency 
is simple physical adjacency between components. The features 
(holes and cavities) also contain a list of the components that 
comprise their cross sectional boundary curves. Thus, a surface 
sensed near a hole will be related to it from low level sensing, and 
in a search for model consistency, this relationship should also hold 
in the model. At the surface level, again each surface contains t 
list of physically adjacent surfaces that can be used to constrain sur­
face matching. The patch relations are implicit in the structure of 
the composite surface patch decomposition being used. Each patch 
is part of an ordered larger grid of knots that contains relational 
adjacency automatically. Thus, each patches neighbors are directly 
available from an inspection of the composite surfaces defining 
knot grid. 

3. LOW LEVEL SENSING 
The sensing modalities the system uses are stereo vision and 

tactile sensing. There are tradeoffs in speed, accuracy and noise in 
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using each of these sensors. The limitations of the low level sensors 
will constrain the accuracy of our recognition process. 

The sensory data received from the two sensors needs to be 
integrated. In designing rules for integrating data from these two 
sensors, there arc a few general observations. Vision is global, has 
high bandwidth, and is noisy. Touch is a low bandwidth, local, 
sequential process with better noise properties than vision. Vision 
gives a sometimes confusing view of an object due to the coupling 
of geometry, surface reflectance and lighting. Touch is better able 
to measure directly the properties of objects that are desired: their 
shape and surface properties. It also retains more degrees of free­
dom in sensing objects than a static camera which is limited by its 
viewpoint. 

The most important difference between these sensors though 
is the active, controlled nature of touch versus the passive nature of 
visual sensing. To use touch it needs to be guided and supplied 
with high level knowledge about its task. Blind groping with a 
finger is an inefficient and slow way to recognize an object. 

3.1. VISION SENSING 
The object to be sensed is placed on a known support surface 

in an arbitrary position and orientation. It is assumed to be a single 
rigid object. The cameras have previously been calibrated with the 
world coordinate system of the robot arm. The stereo algorithm 
first uses a Marr-Hildreth operator on the images and then matches 
zero crossings with a stereo matcher developed by Smitley [11]. 
The output of this is a sparse set of 3D points that form closed con­
tour regions. 

These closed contour regions can be analyzed from a connec­
tivity standpoint to form a region adjacency graph. This graph 
establishes constraints on local surface matches. Figure 2 (upper 
left) contains the closed contour region analysis that results after 
the edge finding and stereo matching processes. Stereo cannot pro-
vide information about the interiors of these regions, and the tactile 
system will provide this information. 

3.2. TACTILE SENSING 
The tactile sensor being used is a rigid finger like device that 

is made up of 133 pressure sensitive sites. The sites are covered by 
a conductive elastomer that senses pressure at each site with an 
eight bit gray scale. The geometry of the finger also allows limited 
amounts of surface normal information. The sensor is mounted on 
the wrist of the PUMA 560 robot and is continuously monitored by 
a microprocessor that is capable of thresholding and ordering the 
tactile responses at each of the sites. The arm is controlled by 
VAL-II programs that receive feedback from the tactile sensor's 
microprocessor. The arm can be commanded to move in an arbi­
trary path until the sensor reports an over threshold contact or con­
tacts. These contact points, along with their normals are then 
reported back to the control module. 

3.2.1. SURFACE TRACING ALGORITHMS 
Algorithms have been developed to have the tactile system do 

surface tracing. Given a starting and ending point on a surface, the 
sensor traces along the surface reporting its contact positions and 
normals as it moves along. There are many potential paths between 
these two points on the surface of the object. The movement cycle 
of the sensor begins with contact at the starting point on the sur­
face. The surface orientation can be determined by the location of 
the contact point on the sensor. The arm then moves then sensor a 
small distance off the surface in the direction of the surface normal. 
At this point a movement vector is calculated that is the weighted 
average of the vector to the ending point of the trace and the vec­
tor formed from previous contact points on the surface. The sen­
sor is then moved a small distance along this vector, monitoring 
contact continuously. If contact occurs, the cycle repeats until the 

ending point is reached. If no contact occurs, then contact with the 
surface is re-established by moving in the surface normal direction 
towards the surface. This allows the sensor to make progress 
towards the goal and to stay in contact with a smoothly changing 
surface. Using the straight line vector to the goal alone will cause 
cycles and no progress towards the end point of the trace. 

