THE MANAGEMENT OF HEURISTIC SEARCH
IN BOOLEAN EXPERIMENTS WITH RUE RESOLUTION

Vincent J.

Digricoli

Hofstra University

166-11 17th Road,

ABSTRACT

In assessing the power of a theorem
prover, we should select a theorem diffi-
cult to prove, compare the quality of
proof with the published work of mathema-
ticians, and most important determine
whether cpu time used to find the proof
is economically acceptable.

In this paper we apply the above cri
teria to RUE resolution, equality-based
binary resolution which incorporates the
axioms of equality into the definition of
resolution. We select a theorem in Bool-
ean algebra, show the published proof of
George and Garret Birkhoff side by side
with the computer deduced proof achieved
in less than 30 seconds of cpu timey, The
proof is quite long requiring the deriva-
tion of four lemmas and is proven by two
RUE refutations of 16 and 18 steps respec-
tively. The same refutations with the
equality axioms and unification resolution
are 38 and more than 40 steps. Hence, the
power of RUE resolution is shown by the
brevity of proof compared to using the
equality axioms.

The primary pragmatic issue in theo-
rem proving is the effective management of
heuristic search to find proofs in accept-
able computer time. Whether an inference
system supports or obstructs this object-
ive is a crucial property and in this
paper we explain in detail the heuristics
applied to'find proofs. These heuristics
are RUE specific and dependent, and can-
not be applied in the context of unifica-
tion resolution.

*This research was supported by a
sabbatical grant from the IBM Systems
Research Institute in New York.

Whitestone, N.Y. 11357

I RKESOLUTION T UNIPICATION AND FQUALITY

KK reselution ic equality-based
binary rezolution in that it lncorporates
the axioms of cquality inlo the definition
of resolution, making refutations less
than hall as long as compared to using the
equality axioms, Murihermore, it establi-
shes a context for heuristics leading to
more efficieni gearches for proofs. RUR
resolution is hased on the fellowing rule
ol inference:

1. RUE Eule of Tnference:

"The RUE resolvent of F(sl,..,sn) v A
and P{tl,..,tn} v B, is A v JI v ), wherc
¢ iz a substitution ard D is a disjunction
of inequalities speciflied by a disagrec-
ment set of the complementary literals,
uF(al,..yon) and SP{tl, .., tn)."

The above inference rule is in open
form since we arce free Lo choose the sub-
stitution and disagreement cet to be used,
Let us now define the notlon ol a disagree-
ment set;

2. Diszagreement Zet of a Fair ol Terms:

"I 5,t arc noh-identical terms, the
set of one element, the pair s:14, is tho
origin disagreement set. 1f 5,1 have the
form, f{al,..,ak),f{bl,..,bk), then the
set of pairs of nonidentical, correspond-
ing arguments 15 the topmost disagreement
set. [Murthermore, 1f D 1z a disagreement
cetl, then D' formed by replaclng any mem-
ber of D by the elements of its disagree-
ment sct, is alse a dlsagreement zet., 1T
s,t are identical terms, the emply set is
the sele disagreement set,”

For example, the pair of terms:
f(a,h(b,g(c))) + f{b,h{c,g(d))) has the

disagreement setis:
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Dl: f r{a,n(by,ele)})it(byhle,g(d}}) 1 or reduce to the inequalities of any di
. i agreement set. We call the above the
B2 L a:b, hibye(e))inle,g(d)) |} Negative Reflexive Function rule.

n3s L oasb, tre, gleyrp(d) }
p: { arb, bre, e:rd } In (Digricoli, 1983) we prove:

4. Completeness of RUE Resolution:

We now define a. disagreement of comple- "Tf S is an E-unsatisfiable set of
mentary literals, P(s1, ..,sn),P(t1,..,tn) at clauses, there exists an RUE-NRF
the union: n deduction of the empty clause from 3."
= .U, Di
3= This theorem establishes that resolving
where Di is a disagreement set of the cor- to inequalities is complete without intro-
responding arguments si,ti. The_topmost ducing the axioms of equality(for substi-
disagreement set of P(s1,..,sn),P(tl...tn) tution, transitivity and reflexivity) or
is the set of pairs of correspondlng argu- paramodulation. Apart from symmetry, the
ments which are not identical. axioms of equality are applied implicitly

by the RUE-NRP rules of inference.
Us ing the substitution axiom for

pr dicates, we can now state: We describe the above as completeness
in 'open form' since we have not specified
P(sl,..,sn) A P(tl,..,tn) - D either- the substitution or disagreement
set to be used. In (Digricoli, 1983), we
where D now represents a disjunction of deal with this issue and define the RUE
inequalities specified by any disagreement unifier and the topmost viable disagree-
set of P,P. in resolution by unification ment set as part of a completeness theory
and equality, we can resolve P and P im- stated in strong form. however, in this
mediately to D. For example: paper we will use RUE resolution in open
form as defined above, heuristically ex-
P(f(a,h(b,g(c)))) ploiting this form and making efficiency

of proof search our primary goal.
F—  Punes@)

e
L

IT QU FRIMARY HRFERIMENT

resolves in four distinct ways depending
on our choice of D. We may resolve to
J'(a, h(b,g(c)))#f (b, h(eg(d))), to

azb v b#c v c#d, or to an intermediate Uur case study deals with proving the
level D. These are logically distinct following theorem:
deductions since an input set may imply
f(a,h( b,g(c))) =f( b h(c,g(d))) without im- Hiven: the axioms of Hoolean alpgebra
plying a=b » b=c A c=d, so that the former
participates in a refutation but the latter- l. X vy =y v X comnutivity
does not. 2. X a0y ¥ oA X "
Y. X v 0O =%
he x a1l = x
9. X v Xx =1
We now define a second inference rule G. X A X =0
similar to the above applying directly to 7. x{yvz) = xy v x2 distributivity
an inequality: 8. x v yz = (xvy)(xvz) "
3. NRF Rule of Inference:
Prove: x v {y v 2) = (X v y) v 2
"The NRF resolvent of the clause ot oy
tI#t2 v A is dA v D, where 0 is a substi- associativity ot logical or
tution and D is a disjunction of inequal-
ities specified by a disagreement set of This is a fairly complex theorem for

otl,0t2." a human to prove and we have the following

proof published in the Transactions of the
American Mathematical Society [2] by

f(a,h(b,g(c)))#f(b,h(c,g(d))) George and Garret Birkhoff:

For example we may deduce by NRF:

- afrb v b#c v c#d
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Theorem: av(bvec) =(avb)ve The following is the proof deduced by the
RE theorem prover in 24 seconds of cpu

Proof (Birkhoff) : time (BM 370/3081), using a sing a total 752
unifications in its proof search. We

We first prove lemmas: LI, L2, L3 and L4. first ask the theorem prover to prove two

lemmas, xy v X = x and (X vV y)X = X,
and then augment the input axiom set

L1: a_= aa since: a=al=a(ava)=aavaa with these kmmmas to prove associativity.
= aa
-2 gvl = 1 since: avl = ( avl)_| = ( avl) (ava)
=av(la)=ava=l 2, Refutation to Prover Xy v X = X
L3 2 = gvab since: a=al=a(bvl)=abval
=abva—avab abva # a
L4: a(avb) = a since: a(avb) = aa v ab — xy v xz = x(y v z)
=avab=a a/xr b/y
az £ a ¥ a(bvaz) #a
Fon enmmas LILL3,L4 and axiom 7, . Xal = x
it follows that: a/x, 1/2
a = a((avb)vc) a(lbv 1) £ a
b = b((avb)vc)
c - c((avb)vc) -— Xal = X
a/x
Substitute the above for a,b,c in av(bvc):
1 £ bBvil
av(bvc) = a((avb)vc) v ( b((avb)vc) v _
c((avb)ve) ) . — l =% vXx
b/x
On the right side, factor out the _
expression (avb)vc to the right: bvb £ bvl
av(bvc) = (av(bvc)) ((avb)vc) . — X v yL = (xvy)(x;z)
b/
On the right side, distribute _
(av(bvc)) across ((avb)vc) : ¥z # b ¥V (bvy)(bvz) £ bvl
av(bvc) = ( (av(bvc))a v (av(bvc))b ) v — Al = x _ _
(av(bvc))c . b/, b/y,1/2
Applying LI,L3,L4 and axiomm 7 to each (bvo){bvi) £ bvl
menba of the right side, we obtain:
— lax = x
a v (bvc) (avb) v c {bvl)/x
D
1l 7 bvhb
It is evident that especially the | 1 =xv %
latter part of the above proof will be b/x
difficult for a huren to deduce. In fact
in humen experiments with three mathemat- ]
ically astute university students, one
could not prove associativity after six
hours of work, a second proved associati-
vity in nine hours and the third proved In the above refutation, we are uni-
the theorem in three hours. Hence, we are formly applying the following substitution:
asking the RE theorem prover to prove a
theorem which humas find quite difficult. "In a left-to-right scan of

complemen-
tary literals, first unify at the highest
argument level, and then in a second scan
unify at all lower levels.”



