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ABSTRACT

We introduce a graphical representation of
quantifier-free predicate calculus formulas and a new
rule of inference which employs this representation.
The new rule is an amalgamation of resolution and
Prawitz analysis which we call path resolution. Path
resolution allows Prawitz analysis of an arbitrary sub-
graph of the graph representing a formula. If such a
subgraph is not large enough to demonstrate a contrad-
iction, a path resolvent of the subgraph may be gen-
erated with respect to the entire graph. This general-
izes the notions of large inference present iu hyper-
resolution, clash-resolution, NC-resolution, and PL-
resolution.

Two forms of path resolution are described for
which deletion of the links resolved upon preserves the
spanning property.

1. Introduction

Since about 1960 most of the effort in automated deduc-
tion has been concemed with refutation systems. The initial
emphasis was on Prawitz analysis [7,9,10,12,20], in which the
unsatisfiability of a sentence is deduced without inferring new
formulas. By 1965, with the advent of resolution and (later)
paramod illation, the emphasis shifted almost completely
toward the use of inference [15,21,22,23,27]. Most of the work
done within both schools of thought employed conjunctive or
disjunctive normal form. More recently there have been adap-
tations of both techniques toward the use of unnormalized or
less-normalized formulas [2,11 ,16,17,19,25,2f].

We introduce a new rule of inference, path resolution,
which operates on a graphical representation of quantifier-free
predicate calculus formulas. The new rule is an amalgamation
of resolution and Prawitz analysis. Our goal in the design of
path resolution is to retain some of the advantages of both
Prawitz analysis and resolution methods, and yet to avoid to
some extent their disadvantages.

The main advantage of Prawitz analysis is that, except
for variants of original formulas, no new formulas are inferred
which rapidly expand the search space. However, except for
adding variants, Prawitz analysis is an all or nothing time-
bound search for a contradiction. In contrast, resolution and
other inference based methods store the progress made at each
inference by retaining the inferred formula. Eventually local-
ized evidence of a contradiction is produced (usually the empty
clause). The required multiple variants of formulas are
automatically (and often excessively) generated. But each new
formula introduced interacts with others, expanding the search
rapidly in both time and space..

One of the disadvantages of resolution is its reliance on
conjunctive normal form. We avoid conjunctive and disjunc-
tive normal form and the duplication of literals that their use
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may necessitate, since path resolution operates on formulas in
negation normal form. We have found that the analysis is
greatly simplified by a representation of NNF formulas which
we call semantic graphs.’

Path resolution allows Prawitz analysis of an arbitrary
subgraph of the existing graphical representation of formulas.
If such a subgraph is not large enough to demonstrate a con-
tradiction, a path resolvent of the subgraph may be generated
with respect to the entire graph. Path resolution operations
include (properly) all resolution-based inferences of which the
authors are aware, such as hyper-resolution, clash-resolution,
NC-resolution, and UL-resolut ion.

It will be obvious to the informed reader that the work
reported here, while new, has been synthesized from a number
of important ideas developed by others. The most influential
of these are Robinson's clash resolution [21], Kowalski s
connection-graph procedure [14], the work of Andrews [2] and
Bibel [3/4] on paths, matrices, and the spanning property, and
the non-clausal systems of Stickel [25] and of Waldinger and
Manna [2ft].

In the next section we introduce the notation and termi-
nology required for expressing formulas and their semantics in
terms of semantic graphs and paths. We further develop this
formalism in section 3; section 4 introduces the rule of infer-
ence, path resolution. Section 5 contains a sample refutation,
and section ft introduces two link deletion strategies. We omit
many proofs for lack of space; they are available in [18].

2. Semantic Graphs and Paths

A semantic graph is a means of representing a logical for-
mula, and paths determine the semantics of the graph. We
assume that the reader is familiar with the definitions of atom,
literal, formula, resolution, and unification. We will consider
only quantifier-free formulas in which all negations are at the
atomic level.