3.2.2. HOLE TRACING 
Holes arc a useful recognition feature that arc difficult to find 

using machine vision alone. A hole explorer algorithm has been 
developed to find and quantify a hole with the tactile sensor. Holes 
are modeled as cylindrical, negative volume elements with an arbi­
trary cross section. They have an axis (the cylindrical axis) from 
which they can be entered and a ccntroid which is defined on the 
cross sectional slice of the hole. 

The hole tracing algorithm starts with the tactile sensor prob­
ing the region to determine if it is in fact a hole. If the tip does not 
come in conflict with a surface, then the region is determined to be 
a hole. The arm is then moved in conjunction with tactile feedback 
around the contour of the hole, reporting the contact points of the 
hole's cross section. 

4. INTEGRATION OF SENSORY DATA 
The stereo matching from vision yields a sparse set of 3D 

points that form closed contours. The interior surfaces of these 
contours cannot be determined from vision alone. To find out the 
nature of these closed contour regions, the tactile sensor is used to 
explore and quantify the interior of these regions. Each region has 
a contour of 3D points obtained from stereo vision. A least 
squares plane can be fit to these points and the tactile sensor 
aligned normal to this plane, forming an approach angle for the 
sensor. The sensor then moves towards the plane, seeking to 
establish contact with a surface. If contact occurs, then the surface 
interpolation process described below proceeds. If no contact is 
found within a distance threshold of the least squares plane, a hole 
is hypothesized and a trace of the hole's contour as described above 
is begun. If surface contact is made after the distance threshold, 
then a cavity has been discovered, and its cross section is traced 
similarly to the hole. 

The surface interpolation process assumes that the region 
inside the 3D contour discovered by vision is curvature continuous. 
If the region was not curvature continuous, then a zero crossing 
would have been seen inside the closed contour region [12). 
Determining the true nature of these surfaces is the heart of the 
integration process. These contours can be analyzed and points of 
high curvature chosen as knot points for a bicubic spline interpola­
tion process described in [13]. Once these know points are chosen, 
the tactile system is actively guided in tracing the interior of the 
closed contour region using the surface tracing algorithms described 
earlier. The knots create 4 boundary curves that comprise the 
closed contour region. Each surface is traced from the midpoint of 
a boundary curve to the midpoint of the boundary curve opposite. 
These surface traces are then combined with the contour data to 
create a composite bicubic spline surface which preserves the 
smooth nature of the surface and interpolates the sensed data 
points. This interpolation can be done to arbitrary precision by 
tracing each surface at finer and finer resolutions. Typically, one 
set of traces across the surface is sufficient to obtain a reasonable 
interpolation of the surface. These surface patches are powerful 
primitives. They are described by a set of parametric equations that 
allow easy and efficient calculation of surface areas, normals and 
curvature properties of the patches which are useful for matching. 

The integration of sensory data shows its complementary 
nature. Visual data can be used to guide active tactile sensing for 
determination of a visual regions properties. Further, this visual 
region can be extended into a three dimensional surface by the 
addition of small amounts of actively guided touch sensing. 
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5. MODEL INVOCATION 
The recognition process begins with the low level vision 

modules in a bottom up fashion. These modules create a list of 
closed contour regions and a region adjacency graph. This is input 
to the tactile system which will either interpolate a surface patch or 
determine that the region is a hole or cavity. This low level sensing 
defines the primitives that are sent to the higher level matching sys­
tem to try to instantiate a model consistent with this sensory data-

5.1. LOCAL MATCHING 
Local mulching is controlled by a set of rules that drive the 

process. The rules establish local surface matches for a sensed sur­
face patch by finding surfaces in the model surface list that satisfy 
all the constraints below: 
• The area of the sensed surface patch must be less than or 

equal to the model surface area. 
• The bounding box of the sensed surface patch must be con­

tained within the bounding box of the model surface. 
• If the sensed surface patch is planar, the model surface must 

be planar. 
• If the sensed surface patch is cylindrical, the model surface 

must be cylindrical and the difference of the radii of the 
cylinders must be small. 