The refutation

RUE proof of the lemma,

is a succinct 8 step

within this proof the sub-lemma, x

is proven beginning at step 4.

Xy v X = X, and
v1=1,
The same

refutation performed with the equality

axioms and standard unification
would be 19 steps.

4. HKHelutation to Prove:
{o v bla £ a
— {(xvy}{
a vz F u ¥ a v b
— X v 0D
a v b £ oa
— X v 0
o F w0
- 0 = Xx

[

LL v bO

b

0 v x

(v y)x

xvg} =

z £ a

s X

"
B

resolution

= X

X v yz

/%, by

a/x, 0/z

a/x

h/x

Xz bfx

B/, By
0/

bO /X

b/ %

We have a succinct RUE proof of _8
steps and an equivalent proof with the
unification resolution
Note that the sublemrna

equality axioms and.

would be 19 steps.
is proven beginning at step 4.

0 = XAO

When the theorem prover is gi
negated dual lemma:

ab v a # a

it produced a.
in 1.4 seconds with a total

both lemmas

1485 unifications
is simply the concatenat-

(avb)a # a

ven the

16 step refutation proving

This refutation

ion of the above two

in the proof search.

counting sublemmas,

refutations and
four lemmas are being
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proven in a single run of the theorem pro-
ver. It corresponds to the work of the
Birkhoff paper proving lemmas L1,L2,L3,L4
and is a substantial piece of work.

4, Hefutation to Prove:

v (yvezz) = (xvy)ve

The LH step refutation may be
gsummarized as follows:

SUuppose:
a v {bve) £ {avb) v ¢

Lthen:  (av(bve})l # ((avb)vell
fav{bve)}{eove) £ ((avb)ve)(cve)

fav{bvelle v (avibved)e #£  *

¢ v (avb)e ¥

(Ax7,L3, L4} (Ax7,6,3)

where * is:

((avbB)vele v ((avb)ve)e

I v {avib)e

(L4) (Ax7,6,3)

which completes the proof by contradict-
ion. We see that the computer deduced
proof is perhaps simpler and. more elegant
than that stated in the Birkhoff paper.
The actual refutation is given in Appen-
dix T.

The theorem prover found the 18 step
refutation proving associativity in 22.4
seconds using 6087 unifications in the
proof search. An equivalent proof with
the equality axioms and unification reso-
lution would be more than 40 steps. Alto-
gether 23.8 seconds with 7572 unifications
were used for the entire proof. Cpu time
would be substantially reduced by a more
efficient implementation of the theorem
prover in assembly language in place of
PL/I. This is a very fine result compared
to other published work (McCharen, Over-
beek, Wos, 1976) and our purpose in this
paper is to study the heuristic manage-
ment of proof search which led to the
above result.
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Il FINDING A NEEDLE IN A HAYSTACK

Let us examine the enormity of the
task of search which confronts a theorem
prover seeking to find the refutations we
we have stated. The difficulty of prov-
ing theorems in boolean algebra is com-
pounded by the commutivity of the boolean
functions (v,”*) and the symmetry of equal-
ity, so that the axiom x v 0 = x, has 4
variants based on these properties. We
can incorporate the entire effect of com-
mutivity and symmetry by stating for the
remaining boolean axioms all variants bas-
ed on these properties:

1, xv0=x 4 variants
2. x al=x »
3. xvi=1 i "
b, X aAaX=0 4 "
S. x(yvz) = xy v Xz B4 "
6. x v ¥z = {xvy)(xvz) 64 "

Hence, in boolean algebra we are really
dealing with an input set of 144 axioms
when we drop the axioms for boolean com-
mutivity and equality symmetry. Further-
more, the RUE inference rules implicitly
incorporate the axioms of equality for
substitution, transitivity and reflexivity
and these axioms also do not appear in the
input set. Let us assume that we will
limit the input set to n clauses selected
from the above variants. Let us assess
the magnitude of search for the 18 step
refutation which proves associativity when
n is as low as 16.

The theorem prover begins with the
negated theorem with skolem constants,
av(bvc) # (avb)vc, and must find the refu-
tation sequence we have stated. The refu-
tation search is represented by a tree:

av(ibve) £ (avb)ve

ol ANN

1 2 3 cieveeass 14 15 16

Since in RUE resolution complementary
literals always resolve, each of the 16
clauses in the input set resolves immedi-
ately with the inequality of the negated
theorem and in a breadthfirst search 16
resolvents appear at level one of the
search tree. The complete breadthfirst
expansion of the search tree to level 18
has 16-to-18th leaf nodes. The situation
is actually worse if we take into account
resolving to different disagreement sets
making the expansion factor at a node
higher than 16. Even with the input set
reduced to 16 clauses, a breadthfirst
search for a refutation is out of the

question. The refutation we seek will be
a linear input refutation represented by
a path in the above tree. A miniscule

number of paths from the root will culmin-
ate in the empty clause but at least one
will when the input set is E-unsatisfiable.

We have stated that the refutation
for associativity was actually attained
by the RUE theorem prover in 6087 unifi-
cations, i.e., the theorem prover heur-
istically developed a subtree of 6087
nodes in place of the breadthfirst expan-
sion. We wish now to explain precisely
what heuristics were applied to define
this subtree of search.

IV A HEURISTICALLY CONTROLLED
PROOF SEARCH

In order to find a refutation in
acceptable computer time, we must drasti-
cally prune the breadthfirst search tree
and furthermore order the search in the
remaining subtree. We will define the
components of an evaluation function which
heuristically determine which search paths
to abort and what is the best leaf node
to expand in the search tree. Furthermore,
in applying an axiom to a node, we must
heuristically select a disagreement set
apt to participate in a refutation. The
following principles were applied with
these objectives in mind:

(1) heuristic ordering by degree
of unification,

(2) selection of the lowest level
disagreement set not containing
an irreducible literal,

(3) heuristic substitution selection,
(4) complexity bounds relating to:

(a) argument nesting

(b) number of distinct variables
in a clause

(c) number of occurrences of the
same constant or function symbol
in a clause

(d) maximum number of literals
in a clause

(e) maximum character length
of a clause

(5) removing redundant resolvents,

(6) frequency bounds for the use of
individual axioms in a ref. path.



All of the above principles are syn-
tactic in nature and apply generically to
experiments performed. (1) through (3),
which were crucial in our work, are RUE
specific and cannot be applied in standard
unification resolution with the equality
axioms. The remaining principles have
been commonly used in resolution theorem
proving.

A. Heuristic Ordering by
Degree of Unification

If we wish to erase the literal,
tl # t2, in a refutation, we measure the
relevancy of an axiom al = a2 by computing
the degree of unification between literals
as follows;

(1) Apply the mgpu (the most general
partial unifier) to complementary
literals to obtain tftl/tft2, tfal=tfa2.

(2) Set w=0 (unification weight).

(3) For i = 1,2:
if Oti matches 0 ai identically,
then w = w+50,
else if oti,oai are the same function,

say: oti is f(bl,b2) and ocai, f(cl,c2),

then w = w+20 and, furthermore,
w = w+15 for each matching pair of
corresponding arguments.

This is a simple scheme of matching
which computes a weight of 100 when the
mgu of complementary literals exists, and
0 when there is no degree of unification.
There is also an intermediate scoring be-
tween these extremes. We now state our
first principle of heuristically ordering
the expansion of the refutation search
tree:

(1) Apply axioms to a negative literal in
the order of higher degree of unifi-
cation first and set a lower limit
SDWMIN below which we suppress or
postpone the application of an axiom
(search directive weight minimum).

(2) Furthermore, among axioms which sat-
isfy SDWMIN, select the first SDLIM
axioms with the highest unification
scores (search directive limit).

The 18 step refutation for associa-
tivity was found using SDWMIN=50, i.e.,
we pruned the search tree of all axioms
falling below this unification score. In
proving the supporting lemmas for associa-
tivity, all refutations were found using
SDLIM=3. As naturally intuitive, this
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heuristic by degree of unification may be
in RUE resolution, it, nonetheless, does
not apply in unification resolution which
requires the mgu at each deduction step.

B. Selecting the Lowest Level
Disagreement Set not Containing
an lIrreducible Literal

Typically in adding the negated theo-
rem to the input clause set, we introduce
skolem constants and when it is evident
that these constants are in effect arbi-
trary constants in respect to the input
axioms, then we can conclude that inequa-
lities on skolem constants like a=b are
irreducible, i.e., we cannot deduce a=b
from the axiom set.