A semantic graph is empty, a single node, or a triple
(N,C,D) of nodes, c-arcs, and d-arcs, respectively, where a
node is a literal occurrence, a c-arc is a conjunction of two
non-empty semantic graphs, and d-arc is a disjunction of two
non-empty semantic graphs. Please note that a node is a
literal occurrence, so that if a literal occurs twice in a formula,
we will label both nodes with that literal. Each semantic
graph used in the construction of a semantic graph will be
called an explicit subgraph, and we shall insist t hat each proper
explicit subgraph be contained in exactly one arc. We will use
the notation (G,H). for the c-arc from G to H and similarly
use ( G ,H )4 for a d-arc. The subscript may be omitted if there
is no possibility of confusion, and we will use the term graph
only for semantic graphs.

We will consider an empty graph to be an empty disjunc-
tion, which is a contradiction A construction of a graph may
be thought of as a sequence of c-arcs and d-arcs. There will
always be exactly one arc (X,Y) with the property that every
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other arc s an arc i N or in ¥. We call this arc the final arc
of the graph, and X and V arc the final subgrapha, Since this
arc completely determines ¢, we freguently write & =={ X, } ).

Ax an example, the formuta

AABIVO AN ~AVIDACQ)

15 the graph _
A—B A
[ - !

« D—-

Note that horizontal amows are c-arcs, and vertical
arrows are d-arcs. There are two d-arcs:
(A — BC) and ( A, D -> C); and there are three c-arcs:
(A,B), (D,c), and the entire graph. Some of the explicit sub-
graphs are each of the nodes, A —> b, and the right-hand part
of the graph.

The formulas we are considering are in negation normal
form (nnf) in that all negations are at the atomic level, and the
only connectives used are AND and OR.

If A and B are nodes in a graph, and if a = (X',y') is an
arc (c- or d-) with A in Xand B in >, we will say that a is the
arc connecting A and B. If a is a c-arc, we will say that A
and B are c-connected, and if a is a d-arc, we will say that A
and B are d-connected.

Lemma 1. Let G he a semantic graph, and let A and B
be nodes in G. Then there is a unique arc connecting A
and B.

One of the keys to our analysis is the notion of path. Let
G be a semantic graph. A partial c-path through G is a set c of
nodes such that any two are connected by a c-arc. We allow
the empty set or a singleton set to be a partial c-path. A c-
path is a partial c-path which is not properly contained in any
partial c-path. Notice that any partial c-path is extendible to
a c-path, and hence partial c-paths are always subpaths of c-
paths. We similarly define d-path using d-arcs instead of e-
arcs. The next lemma is an immediate consequence of Lemma
1.

Lemma 2. If A and B are nodes in a graph G, then
there is a c-path or a d-path (but not both) containing A
and B.

Using paths, we can define the conjunctive normal form
of a graph as the conjunction of the d-paths, and the disjunc-
tive normal form as the disjunction of the c-paths. If a for-
mula is multiplied out using the distributive laws, then the
graph changes and so may the normalized forms.

Paths can be defined in a somewhat more structural
manner. Define a structural c-path (scp) ¢ in a graph G as fol-
lows: if G consists of a single node A, then c is the 9t {A}; if
the final arc of G is a d-arc, then an scp in G is an scp in one
of the final subgraphs; and if the final arc is (X,Y' ), then c is
the union of an scp in X and an scp in Y. Lemma 3 states
that the two formulations of path are equivalent, and as a
result we will abandon the terminology structural c-path after
the lemma.

Lemma 3. Let G be a semantic graph and let ¢ be a set
of nodes in G. Then c is a c-path iff ¢ is an scp.

There is an obvious similar statement about d-paths; we
leave the proofs to the reader.

The proofs of Lemmas 1 and 3 and of many lemmas and
theorems that follow often use induction on the number of
arcs in the graph. The base case is always trivial since the
graph will then consist of a single node or arc. Since each
explicit subgraph will always have fewer arcs than the entire
graph, the inductive hypothesis amounts to assuming that the
result holds for all explicit subgraphs. As a result, in proofs

we do include in this paper, we will ignore the base case and
begin by assuming that the result holds for all explicit sub-
graphs.

We will use the notation ¢ = xy when two pat lis in sub-
graphs are put together to form a path in a graph as in the
lemma.

Lemma 4. Let G be a semantc graph. Then an
interpretation 1 satisfies (falsifies) G iff | satisfies (falsifies)
every literal on some c-path (d-path) through G.