• If the sensed surface patch is curved, the model surface must 
be curved 

There is also a set of local matching rules for features: 
• If the feature is a hole or cavity, the diameter of the cross 

section must be within a threshold ft of the model diameter. 
• If the feature is a cavity, its depth must be within a threshold 

of the model cavity depth. 
If the local surface/feature matching is also rclationaiiy con­

sistent, then the model is considered feasible. All local 
surface/feature matches must be consistent with the model rela­
tions. If a relationship exists in the scene between two matched 
surfaces that are not adjacent in the model, the local surface 
matches are rejected. If a feature is found, its related surfaces must 
also be consistent. By applying these relational constraints to the 
local matches, incorrect matches are rejected. 

5.2. CHOOSING A MODEL 
Once the low level initial sensing has been done, a model 

must be chosen to drive the recognition process to the next stage. 
There are three possible outcomes of the initial sensing and local 
matching process: 
• No model is consistent with the data. 
• One model is consistent with the data. 
• More than one model is consistent with the data. 

The first case reflects a possibility of sensory error. The moat 
effective strategy here is to redo the sensing or change the view 
point to reflect new sensory input. The second case is a desirable 
state of affairs; this one model is then a candidate for further 
verification sensing. The third case points to the need for further 
discrimination among the models. Typically, the local matching 
process with its geometric and relational constraints will prune the 
number of consistent interpretation* to a small number of models 
(two or three). The ambiguity between models can be resolved at 
the next level of sensing. In this case, one of the two or three 
models left will be chosen as the invoked model to be verified. 
Choosing this model will rely on the object priorities discussed 
above and the model complexity measure. Each consistent model 
has a matching measure computed based upon the normalized pro­
bability of the model components and features matched and the 
complexity of the object's structure. 

where M is the matching probability measure, Pk is the 
priority of each of the matched components and N is the total 
number of component/ features for this object. 

The choice is weighted in favor of complexity of the objects, 
and with equal complexity, on finding higher probability matches. 
The sensory subsystems are more likely to sense the high priority 
components and features. This is then reflected in the choice of 
model that is invoked. An incorrect choice will be found during 
verification, at which time this model is rejected and the remaining 
ones are again chosen by this rule. 

6. VERIFICATION 
Once a model has been chosen, the recognition process 

becomes a verification process, trying to substantiate the hypothesis 
that the chosen model is the object to be recognized. Verification 
proceeds initially on a component/ feature level. Some of the 
component/features of this model have been partially verified by 
the local surf ace/feature matching. Partial verification means that a 
component, possibly made up of a number of surfaces, has had at 
least one of these surfaces matched at the lower surface level. Any 
component/feature that has not been partially verified is then put 
on a list for verification. An important aspect of this verification is 
using the model to drive the recognition process. To reflect the 
model in the imaged scene, a transformation matrix relating model 
coordinates to imaged world coordinates is necessary. The calcula­
tion of this matrix will allow accurate scene prediction for features 
and components. 

6.1. SCENE TO MODEL TRANSFORMATION 
The transformation between model and scene consists of 

three translational parameters and three rotational parameters. This 
transformation can be computed from matched features or surfaces. 
Holes have an axis vector and inertial axes of their cross section in 
the model. If hole is matched, these axes can be used to align the 
model with the sensed hole, thus satisfying the rotational com­
ponent of the transformation. The centroid of the hole can then be 
translated to the sensed centroid to calculate the translational 
parameters. Similarly, cavities are modeled as having an axis and 
bottom point. These can be used in the same manner as the hole 
axis and centroid to compute the transformation matrix. 