For example, the negated theorem,
av(bvc)# (avb)vc, introduces skolem const-
ants a,b,c which in respect to the axioms
of boolean algebra are arbitrary constants
and we cannot prove two of these constants
equal. Thus we should never generate an
inequality like a#b in an RUE deduction.
Furthermore, inequalities like (xvx)a # b
which demodulate to irreducible literals
are also irreducible and cannot appear in
a refutation. This leads to the following
heuristic rule:

"In an RUE deduction, choose &as
resolvent inequalities, the
innermost inequalities not
containing an irreducible literal."

Hence, in the refutation to prove
Xy v X = x, we resolved:

l#bvl

F—- l=xvZX b/x

bvbAbvl

since resolving to b#| would result in an
irreducible literal. This heuristic prov-
ed successful, not only in all the boolean
experiments, but also in ten experiments
in group and ring theory (Digricoli, 1981).
The RUE theorem prover permits the user to
specify as input a list of irreducible
literals, and, at the end of a run, it
produces a list of ground literals present
at leaf nodes of the search tree which the
user may scan for irreducible literals in
preparation for the next run.
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C. Heuristic Substitution Selection

In the completeness analysis in
(Digricoli, 1983), we specify that substi-
tutions may be unconditionally performed
in variables at the first argument level,
like P(x), but only in variables at lower-
levels, like P(f(x)), if certain condi-
tions are met by the input set. This
leads to longer refutations requiring
extensive use of the NRF rule, when the
same refutations can be stated in abbre-
viated form without the NRF rule, if we
permit immediate substitutions at lower
argument levels. In fact, it occurs in
experiments performed that the following
maximum unification is the refutation
substitution:

"In a left-to-right scan of
complementary literals, first
unify at the highest argument
level, and then in a second scan
unify at all lower levels."

Note that we have given priority to substi-
tuting at the first argument level as spe-
cified by the completeness theory. Howev-
er, the above substitution selection which
enhances the efficiency of finding proofs,
is not universally compatible with RUE
completeness and we show this in (Digri-
coli, 1983) .

Vv EXPERIMENTATL RISSULTS

Steps in

RUE Proolt
B, zv1l =1 5(11)
B2: x a0 =0 5(11)
B Xy v x = X 819
Bh:  [(xvy)x = X 8(19)
BlaB2aB3abd 16( 38)
Bs:  xvi{yvz) = (xvy)va 18(h0+)

(1) Under length of proof, 5(11) denotes
that the _5 step RUE refutation is 11 steps
when restated with the equality axioms and
unification resolution.

D. Pruning; by Complexity Bounds

An important method of pruning the
search tree Is to apply complexity bounds
on resolvents which are formed. Theorem
provers working in areas of the search tree
having little relation to a refutation tend
to produce resolvents which are too complex
under a variety of attributes. The RUE
theorem prover permits the user to specify
complexity limits which when exceeded cause
the resolvent to be discarded. These lim-
its relate to the depth of argument nesting,
the character length of a clause, the num-
ber of literals in a clause, the frequency
of appearance of a constant or function

symbol in a clause (or literal) and the
number of distinct variables in a clause.
It is true that the ideal setting of com-

plexity bounds can only be derived by Know-
ing a refutation. Nonetheless, it is im-
portant to know to what extent the proof
search is contracted by applying complexity
bounds. Experiments show that it is a good
heuristic to use tight bounds to begin with
(possibly derived from examining proofs in
prior work with the theorem prover) and to
gradually relax these bounds. The experiment -
mental results in this paper- are first sta-
ted by applying complexity limits which

ar e a profile of t h e refutations derived.
We then suspend all use of these bounds,

to determine the degradation of search
which occurs. Both sets of results turn
out to be favorable

Rurn £ - wilthout
complexity bounds

Nun 1 - with
complexity boundo

CIl Time o _[,al CPU 1'ime Total
seconds Unif. seconds Uriif,
0,155 1873 0.508 554
0.1773 220 0.607 66173
0.68548 el 0964 10744
0. 647 77 0. BEH 1020
1.401 LB 3.008 2HGY
2z.h 3 EOHT P0.705 18727

(2) In Run 1 complexity bounds were
applied which perfectly fit the refuta-
tion derived, but in Run 2 no complexity
bounds were applied to limit search.
Apart from this distinction, both Run 1
and 2 used the same input set and heur-
istics, in Run 2 of B5, complexity bound
were relaxed one level and applied.



(3) To prove lemmas B1 through B4, both
individualy and altogether, the following-
Input set was used:

1. =2 v 0 =2 Y variants
2, X al = x 4 "
3., X v¥®=1 4 "
4. X A X = O 4 "
5. Xx{yvz) = Xy v xz 8 "
e %X v yz = [(xvy)(xvz) 8 variants

A complete set of variants was used for
the first four axioms but only a partial
set for each of thedistributive axioms.

In resolving with an inequality, the
theorem prover first chose from each var-
iant set, that axiom having the highest
unification score with the inequality.
This reduced the applicable axioms from 32
to 6, and of these only three with the
highest unification scores were applied
since SDLIM was set to 3. This meant that
the node expansion factor was 3 instead of
32 in the search tree and the excellence
of the results in proving lemmas is due
primarily to this heuristic together with
avoidance of irreducible literals.

(4) In proving B5 associativity, we re-
duced the input set to 16 clauses and
introduced variants of two proven lemmas:

l. xv 0 =X

2. X=x v 0

J. X a l =X

&, X=X al

5 xv X =1

6. l=xv?X

7 X A X =0

8. 0 = X o X

9. x{yvz) = Xy Vv XZ

16, xy v xz = x{yvz)

11. {yvz)x = yx v zX

12. yx v zx = (yvz)x

13 {yvx)x = x lemma
14, x = (yvx}x

15, ¥yXx v x =X lemma
16, X = ¥yX VX

In this experiment, the theorem prover in
resolving with an inequality chose only
those input clauses whose unification
score was 50 or greater (SDWMIN=50) and
3DLIM was not used. Our next experiments
will attempt to prove associativity with-
out using lemmas and with the same input
set of 32 clauses previously used. This
will be an exceptionally long refutation.

(1]

(2]

(3]

[4]

[5]

(6]

L71

(8]

(9]

[10]

(]

[12]

[13]
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Definsuon Por & given mgnpature SIG - (SFP) we say
the iphe (ASF) 15 an algebra of 1ype (3F) #Y the
fnnuwma is satialied.
A 13 2 DODEI LY el
TowmourlSeSuuswdn subset SA of A
such that TA = A and for
aisTeS ScTwSACTA
for ¢ € Cg, an elsment c¢® € A exists, such thst

Aesh
. For funcuons T, I AD + A is a mappmg such
that the image dSiA LI SinA 1t in SnolA far

all(S).. . S, €S0 O

By L definition of u signature, we have that SA . &
for every S € 8 since svery sorl coniainy at least one
constant.

Deliniion, A mapping 9§ A » B which has the
proparues, Lhat
.mtsh:.(s“}rorwwymsuua

bbv(l’ (ay. .. a,l-r play). elay)

18 calied o &_homomorpluam. [l

(ETERMSP) is the lroe algebrs of type (SF) and
(!ITBRH,,.S.'] is Lhe initial algebra of type (5F)

where ETERM., is 1be sot of terms without variahles

A mapping 6 ETERM -+ ETEKM, whch i3 2
T -endomorphism where (X ¢ V | 81 = 1) 15 [intle, »»
calied & T-pubslitution let ESUB be the sot of all
£ -subslitutions. E-substitutions are exactly those
mappings. which are substitbtions in the normal
sanse and have Lhe additional property thal
[zlsix}foralize ¥

Pit]. . .1,) 15 an atom, where P is & predicate symboi
and the ;¢ are ierms such that (1} < 5; where

($7...55) = SO(P). A Jitaral is u signed atom. A clause

is a st of literals, ie. an sbbreviation for the
disjunction of the literals, where ail variables are
usniversally quantified. A ground siom. = ground
lisetal or a ground clause is obe without veriabies.
Inatances of atoms, litersis and cisuses are their
images undet & E-subsitution Bguality (s) is a
distinguished binary predicate with domainsorisy
S0(e) - {(TT).

Since a clause set CS is said (o be satisfiable il and
onty i & model for S exists, there is the need for a
precise definiuon of 8 model respecting polymorphic
sgnatures.

Definilon. A EE-modal for e clause so1 CS is 2 triple
(DSIGR), which satisfies the following conditions:

- {DS.F) 19 an algebra of 1ype (8.F).

- For every predicale P there exists a rejalion PDeR
of the same arily

- All clauses in TS5 sre valid under ali
£-homomorphisms g ETERM + D, ie.
all clauses are valid under all assignments of
valuee in D 10 variables in clauses, where sorts are
respecied. (A literal P{_ ) is valud under @ . f 1 3
image under ¢ is in the relation PD).

- The equality predicale is represenied as the
idenuy on D.

3 Unifscatson of Polymorphuc Terms.

For & € ESUB we use the notation.