We will frequently find it useful to consider subgraphs
which are not explicit; that is, given any set of nodes, we
would like to define that part of the graph which consists of
exactly that set of nodes. The previous example is shown
below on the left. The subgraph relative to the set {A, C, D}
is the graph on the right.

[A — 1] A A
) - } A - ]
¢ D — ] D

If Ais the node set of a graph G, and if N'' is con-
tained in N, we define Gy , the subgraph of G relative to
A' as follows: If A' =N, then Gy < = G. If the final
arc of Gis(X)Y), and if the nodes in N ' all appear in A'or
in Y, then Gy< =Xy< or Gy =Yy , respectively.
Otherwise, Gy = (Xy >, Yy > ), where this arc is of the
same type as (A, Y). The following lemma says in essence
that the subgraphs we have defined are the objects we want.

Lemma 5. Let G be a semantic graph with node set A,
and let A' be a subset of A. Then
i) Every nodein N' is a node in some arc in Gy .

i)y Ifp' is a path through Gy , then p' is the restriction
to A' of a path p (of the same type) through G; in par-
ticular, if p" is a partial path in G consisting of nodes
from A ' ,then p' is a partial path in Gy .

3. Blocks

Consider the graph (A -+ B) — C. The non-explicit sub-
graph B —> C "feels" much like an explicit one, and certainly
the graph A —» (B > C) is essentially identical to the original
graph. Indeed, the graph A —» C is an explicit subgraph of
another essentially identical graph: (A — C) — B. Subgraphs
with this property can be characterized with the notion of
block. A c-block Cis a subgraph of a semantic graph with the
property that any c-path which includes at least one node
from C must pass through C; that is, the subset of the c-path
consisting of the nodes which are in Cis a c-path through C.
A d-block is similarly defined with d-paths, and a full block is a
subgraph which is both a c-block and a d-block. From Lemma
4 we know that the c-paths through a graph determine the
semantics of the graph, and that the d-paths also determine
the semantics. This might lead one to believe that c-blocks
and d-blocks are full blocks. This is not the case, as the fol-
lowing simple example illustrates:

A
l
B—-C

The subgraph relative to {A,B} is obviously a c-block, but it is
not a d-block since {AC} is a d-path which meets the sub-
graph but does not pass through it.

We define a strong c-block in a semantic graph Gto be a

subgraph C of G with the property that every c-path through
G contains a c-path through C. A strong d-block is similarly



drfined.

Lemma 6. If (" is a c-block in a semantic graph 7 if
the final arc { X, ¥) of (7 is a e-nee, and il " meets both 3 and
V. then ¢ jx a strong c-block. Moreover, the subgraphs
(' and (', consiating of the interections of ¢ with X sl
b, are themsetves strong e-bhlocks,

Lemma 7. The union of soy number of d-paths in a
semantic graph & is a strong e-block. Conversely, a d-path
through a strang c-blork s o d-path through the entire graph.

Lemma B. H (" is a e-block in €7 and il d d....el] are
d-pathy thirough ¢, then their wnion is 4 e-block n (0

It s abvious bt explieit subgraphs are full blocks.
There v a sense in which the converse is true. Define two
praphs (N COD ) and (N2 0 DY Y 10 be dsomorphie
if there exists o bijeetion F2 A — N ' such thad Tor cach A in
NoA=HKA), and which preserves o- and d-paths. (By A—FfA).
we menn that A aud TA)Y are the same lteral. 10 gs nar ol all
clear what ene woald even mean by suving that A and A} are
the same node sinee they appear e different graphs.) T'he con-
ilition A=MA] s an essential part of the definition: otherwise,
the graphs A = B oaned 7 — ¢ would be isemorphic. Notiee
that being isomeorphic s obvieusly an equivalence relition, A
simple example of isomorphie graphs s A — (B — €} aml
(A — B = O with the identity”™ map.