Sensed surface data can also be used to calculate the transfor­
mation matrix. The approach is to match points on sensed surfaces 
with model surface points. Candidates for these matching points 
are points of maximum or minimum curvature or at surface border 
vertices. By using several match points a least square fit of the 
transformation matrix can be calculated [10]. Planar surfaces can 
also be used to define part of the transformation by aligning sensed 
surface normals with model normals. Once this matrix is calcu­
lated, it can be used to verify that the initial set of local matches of 
surfaces and features is consistent with the calculated transforma­
tion matrix. If they are not, the system returns to the local match­
ing level and determines a new relation ally consistent set of 
matches, recalculating the transformation matrix. If there is only 
one rclationally consistent set of local matches, then those local 
matches that are inconsistent with the transformation are rejected 
and the others accepted. 

6.2. VERIFICATION SENSING 
The verification of the object model takes place at many lev­

els. The top level is at the component/feature level. Verification 
at this level is done by requiring every component to be at least 



P. Allen and R. Bajcsy 1135 

partially verified or an occlusion computed from the transformation 
matrix which accounts for its inability to be sensed. In verifying a 
component, the surfaces that comprise that component must be 
sensed. This is done by examining the patches that comprise each 
surface. The center point of each patch (calculated as the 
parametric center from the parametric patch equations) is 
transformed by the matrix and projected into the camera space. If 
these projected points lie inside a closed contour region that has 
been locally matched, they are occluded. If they lie outside a 
closed contour region or inside an unmatched region, then they can 
be sensed by integrating vision and touch as described earlier. If 
the points are determined to be occluded, then they must be sensed 
by the tactile system alone. This is done by actively guiding the 
tactile sensor to these points and sensing the surface normal at this 
point, which should be consistent with the transformed mean nor­
mal for the patch. By verifying patch center points and normals, 
partial verification of a component is accomplished. 

Holes arc verified by applying the transformation matrix to 
the hole axis and centre id and actively using the tactile system to 
verify the holes existence and cross sectional curve. Cavities simi­
larly are verified by applying the transformation to the cavities axis 
and bottom point and again using the active tactile system to sense 
the cavity. 

Some components will not be able to be sensed due to sup­
port surface occlusion. An example of this is the coffee mug where 
the bottom component of the mug cannot be sensed since it is on 
the support surface. The application of the computed transforma­
tion matrix to this surface will reveal that the surface is coincident 
with the support surface. 

6.3. CONFIDENCE MEASURES 
Verification can be a time consuming and lengthy process as it 

involves many levels of sensing. Once the component/feature level 
is verified, a further verification can proceed at the surface level 
and finally at the patch level. Rather than continue sensing all parts 
of the object, a confidence measure for each level is established. In 
the limit, by sensing all modeled surfaces and features and patches, 
verification will be complete. However, it will not be physically 
possible to verify all of these parts of the model due to occlusion 
and inherent limitations in the sensors themselves. Therefore, a 
measure needs to be established that computes the confidence of 
the match. One can then predetermine what confidence measures 
arc necessary for acceptance or rejection of a model. 

The models used are hierarchic in nature. Confidence meas­
ures can be set up at each level of the model allowing acceptance or 
rejection based on different requirements for each level. At the 
component/feature level, a measure of confidence is the fraction of 
total component/features partially matched. We can extend this 
idea of a partial match at each level by including threshold criteria 
for accepting a partial match. A partial match at the component 
level means that some fraction of the surface's that comprise that 
component are matched. A partial match at the surface level 
means that some fraction of the patches that comprise a surface are 
matched. By specifying Vi, a verification fraction at each level i of 
the model, hierarchical acceptance criteria will determine the 
amount of sensing to be done. These verification criteria can be 
global or used on a per object basis, implying different amounts of 
active sensing for different hypotheses. 

One advantage to this approach is that partial matching can be 
carried out. Since the matching is local with global constraints, par­
tial matches can be made and reported even though a global match 
is rejected. A further extension would be to articulated parts, 
where local transformations between components and surfaces 
would have to be accounted for in the global constraints. 
7. CONCLUSION 

The system described is currently being tested. The experi­
mental hardware systems, model data base and surface and feature 

matching routines are built. Work is presently continuing on the 
higher level reasoning modules. As the number of objects in the 
database grows, more sophisticated access mechanaisms for indexing 
into the models will be needed. 
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