DOMic) - {x € Vliox = 1} . CODIS) = {81 | T € DOM{s)

and YOOD (o) is the set of varmbles n CODiG) A

uailication problem for two terms 3 and 1 is dencled

as ¢ = 1> The sel of veriables of a term ¢ 15 denoled

as YAR(L).

For W ¥V and o1 ¢ ESUB, define ¢ - T [W), #f

o1 - T for all x ¢ W. Furthermore defline s c v fW]

il e = At fWlior some A € ESUB. Obviousty & [W] 1s

a reflexive and transitive retation oo £ -substtutions

For & subsel U € ESUB we say U 13 separated on a »el

of variables W, iff DOMic) - W and VCODi6s) n W = @

for ali & € U and all YOOI s are disjoint. Note Lhat such

a sel canaysts of idempotent E -substitutions only

Dafinilgp. A sel of most general unifiers pUE{s 1) lor
two terms s and U is deflined as a subset of £SUB,
which is separated on W « YAR(31) and satisfies
o1 = ¢t for all @ € HUE(s1). (correctness).
- For all 5 € ESUB with 82 ~ 61 we have 5 ¢ & [W) for
some o € pLE(s1) (compleleness)
-6 W] = 6 -1 for all 87 € plE(sL).
(mmnimality) [
Defipition A E-substitution is a
batitution (coercing) (Well4 GMSS]., il
(1} & substitutes variables for varisbies and
(i) & is injective on DOM (s) and
(iii} DOM{(s) » VOOD () - & [T
The set of all weakening subslilutions iz called
ZWSUB. In the computation of a set of most general
unifiers, weakening subsuiutions are used Lo solve
unification problems like < = t> | where [1] is nol »
subsort of [x).
Daliition. The et of most general Weakenming
aubgtitvisons for ¢ sad 5. HWEg(t) is a set of
weakening substitutions which is separated on
W = VAR(1) and satislies:

yeoakening



- [ot} s Sfor all & € WWEc(1) (correctness)
- V8 € ESUB with [51 £ S there exisis a 6 ¢ yWE(1)

such that 5 € 8 [W] (compieteness)
-VeT e PWEGHL). 6ETIW] = & - T (minimality) 0

Thus delinition iz of course omty useful! for terms .
which are ill-sorted or for terms | where [1) i not &
subsori of S end the outermost functon symbol of t i3
polymoc phic.

The lollowing Lheorem 13 valid in the ERP-calcuius
[Wal3 Wab4] and can be extended 1o ERP”
Theorem 1. [Sch85a) Lett ¢ TERM and S € § If there
exins & B € LSUB such that [61] s S then pWEc(1)

erists, (i 19 not empiy and it 1s atways finite

A immediate consequence iy

Theorem 2. For unifiable 1 and t the set pUE(x.t}
exist, it not empty and fingte [

The proof follows from the fact that plF(xt) -

lee(Y 61} | S € pWZ‘[ﬂ(tl}. if 14 VARIt}

Ezample The following example demonsirates. thai
fur a unification problem -x=t- the mimmal sei of
mosl general uniliera can grow exponentially

Consider 1the sorl structure 5 - {NNLD where N. NZ
and I have the same meaning s3 in the exampie
above Let 1€ VNZ and 1 € V) The signature of the

function ‘=~ {producti 1

S0is} = [(NNN), (NLNN! (NNZN) (ZN2) INZI)
ILNZIV (NLZZ) (Z11) (NZNZINZ) The unification
problem ‘X = (X;+Xyk  «(Xp, [+X5,} produces 2T
undwers. since for every factor there are two
independent sotutions { 15 e vy} and Xy « v,
where {y-'] = N7 These solutions have to be combined
ndependently

For a set of variables W and n set of E -substitutions
U, the po! MAXdﬂU} iy & »e1 of I -substilutions

such that

i) MAdeU): U and

) 76 € MAXgyl). Tel scTiWl me-1
ui) Yt e U 38 € MAXqywyl) tcelW]

Such a set enists since W) is trensitive.

The polymorphic unification aigorithm FUNIFY
which is an exiension of the algorithm for the
ERP-cajeutus [Wald] takes two Lerms 11 a8 input end
produces 1 set of most general unifiers as ouiput.

It is delined as [ollows [Sch85a]

BSe et Labigase, 1 TRD

1 Ungw - ©
Z) REPEAT Uy p - Ungw Ungw - ©
For every 8 ¢ UOLD no
Let (d.e) be the [irst disagreement pair of

the two larms 53 81
[F d or e i3 & variabie, THEN DO

Unpw~ UW It e pUE(d, eB

oD,
oD,
UNTIL Upgy it & 39t of E-unifiers for st or
Ungw - P

3) RETURN MAX _ 1y ans)) Ungw) U

We have the theorem which 18 proved m [SchR5a}

Iheorem 3. Let st € ITERM be E-unisble Then

EUNIFY(st) termnales mnd returns a  finte

nonempty set, which 1s equivatent to pUE(a1). [3

[efinition. We sav SIG 1 a unilicalion uwmaue

signhature. #T

- ¢ 85 ) i1 & semilattice with 1 unique gresles
element.

-For all T € ¥ and ai S € S the 9ol
{(S)...5p,1) € SO | S s S}as either empty or

contains a unuque greatest eiement
The following Ltheorem is proved in {Sch8Sal
Theoram 4 Let SIG be a unificalion unique mgnature
Then plEts1) 13 al most a singleton for all st ¢
ETERM. (i
1n [Sch85a] it is shown. that the conditson, that < S .
it 2 semilattice, does potl restrict ibe expressiveness
of the many-soried calculus ERP®. In the case that
<33 > is o partially ordered set, il i? possible to add
sarts 1o the signeture, such that the resuliing soct
structure 15 a seqilattice and the ssusiabilty of
clause sels is unchanged.

4 Ihe ERP' calcuiug,

L -factorization £ resolution and ¥ -paramodulation
are defined a3 in [Wal3) however based om the
umifier sets pUE and pPE respectively. The set pPE
15 the set of most general unifiers for para-
modulation, which is also always (inite The
E-parsmodulation rule includes ithe weakening rule
of [Wat3] The proofs in [WR73] can be generalized
(see [Sch8S5a) 10 the ERP'-cakuius yieiding Lhe
following result.

Theotem 5. Let CS be a clause set contaming the
functonal reflexivily axioms Then
(S b=~ yppps FALSE emme (S is unsauisfiable.
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Example The functional reflexvity axioms are
needed for the completeness of the Y RP-calculus
Let S {T,AB,C,D,E}

A5 O LE
- Lt sbcgo be constaniy of sofl ABCD
respectively

- Lei P be = unary predicate with SO(P! « (E).

- Let [ € P with a signature, such that {fit, 15)] ~ E df
([l]]i A md[lzlsc ) or {[lllsBmd [lz]SD )
otherwise [I(i, 1501 =5

- Let S be the clause set { {seb} {oed}, (P(f(ac))}
{~P{f(b,d})} }.

This clause set is unsatisfiabie. but £ -paramodulaton
18 not possible. since [fib.c)] = [f(a.d)] = 5. There i3 no
deducion of the empty clavse in ERP* If the
functsanal reflexrvily anoms are present, then
fiachfityd} can be deduced from the functional
reflexrvity axioms and ithe clauses in (5 Hence the
empty clause 1s then deducable []
This resull 1z somewhal theoretucal In pracucal
apphcations, the funclional reflexivity agioms are not
used smnoe (i) they increase the search space
enormously and (! the subsumption rule would
delete all of them but the axiom Isx Clearly this
omirsion may be the reason for incompleleness

5 Ibe Sori-Theorsm, For a poly morphic signature
SIG and & relmed clause et (S, we define an
unsorted reistivieation CS ) {Wa83 Ob62] as lollows

For every sort 5 use a unary predicate Pg.

The sel of g0t aLoms AX consists of
Vi mvame if S«TforSTeS.

71 Ps(:i for the greatest sort Sof §.
V1. Xy Pg XV wP(x ) wPg Mz, 1))
for every f ¢ F and every (S, .S, ) € SO}

The reiativization Graj Of a clause C is the clause

nsell. where the sorts of the variables sre ignored
and for every variable 1 of C a literal Wla) 1e

added 10 Lhe ciause We have CS_ = aEu
{Crgy 1 CeCS)

The following theorem, which is proved in {Sch8Sa),
and which 13 proved for other signatures in [Ob62]
and [WaB3], siates the eguivalence of the sorted and
the unsoried version of a clause set:

Theorem 6. (Sortensatz) Let CS be t SIG-sorted clause
set Then
CS is unsatisfiable iff CS, is unsatiafiable D

Example This example it taken from [SM78], which
appears to be a goldmine for theorem proving
examples During a course on automated theorem
proving IN the last semester our students had to
translate these puzzles into first order predicate logic
and to solve them with our theorem prover
(Markgraf karl Refutation Procedure) [KM84] One of
these problems (Problem 471 reads as follows
When Alice entered the forest of furgetfulness, she
did not forget everything, onry certain things She
often forgot her name and the most likely to forget
was the day of the week Now the boo and the
unicorn were frequent visitors to this forest These
two are strange creatures The lion lies on Mondays,
Tuesdays and Wednesdays and tells the truth on the
other days of the week The unicorn, on the other
hand lies on Thursdays, Fridays and Saturdays, but
tells the truth on the other days of the week
One day Alice met the lion and the unicorn resting
under a tree They made the following statements
Lion Yesterday was one of my lying days
Unicorn Yesterday was one of my tying days
Prom these statements Alice who was a bright girl,

was able to deduce the day of the week What was
it?