One method of obtaining an isomorphic image of 4 graph
i through rommutivity and associativity. Commutivity in a
graph amounts to reversing (he order in which an are s
formed; ez (VX)) instead of [X.Y) . Associativity in graph
wmnounts to changing the order in which (wo ares of the suome
type are Tormed: eg (Y (FV, Z) ), instead of (1Y V), 71, i
s demedinde that two grephs which are identical except for
one such commutation or one such rewssocilbon are  jso-
morphic. Since being isomorphic is Transitive, any number of
commwations and reassocialions will result o an somorphie
graph, In fact, the converse is true. This, and the fact (bt
full Wocks are esseptially explicit subgraphs, are corollaries of
Theorem + below.

We define fevel inoa graph ¢ as follows: The level of ¢/ s
¢ and the leve] of its final are is 1. Cliven an arec a = (X, 1) of
level ko of the final arc of X ix of the same type as a then tha
final are has level k; otherwise i has Jevel k41, I either ease
the level of X s k.

Theorem 1. Lot 7 he oo semaniic graph. and let £ e a
full blork in ¢, Then His a uwion of level 1 subgraphs of an
expheit subgraph of ¢/

Hroof. By induction on the number of aresx in ¢ Let the
final are of ¢ be (X, V) andd asume Chat (X, V) s oe-nres the
caste Tor a d-are s simolar, 1F 7 s o subgroph of X or of 3, the
imluction hypothesis applies. and the theorem holds.

So suppose some nodes of £ are in X and some ure m 1
recall that Ay and #oare the subgraphs of 8 consisting of the
nodes of H whieh are in X and of those which are in ¥, respee-
tively, We show firet that 2y and Hy are themselves Tull
Iocks. 1t s obvious 1that ench i o d-block sinee the arc (Y. V)
is a coure: any d-path through 6 3+ o deopath through Y oor a
d-puth through V. To see that £y is o c-block in Y. note that
His a strong e-block by Lema 8. Heore by Lemma 7, His o
nnion of d-pails threugh . Thus By s a2 vnion of those d-
paths which he in X ie, Hy s a strong c-Dlock in X and in
particular a full block in X, Similarly, By is o Tull Block and
strong c-block in 1.

Now, if the fipal are of X ix a d-arce, then Hy mects both
final subgraphs of X and henre is a sirong d-block in X. Sinre

it i both n atrong c-block and a strong d-block it must be all
of X,
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If the final arc of X is a c-arc, let 7 he any level | sub-
graph of X which meets fiy. The proof will be complete Tor
By land by symmeiry for 4y and henee for all of B if we
show that U C Ity But this is clear since the final are of
must be a d-urr; de, the proof is identical to 1he rase when
the Boal are of X ix a d-are.

Corollaries 1, 2, and 3 are immediale consequences of the
theorem. The first corollary (and s geueralization, Corallary
1) aml the theorem are especislly important. Because of the
chronolegical order in which they were originally proven. we
will reler to Theorem | as the second sagmorphism theorem
anel ta Clorullaries | and 4 us the firal ssomorphiam thearem.

Corollary 1. Let G be a semantic graph, and let fi be a
full bloek in 70 Then there is o semantic graph ¢ ' and an
isomorphism [0 7 — ' snel chat I s an explicit sub-
graph of v '

Corollary 2. I & uand f! are isomorphic semantic
graphs, then # ean be Teriped by reassociating and rommuting
some of The ares i €0

Corollary 3. The intersection of 1wo full blocks i i full
block.

Corollary 4. Civen s semantic graph ¢ and a rollection
of mutnadly disjoint Tull blocks, there is a graph isamoerphic 1o
€ in which cach full Block is an explieit subgraph. Morcover,
piven any (wo of the blocks, each node in one 15 c-connecied io
each node in the otker or cach node in ane is d-ronnected 1o
each node in the other,

We will finel it useful 10 determine the smallest fall Block
cantaining & given subgraph; to do thar we newl 1he notions
of r- and d- ertension. The c-extension and the deextenvion of
the entire graph 7 iv & liself. Given a level k subgraph V' in
e, i {0Y), i an oare in 6F, then the e-extension of X is the
tunique} level h-1 subgraph romuining X, snd the d-extension
ix X The ohvious dual applies Tor {X, V). Given an arbitrary
subgraph H of (; to fimel the smallest full bleck containing /.
let k he the smallest integer such that more than one level k
subgraph of (7 weets I [ Note that § must exist unless } con-
sistx of a single pode, in which case £ is a Tull block.) Then the
smallest full block containing £ 1s the subgraph consisting of
those level k subgraphs which meet ff.