We use the predicates MO(x), TU{1), .., SO(x) for
sayiog ihat x 18 3 Monday Tuesday etc. Furthermore
we need the binary predicate MEMB, indicating set
Membership and a }-ary predicate LA LA(T YV I)is
true if 1 says al day vy Lhat he lies a1 day 2, LDAYS{x
denocies Whe st of lying days of 1 The remaining
symbots sre sell expiaining One-character symbois
like u.1.v.z are regarded as universally guantiled
variables

Aziomization of the daye of the wesk:

MO(x) o» {TUG WWE(x WTH(x WPR(XIWSA(X NVSU(2) )
TU(x) oo ~+{WEB(x NMTR(x WFR(X MSA(I VSU(Z WMO(2) )
WEix) e {TH(x WFR(x WSA{X MSU(x MMO(2 MTU(2} )
TH(x) oo {FRIXWSA(XWSU(X WMO{X MTU(Z MWE(X) }
FR(X) e 4SA(TNWSUGX WMO(X WTU(X WWE I NTH(1) )
SA(x) e» ASU(X MO(X WTU(X »WEIXWTH(I WFRIX) )
SU(x) e {MO(x WTU(XNVWE(X WTH(XNFR(ZWSA(T) )

Arxiomiration of the function yvesterday:
MO(yesterday(y)) - TUi1)
TU(yesterdayixi} « WEI}



WE(yesterday(1)) »» TH(1)
THiyenerday(z)) o FR(1)
FR(vesierday(1}) » SA(x)
SAlyesterday(x)) « SU(x)
SUiyesterday(z}) o~ MO(x)
Axiomiration of the function LDAYS:

MEMDB(x LDAYS{lion})) +¢ MO(XNMTU(ZVWE(1)
MEMB{x LDAYS{waioern)) eo TH(X WFR(XZ VS A(T)

Ariomirstion of the predicate LA:
“MEMB{x LDAYS(u)) ALA(u X y) » MEMB(y LDAYS{u))
“MEMMI LDAYS(U)) A ~LA(U X ¥) »

~MEMMy LDAYS{u})
MEMB(x LDAYS(u)} aLA{u 3 v) « ~MEMB(y LDAYS(u))
MEMB(x LDAYS(u)) mLA(u 3 ¥) & MEMB(y LDAYS(u))

Thearem.
31 LA(lion 1 vesterday(1)) »

LAtunioors 3 yesterday(x)}

The MKRP proof procedure at kaisersiautern found t
proof for this unsorted version after 183 resolution
steps, among them 81 unnecessary steps, hence the
final proof was 102 steps long This proof contains a
lot of trivial steps corresponding to common sense
reasoning (like if today is Monday, it is not Tuesday
etc)

Later the sort structure and the signature of the
problem at hand was generated automatically by a
translator module which accepts an unsorted clause
set as input and products the equivalent many
-sorted version together with the corresponding
signature [Sch8 5b]

The sort structure and the signature contain all the
relevant information about the relationship of unary
predicates (like our days) and the domain-rangesort
relation of functions The sort structure of the
subsorts of DATS in our example is equivalent to the
lattice of subsets of (Mo, Tu, We, Th, Fr, Sa, Su)
without the empty set, ordered by the subset order
Hence there are 127 (-2 1) sorts. The function
yesterday is a polymorphic function with 127
domain sort relations liie yesterday ((MO, WE)) -
(SU, TU)

The unification algorithm exploits this information
and produces only unifiers, which respect the sort
relations, le (x <-t) is syntactically correct, if and
only if the sort of the term t is less or equal the sort
of the variable | We give an example for unification
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the unifier of 350-TU and vesterday(y MO:+TU) is
{x « yosterday(y,;. MO) .y » y ;MO ). The MKRP
theorem-proving system [KMB84] has proved the
theoren in the soried versics immedistely withoot
any unnecsssary fieps. The length of the prouf is 6
A the protocol shows, the final substitution o the
thoorem cisuse was 1 «— yYTh Thus the ATP bas
found the snswer Thuradey. it a very sirsight
forward and humenlike way Here 13 & proof protecol:

Cl All Mo MEMB {1 LDAYS(kion))
€2 AHTTu MEMD (x LDAYS(kon))
C3 AllxWe MEMB (x LDAYS(lion))
C4 All xTh MEMB (1 LDAYS(unicorn))
CS AllxFr MEMB (x LDAYS(unicorn)}
C6  AllxSa MEMB (x LDAYS(unicorn)}
C7  All 1y:Days uwAnimai
MEMB(x LDAYS(u)) ~LA(u 1 ¥}
{y LDAYS{u))
C8 Al xy.Days vAnimal
MEMB(x LDAYS(u}} LAlux y)
-MEMB(y LDAYS(u))
3 Al ryDays u.Animal
-MEMB(x LDAYS(u}) ~LA(u 1 ¥)
~MEMB(y LDAYS{u))
Ci0 Al xyDay: u:Animal
~MEMB{x LDAYS(u}) LAlu x ¥)
MEMB(y LDAYS(u))
Cli Al x:TheFr«SasSu ~MEMB(x LDAYS(lion})
€12 Al xTu+WesSu+Mo ~MEMB(x LDAYS(unscorn))
Th  All tDays
~LA(kion 3 vesterday(1))
sLA{unicorn 1 yesterdey(x))

Broof.

C41 & CiD.} » Ri:
All xTh y:Days LA{unicorn x y)
MEMB(y LDAYS/( unicorn))
R12&C121 » R2:
Al xTh y:Tu-We+Su+Mo LA(unicorn 1 y)
31 k{83 -+ R3
Ali xDays y:We MEMB(x LDATS(lion))
LA(lion 1 y)
R31 &Ci1L1 » R«
All x.Th+Fr+Sa+Su y. We LA(lion 1 y}
R41&Th] - RS
All xTh ~LA(ugicorn 1 yesterday(x))
RS1&R2! - R6 o



1170 A. Cohn

Rec ently, Walther, [13J has derived a computer
solution to the problem by reaxiomatising it in a many
sorted logic before giving it to the MKRP-system at
Karlsruhe [12] . His many sorted formulation has a
significantly reduced search space only 12 clauses with
16 literals with an initial search space of 12 possible
infer?nces and a total of 10 new clauses in the deduced
proo

The purpose of this paper is to show that further
efficiency is possible by recasting the problem in a
different many sorted logic [3,4] which possesses a
number of additional features which increase its
expressiveness as compared to Walther's' logic [12] and
the other many sorted logics to be found in the
literature, eg [8,6,2,5] A table comparing the
formulation of the problem in the different logics may
be found towards the end of this paper in figure 2

2. HadJther's Axiornatisation

For convenience, Walther's many sorted
axiomatisation is repeated here in order to better
compare the formulations in the two different many
sorted logics

In his logic typv declarations define the sort of
function and constant symbols (his predicate symbols
may also be typed but this feature is not needed in this
example). Sort declarations define the sort hierarchy
Animals, plants, grains, wolves, foxes, birds, caterpillars
and snails are all sorts, named A, P, G, W, F, B, C and S
respectively.

(1w) type wW (2w) type I:F
(3w) type b:B (4w) type c:C
{Bw) {ype 8:S (6w) type g.G

("w)sort W A {(BwisortF C A

{(Bw)}sort B - A
{1iw)sort ST A

{(10w)sortC C A
(12w)sort G C P

{13w) {El{arpr), -M(e2.a1), -E(a2p2) E(ns22){
(14w) {M{c1.b 1)
(18w) tM(b1.f1)
(18w) { -Elws f}
(20w) {E(br.er)]

(15w} {M(s1.b1}
(17w) tM{fr wn)i
(19w} | -E(wr gr){
(21w} {-E(b1.51)
(22w) type h(C)P (23w) {E(c1,i{e )i
(24w) type i(5)P {25w) {E(st.n(s))
(26w) typa j(A.A)G

(27w) { -E(arag), -Elazj{a:,22))|

The symbols a7, f1 etc are all typed variables with
the sort of the corresponding upper case letter (Iw) to
(6w) define a signature and play no part in the proof.

As already mentioned, Walther's proof is 10 steps
long (9 resolutions and a factorisation). It is reproduced
below (in a slightly altered form to show the
factorisation explicitly).

(28w) {E{ar,pr), ~M{azar). -E(azp2), -E{nzj(er.a2))|
13w(4)+27w(1}

(20w) (F(as,p1). Mlazar), -Eazjlarez))
factor of 28w

(30w) tE{ws p ). BU{wr fO)
17wii)+20w(2)

(31w) | -E(frj{wr S
18wl )+30w(.)

(32w) {R{frpr) ~E(b1j(fr.6 OH
18w({1)+29w(2)

(33w) §-E(brjlf1.b )
Fiw(i}+32w (1)

(34w) iB(b2ps}. M(stb2), Lisip2)|
13w(a)+21w(1)

(35w) i~ N(s/.b2) -F(s1,pa){
35w(1)+34w(1)

(36w) | -E(s1p2}{
15w(1)+35w(1)

(37w) Y
2ow{1)+38w(1)

He attributes the success of his system in finding a
proof to the significant reduction in the clause set and
to the restriction on unification preventing the
matching of variables with incompatible sorts For
example clauses (20w) and (21 w) have no resolvent
because c¢71 and s7 cannot be unified. In the unsorted
case the two clauses (20cu) and (21 cu) do resolve to
yield { B(x), -C(y), -S(y)}. This can then be resolved with
(3cu) to yield { C(y), 3(y)\ However further inference
will now yield a pure clause either { S(c)j or |-C(s)j.
where ¢ and s are skolem constants. The dead end is
detected much earlier in the many sorted logic

3. ABrief Description of LLAMA***

The many sorted logic LIJAMA [4,3] is unusual in
that the quantifiers are unsorted; the restriction on the
range of a quantified variable derives from the
argument positions of the function and predicate
symbols that it occupies, associated with every non-
logical symbol is a sorting function a of the same
arity which describes how its sort varies with the sorts
of its inputs; polymorphic functions and predicates are
thus easily expressible and statements usually requiring
several assertions may be compactly expressed by a
single assertion. The sort structure itself is a complete
boolean lattice. The top (T) element is interpreted as
the universe of discourse and the bottom (JL) is
interpreted as the empty set. Expressions of sort _L do
not denote anything and are thus nonsense; they are
said to be illsorted. Sorts may be referred to either
directly or with an expression containing least upper
bound (U), greatest lower bound (n) or relative
complement (\) operators.

*** Logic Lacking A Meaningful Acronym. Having sought
a suitable name for the logic for a long time, | am
indebted to Graeme Ritchie for this suggestion.



Furthermore, by specifying the result sort of
predicates to be one of four special boolean sorts TT, FF.
UU, EE (representing 'true’, 'false', 'either true or false',
and 'nonsense'), it is sometimes possible to detect that a
formula is contradictory or tautologous without resort
to general inference rules Expressiveness can be
further improved by allowing the sort of a term to be a
more general sort than the sort of the argument
position it occupies However this feature is not needed
for the current problem.

Associated with every formula in the logic is a Sort
Array (SA) which is a mapping from sort environments
to boolean sorts. A sort environment is a mapping from
variables to sorts Thus a SA records what the sort of a
formula is, depending on what sorts its constituent
variables are regarded as taking A good way to view a SA
is as an n dimensional array where n is the number of
variables in the formula. Each dimension is indexed by
the different sorts and each position in the array will
contain one of the four boolean sorts FF, TT, UU or FIE. If
all entries are EE then the formula is nonsense (or
illsorted) and can be deleted. Entries which are TT will
be ignored by the system (effectively treated as though
they were EE) since they cannot lead to a refutation In
the case of a clausal logic, if any of the entries are FF
then the formula is a contradiction since all variables
are universally quantified.

Inference in the logic includes ordinary resolution
but there are some new inference rules In particular it
is sometimes possible to evaluate literals because they
are always of sort FF in the possible environments of the
SA of the clause Evaluated literals may be deleted
without having to resolve them away It is sometimes
advantageous to restrict the SA of a clause (le restrict
the set of possible sort environments in the SA by
changing some of the entries in the SA to EE) in order to
evaluate a literal. Examples of such inferences will be
found later on in the paper

4. AD Axiomatisation in LIAMA

We use all the sorts of Walther's axiomatisation and
some additional ones As will be discussed later, the sort
CUS allows the axiomatisation to be one clause smaller
than it would otherwise be, and the sort P\G is added
because, since G is a strict subsort**** of P, there must

**** Actually it does not follow that G is a strict subsort
of P if the sort structure is derived from the unsorted
axiomatisation. although it could be argued that the
original English statement of the problem does
implicitly imply this is in fact so. Walther's
axiomatisation also specifies G to be a strict subsort of
P. In any case this detail is not crucial to the problem

It should also be noted that in LLAMA the sorts B, F,
C, S, W, G, and P\G are all disjoint: their interpretations
are non-overlapping sets (this is because, as currently
formulated, LLAMA requires complete knowledge about
the sort structure). Again, this disjointness is not
present in the unsorted axiomatisation nor is it present
in Walther's formulation, nor is it stated explicitly in the
English statement of the problem, although it is true in
the real world. However, this disjointness information is
only used to reduce the search space and will not be
used in the proof itself since there are no positive sort
literals. It may be noted that Shekel's solution of the
steamroller which is discussed later also assumes the
disjointness of these sorts
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be a sort which is interpreted as all those plants which
are not. grains The use of P\G will also be discussed
later. Part of the hierarchy is depicted in figure |

deon

Figure 1.

Although LLAMA aclually requires the sort tattiee Lo be a
complele boolean lattice with [in Lhis case) 27 sorts, for
simplicily oniy those needed to define the sorting
tunctions for the non legical symbols are shown. Six
furlher sorts (ANW, AW AWE, AZH ALC and AAWGS) are
used during Lhe proof {see clauses ' and 3 below)

The sorting funclions for the various non-logical
symbeis (including skolem constanls) are as follows
Entries nol given are assumed to be KB (ic undelined)
unless otherwige imferable

M{<AA>) = LU B<AT>) = UU
M{<CB») = TI B(<WG>) = KK
M{<SB) =TT Bl<Wh>) = FF
M(<BJ>) =TT E(<BS>) = FF
M(<F ¥W>) = T R(<HO>) = 1T
R{<CLIS>) = P j<AAR) = G

The sorling funclion for a choracterisiic (or sort)
predicale 718

F{<r>) = TT
Fg. the sorling funclion for the predicale Pis:
Pl<P>) = TT  P(<A>») = F¥

FleTAT>) = FF

Nole how Lhe sorting functions for both M and K
make use of LLAMA's polymorphism te encode much of
the information aboul M and k. Thisx type of
pelymorphism has been called adhor polymorphism by
Strachey [1!] {or owerinading) and should be
distinguished from the parameiric polymorphism to be
found in, for example, [8] .
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The clausal form of the axioms comes out as just
the following three clauses. The sort environments for
which the corresponding SA is not EE or TT are listed
next to each clause (the first column gives the result
sort). Environments for which a clause is TT can be
ignored during a refutation because the clause is
tautologous in these environments and thus they can be
deleted for the same reason as ordinary tautologous
clauses can. These SAs are not input with the axioms
but are derived using the sorting functions by an
algorithm to be found in [4]

(i}] P(pr} -Ppa)El(arps). Miazar), Flazp2)BE{oraa)i

D ar [ az . pt1 | pz |
- ! ;
vu A A TP T
Ut AW ae | PP
UL TAB] A | P PG
UL . A _AC T P '

(2} }Eesrhles )Y
|

L (OIS

(3) b -Elasrag), - Blaz (o a2l
. YRET :

UU [A\WNB AW
UL L W AT
LU | B OAWS

These axioms are derived* from the unsorted
axioms 4u, 11u and the negation of 1 2u respectively. All
the other unsorted axioms have been subsumed by the
sort lattice and the sorting functions.

Thus this axiomatisation has just 3 clauses and 9
literals! There are only 4 possible resolvents initially
There are also some other possible inferences initially
because certain literals are evaluable In particular
literals 1(1), 1(2), 1(4) can only be evaluated since there
are no positive occurrences of P or M. (In fact
characteristic literals such as P(p7) may always be
evaluated immediately without losing completeness).
Thus 1 could be preprocessed to.

(17 {E(er,pt), ~E{zzpa).k(as,a2)]
T T el Laz et pe
{ | : | :
UU'BiSEP!P!
! F B | PP
Uy . W P_IP\G

Thus there are now only 6 literals overall. There are
four possible resolvents and three possible evaluations
(on I'(I). I'(3). and 3(1)) in this modified input clause
set. None of the three clauses can be factored

* It should be quite possible to derive this
axiomatisation (including the sorting functions)
automatically from Walther's formulation or perhaps-
even from the unsorted formulation.

A prooc!** poes Like this

(4) 1E{ar p1), -Rlezp2), -klaz,)(ara)

1'(3)+3(1)
ol oz { Pt i pe
]
uu | 1 H'p p

(h) iElarpr). Rlesjiaraz))l
tector of 4

!u!!aefp:f

.

Tuu, B B e

{6} tE{a2ps). Flazpz).Fiarag)
5(2)+17(1)

T " T
©oal I o - a3 | p! ]|
: i j

L UU . H 8 . F . P

Since literal 6(3) is always false in the
environments of clause 6 it can be evaluated and
deleted from the clause without changing the SA or
the meaning of the clause to produce a simpler
clause 6";

{8 iR{eapr), klazpae)

; a2 ooa’d lop
i L \ :
Uy . S L F 1 P

(7} {F{aapi)
8:{2)+2i:

(8) [E{nsps)Flaras)]
F(y+10(2)

i lay | wz . pi
i A S
|

UL W | F PG
L FF oW PG

We have now derived a clause with an environment
for which it is FF le false. Since variables are universally
quantified such a clause is a contradiction and we have
our desired refutation, In an ordinary clausal logic,
only a null clause indicates a falsehood but in this
calculus it is possible for a non null clause to be
contradictory by virtue of sortal information.

Note that this proof is linear, neither the unsorted
hand produced proof of Schubert nor the many sorted
proof of Walther are linear. Linearising a non-linear
proof often increases its length. The total number
number of inference steps (not counting preprocessing
and simplifications) is only 5 steps. This compares with
10 steps in [14] The inclusion of the extra sort CUS
** This proof is hand produced However, an
implementation of the logic will be finished in the near
future.



saves one unit clause in the axiornafisation of the
problem, this reduces the' search space slightly (the
MKRP system could also take advantage of this) but dues
not reduce the proof length since (23w) is not used in
the proof

Part of the saving conies from the ability to
represent information such as "caterpillars are much
smaller than birds" not as unit clauses as Walther lias to
(14 w) but as sorting functions Because this
information can be represented without using a clause a
reduction in the search space occurs The sorting
functions for M and E are then used to advantage
during the proof process to evaluate certain literals
Evaluations which can be perfornied without having to
restrict the SA are entirely 'free'’ (They are called
elementary a valuations in 14l ) They do not increase
the search space because the old clause can be deleted
An example is the evaluation perfornied in producing
clause 6' Also, it has already been argued that it is
beneficial to evaluate pure (i e not resolvable) literals as
soon as possible, as was done in producing clause 2'
However even a non elementary evaluation may not
actually increase the search space since the parent
clause may he restricted to exclude the sort
environment used to produce the evaluation without
losing completeness No non elementary evaluations
were performed in the proof above though they might be
used in a different branch of the search space (for
example we have already noted above that three non
elementary evaluations are possible initially (1.1). (3)
and 3(1)) '

Obviously the overhead of computing and
maintaining the SAs for the clauses has to be taken into
consideration but this should be overshadowed by the
reduction of the search space which accrues through
use of the many sorted logic in most cases the cost of
the SA operations appears to be some polynomial*** of
the number of sorts and the number of variables in a
clause, whilst the size of the search space is in general
exponential in the number of clauses. The occasions
when savings arc unlikely to be realised arc when there
is little sortall structure in the problem In this ease the
SAs will be very large (i e wil be UU in most
environments), few evaluations will be possible and
inference will be no better than in an unsorted logic
with the additional burden of having to maintain the
SAs.

A second reason why the 11AN A proof is shorter is
because of its polymorphism Inspection of Walther's
proof (or indeed of the unsorted proof) shows that a
literal with predicate symbol M is resolved away three
times during the proof (in producing clauses 30 w, 32 w
and 36w) Each time a different unit clause is involved
These steps are all combined in the evaluation of the
polymorphic clause (1) to produce clause ('1'). The
important point is that (1) is still polymorphic**** The
literal involving M has been deleted but without having
to make such a commitment as to the precise sorts of
the variables as in a non-polymorphic logic In a non-
polymorphic many sorted logic once that literal has

*** Analysing the complexity of the SA operations is an
area for further research

+¢** Note that I' would have to be represented as three
clauses in Walther's logic, each one corresponding to
one of the sort environments of 1'. Thus polymorphism
can allow one to obtain some "non clausal” effects
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been resolved away then a commitment is made as to
which precise sorts the variables involved in the
resolution should be For example, (30w) is a result of a
resolution involving M. But now al and as have been
irrevocably chosen to be of sort Wand I' respectively.

The point is of course that instead of choosing to
resolve (29w) against (1 7w) an inference engine might
just as well have chosen any of the other three unit
clauses involving M, for example (14 w) In this case al
and a2 would now be of sort B and C respectively
However this resolution cannot lead to a refutation
(which is why the environment <B.C,P,P> does not
appear in the A for (!'): it is tautologous and thus will
not be used in a refutation) Thus any further inference
involving this resolvent would be totally wasted The
advantage of a polymorphic logic thus is that .generality
is retained and choices involving the precise sorts of
variables can be delayed. This argument would hold
even if M had been resolved away conventionally rather
than by evaluation ft would also hold even if the
environment <B,CP,P> were still in the SA for (12)
because in the LLAVA proof the decision about the sorts
of a; and a.2 is made as needed when resolving to
produce clauses 4, 6 and 8.

Thus adding polymorphism to a many sorted logic
in this way does seem to add genuine extra power One
could imagine that a logic such as Walther's could
perhaps be simulated with an unsorted logic by running
the sort axioms intelligently (eg never resolving on an
uninstantiated characteristic literal, but choosing
instantiated characteristic literals as top priority when
available and also cheeking characteristic literals in the
same clause for inconsistency by testing whether the
clause is subsumed by any sort, lattice axiom) but it is
not obvious how LLAMA could be directly simulated in
such a manner with a clausal unsorted logic.

2. Final Kemarks

Seme of the siatisties appertaming to the three
axiomalizations of the Steamroller are summarised
the table of Nigure 2.

This example detnonstrales Lthe adventage not only
of using A many sorled logie, bat alse Lhe value of
potvmorplusm® and of using the four boolean sorts for
describing Lhe surtal behaviour of predicales

Schubert's Steamroller has alse recenlly been
solved by Lwo other automaled reasoning sysiems. in

" Unsorted . Walther's . LLAMA

P logic P dogie :
_ . " T
| No of elauses ! : : :
Lniually . 27 12 L
, No_of lilrrals . . ; :
Linitially . 1= 1B FHN -
i No of passible : ; f
cnfereneesnilially . n2 = 12 I -
f i 1 i |
length of proef az 10 H !

Figure 2

* Note that Lthe imuphicit restrection on Lhe gquantification
on variables from Lhe srguments places they veocur in s

essential to exploing LLAMA's polymorphusm since
variables with unique sorts exclude the possibihty of

P

polymorphic clauses such as }
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(2) censtant symbol €, , for each & € K ; (3} simple variables
£y, " 2w, .andav's 3,0, - ,z.”’" ~o, for
each i €1, wheee F, ia a unary predicate aymbol; (4) a
A j)-ary predicate aymbol £, for each j € J ; (5} & &t )ary
function symhel Fi . for each ! € L : (B) logical connectives
—.and — ;and (7} a wniverasl quantifier ¥

Based on this language, the terme of L;! are defined as
usual except that each variable is now either a simple variable
or an a.v.. The aet, Form{L &), of well-formed formulas of
Ly}, in defined as usual. The definable syntactic objects

U. Nn.*= and 3, and the standard nolions auch as 2cn-
fences are alvo introduced in the usual way.

2.2 I[I;!IRI!!Qt.IEn of 1
A structure is needed to interpret each formula in £ .
Let 08, Be a  atructure  for Ly Then

0S5 =< 0. (Pl (R Ys AF e A€ hax > where
{} is the upiverse of (5, ; P, is a unary relation &, C {I;
R,

is 8 X(J pary relation RI, c oM, F iaa &t pary fune-
tion F ™) = Q; and a distinguished element C, in an ele

ment of {1, for each ¥ € K . The interpretation of a formula
in the struciure @8, then reguires a variable assignment
function r as follows:

Pefinition 2.2 For a set V of variables of 7! and the
universe {8 of structure 08, , ¢ in an asignment function
2 ¥ = 11 such that for a simple variable r ., rfz)= 0o .
where a E1}; and for ah Bggregale variable
:m', “:r}',,_ o , where s € P', .

Assignment function for the terms of 1! is deflined as
usual. For notational convenicnce symbol » is also used for
the nwsigument for the terms. The validity of each formula is
determived by the following interpretation rules.

Defipition 2.3 For B [to - ... ta,). W1, %9 € Form(Ly' ),
where 1 's are terms, the satisfaction of the formulas with
respect to ¢ in 05, is defined by,

1) =, Blo -, taglle ] iff <aitg) .. £, ))>ER,,
2) b=, cwlel W BE W)
8) b=, - vde| WA = o] then [ wile},

{4) For a simple variable z , "'_’m' ¥z vy [e} iff for any
seft, k= wlsizfe),
{5) For an aggregate variable :1;."| . '%

< v ¥y |2| iff for
any o e}’", . #=m

Vo loi="" la)l |

where  for  variables o, and v,
oo = ) 2 7
a e, = v .

As a corollary to ihe definition, the interpretations of
U.n.*% and 3 can also be easily defined.

L e oEge 3

L.} is as convenient a3 £, in abbreviating the relativ-
ized expressions in a one-sorted language into more comparct

"

¢ From next section on, "'~ " on a symbol is omitted an long ws the
mesning of the symbol ia unambiguous.

forms. [faformula e, in [, isof the form

O = ¥r, I, ,

where 7, i1s a sort variable belonging to some sert §, | then
e, can be syntactically translated into »,7 in L

r r
o= ¥r ! \

where the unary reiation intended by P, s identical to the
sort &, . During the translation, £} is augmented with P,
ant arcordingly the structure for L}, say O0S8,{L7} . canbe
constructed from the many-sorted structure for £, , say
MS{L, ). The following {hrorem can be shown (proofs for the
theorems given in this paper can be found in [Shin, 1085]):

Theorem 2.1 A sentence m, in L, i8 tewe in MS(I,)
il ef in L) intruein O8 (L)

The power of L, over I_ lies in the fact that whereas in
the latter a sort variable with pew sort may not be introduced,
in the former a varsablc whose range is resiricted to n aubset
of the universe 11 can be introduced as needed in its exten-
ston. Let Ty be atheory in £y and let a formula &€ T
be of the form

pr= Ve (Sidz)N Sz) = viz)).

In L/, in order to inmtroduce a variable ranging over 5§, N 5.,
all that must be done is to udd a new unary predicate symhol
% to I;!, abbreviate ¢ by v U'{:m‘J, and augment
Tr by the defining axiom ¥z [S(z)S Sizin S iz)).
The extended language L' s called a Lorxtenmion of Ly
and the avgmented theory T, , a L-extension of T, . For
the semantics of the new predicate symbols in Ly ', it can be
shown that there s a unique expansion by definition of 05, |
say OS5,' , whick is a model of T¢' . 08, is called an
crpanaton by £ defimition of (S, . This characteristic of 1,
in called  Y-extenmibility. The following theorem catablishes
the validlity of L extensilility of 1.} :

Theorem 2.3 For aoy ¥' € T, . there is a ¢ € Ty such
that for any assignment function »,
. vl <= =, v
3. UWR-resolution

The problem identified ie Section I, namely, the genera-
tinn of uselens resolvents that lead to dead ends, occurs only
when a many-soried theory of o certain class is refuted by a
resolution scheme. For instance, for the many-sorted theories
with teee siructure stated in [Walther, 1984a], this problem
pever orears, When the (ree constrant i lified, however, this
problem may appear. The conditions under which the prob-
lem may arise are explained below, this time in lerms of £ |

Let Ren(t) stand for the range assoriated with a term
t . Given a set of unary relations /| let a act of immediate
predecessor of & relation £, € P, denoted by IM({F), be

defined by IM{PY= (P, |F,€P, P, CP, and if
P, CP CP thep either P, =P or P, =P} A situa-
tion may occur in which two variables v, and », have
| 1AM (Faniv, )y 0 i6f (Renir, }}| > 1. Hence there are possibly
more than one range over which v, cao be unified with », .
In fact, if x is a variable such that Ran{z;)= 7 and
Py IM(Ran(r, ]} N IM(Rarir, )}, then any substitution
b= {zfr,,zfv,}isalcgitimate mgu of {1 ,v, }, since
fv, = #v, . There are, therefore, as many mgus for



{v.v,} as | IM{Ran{v,))N IM(Ran(v,))} . Not alt the
resplvents generated using each of these mgus are useful.

A way to remedy the situation is proposed in the follow-
ing. First, a few new notions are introduced. A wr-
substitution companent s any expression of the form tfv ,
where v i3 a variable and ¢ i a term different from v
satisfying ftan(t) ¢ Ran{v). A wr-subpair is a set of wr-
substitution  components {t/r, . tfe,} satiafying, (1}
Fan{r, ) @ Ronir,) and Ron(v,) @ Ran{v,), {2)
| 1M {Ran (v, ) N IM (Ron (v, )}] >1, and &)1 Ron (i )o=
Ean{v, )N Ranir, ). A wr-subabituiien i= s aet of wr-
substitulion components which posaibly contains one or more
wr-subpairs. A wr-resolvent is a resolvent which is generated
by using a wr-substitution as a unifier,

The E-extensibility of I plays the central role in intro-
ducipg we-subpairs. From the definition of a wr-subpair, it is
clear that wr-resalvents can only be expreased in an extended
Ianguage of L:}. To be more specific, let a theory in I be
formalized by an ordered pair < 04 , Ty > where 0A isa
set of ordering axioms expressed with the symbol “ C ™ such
that P, C P, means V¥r (P (z)— P,(z)) and Ty is a set
of the nonlogical axioms of the theory expressed in Ly . The
following is an example:

Example 3.1  Consider the following < 04 , Ty > :
oA: (1) PcB,DCC
28 ECB.ECC
Tr: @) Y2 (PEP)u Q=™ , r(sP))
1) ¥22¢ - P(I%)
(6) ¥aTF wpTC . QaTF | LTC)

The following is done: For s of P{zT¥) in (3) and 2%°
of = P(rT) in (4), » wr-subpair { z¥% fz78  TK 10} gy
introduced with Ly being extended by s unary predicate
symbol, say K , where ¥z (Kiz)= B{(z)nCiz}). The
extcasion of LY requires < OA , Tp > to be also extended,
ie, OA is sugmented to OAY by the ordering axions such
ax (2} below. (8) is derived as the wr-resolvent of (3} and {4).
Finally, {8} is resclved witk (5) resulting in [] ss foliowa:

@ KcB . KCcC,DCK,ECK
8) QT fz™p (3)+(4)
7 0 {5)+6}

It is not difficult to aee that the range of ¢ in a wr-
subpair  {tfv, , tfv,}, ie, Raon{i}m= Ran{y )N Ranly,), is
the weakest range over which {v, ,v,} can be unified --
weakest in the sense that if P, = Ran(t), then there is no
P, such that P, € 7 and v, and v, are still unifiable
over P, . For this reason, the upification stated above is
called unification over the weakest range and the resolu-
tios involving such unification in called TUUWR-resolution.
The idea behind UWR-resclution is therefore to subsume all
the possible unifications by one unification over the weakest
possible range.

The completeness of UWR-resclution must be proved.
Given < 04 , Ty >, let Ry (Tg) be the set of all clauses
consiating of members of Ty and the resclventa (including
wr-resolventa) of members of Ty (similar to Robinson's reso-
lution ogperator [Robinson, 1985)). Also let R3{Tg) be
defined so that for each n >0, RJ(Tp) =Ty and
REM(T) = Ry (RE(Ty)) . Completeness theorem states:
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Tlheorem 3.1 A < OA , Ty > is unsatishiable if and only
il B0 (Ty) contains [, for some n > 0.

In fact, when the UWR-resolution iz applied,
< (04, Tr> ia tefuted not in Ly but in its extended
language Ly . Therefore it furthetr must be justified that
when K3 (T:) containa [], for some n > 0, whether the
unsatisfiability of < 04 , Ty. > can be truly showo i I,
without extending its vocabulary., Let R "] stand for an
identical mtuation as Ru{ ] except that in the former no
wr-resolventa are generated. In this way the unsatisfiability of
< (A , Ty > can be shown without extending 1y . The
following theorem can be shown:

[heorem 3.2 Given € 04 , T >, RI{T rcontains [],
for some n >0, if and only if RP(Ty) conmtains [J. for
some m >0,

¢, Effici f UWR- luti

Caoe way to discuss the efficiency of UWR-resolution is to
compare Ry{ )} snd Ry ) deflined previously. The fol-
lowing farts show the efficicacy of UWR-resolution:

Lemma 4.1 Given < G4 , Tey>, if n is the amallest
non-pegative integer for which RE(Tg) contains [] and m
is the amallest non-negative integer for which R;™(Ty) ¢on-
tains 1, then 5 s m .

Lemma 4.2 Given < 04 , Tg>, for each 20
PR T - RedTe)| < [REM (Tl R:(TH] .

Finully, the following theorem can be preved:

[beoremm 4.3 Given < 04 , Ty >, if n is the amalleat
non-negative integer for which R3{Ty) and R (Tgl both
contain [J, then | R{T}| < | RE(TH]-

. Conclusion

The use of aggregate variables have been demonstrated in
a ncw approach, namely, LU WR-resclution, for proving
thearema. [t has been shown how such an approach avoids the
problems encountered in the use of a many-sorted language.
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