It will be useful to divide an arbitrary subgraph H of a
gruph 7 into c-blocks, We define a e-hlock ¢ contained in a
subgraph H 1o he marimal il no superset of € in H s a e-
bloek. The c-blocks i the defintion are assemed to be o
blocks in (¢, which 1rivially implies that they ate c-blocks in /1.
But note that it # s not a full block, a subgraph which is & c-
blork in # might not be a c-block in 7. 1n particular, 7 may
not be a e-block and tvpically will net be. W define o proper
e-family of I 1o be a colleetion of maximal c-blocks whoxe
union i fI. The wembers of a proper c-family are not in gen-
erad disjoim .

The next theorem says in essenee that a certain rule of
inference 15 sound. ‘This may net be entirely obvious from the
statement, which is purely stractural. First, define the awridr-
ary anbgraph Aux(H.6) of o subgraph ff in a semantie graph 7
to be the subgraph of { relative to the set of all nodes in ¢
which lic on extensions of d-paths throegh H o d-paths
through . The proof of Lhe pext lemma i immediate,

Lemma 9. If /f is a subgraph of . then Aux(H.07) s
emply iff H s a strong c-bleck. Moreover, Auxi#£.(7) cannot
contain s d-path through & if f1 s a c-block, then sa is
Aax{H ).

Theorem 2. Let {7, ..., €} be a proper e-family
in a subgeaph /f of & graph ¢ Let | he an imerpretation
which satisfies a c-path p through &, and suppose that p does
not pass through . Then | satisfies Avx{ ", (7 | for some 3,
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Proof. Since p does not pass through H, it must fail to
pass through C, for some i. Hence, p must entirely miss G, ,
and so p must meet and hence pass through Aux(C, ,G). -

Example 1:

P
l _ el
Q B —~
c }
1 R
B

Let S be the subgraph relative to {A, B, G, A, B, C}. S may
be partitioned into the following four c-blocks: {C, B}, {A},
{B}, and {C, A}. However these are not maximal; in particu-
lar, the last two c-blocks may be combined to form {C, B},
{A}, and {B, C, A}. But we still do not have a proper c-
family. The c-block {A} is not maximal because the node B
can be added and {A, B} is still a c-block; {C, B}, {A, B}, and
{S, C, A} do form a proper c-family.

Under the conditions of Theorem 2, it is immediate that
the disjunction of the auxiliary subgraphs is satisfied by I. (In
the above example, any c-path that misses the first c-block
must hit subgraph {Q, P}. A c-path missing the second c-
block hits {P}, and one missing the third c-block hits {R}.)
We denote this disjunction by P{H,G). We shall soon see that
there are redundancies built into P(H,G) which can be elim-
inated. These redundancies arise from the fact that the auxili-
ary subgraphs need not be disjoint. Theorem 3 indicates how
to remove them. First, define a subgraph of a graph Gto be a
d-full block if it is a full block and a strong d-block. Note that
for // to be a d-full block in G, H must be a disjunction of one
or more level 1 subgraphs of G.

Theorem 3. Let {Cq4,,..., C} be a proper c-family in a
subgraph H of a semantic graph G, and let K be the intersec-
tion of Aux(G, ,G ) and Aux( G;,G). Then Kis empty or a d-
full block in Aux(C,,G).

The significance of Theorem 3 is that the redundancies
which appear in P[H,G) are its level 1 subgraphs which appear
more than once. In example 1, the auxiliary subgraphs of the
intersecting c-blocks are the subgraphs relative to {P, Q} and
{P}. Their intersection is of course the node P which forms a
level 1 subgraph in both auxiliary subgraphs and in their dis-
junction. However, we can form the disjunction of auxiliary
subgraphs to build P(H,G) and leave out the redundancies; i.e.,
use the intersections of the auxiliary subgraphs only once. We
denote the resulting graph by Q(H,G). We prove that Q(H,G)
is unique by defining an object WS(H,G), the weak split graph
of H in G, and showing that WS(H,G) — Q(H,G). (We intro-
duce strong split graph in section 6.) We define WS(H,G) as
follows:

WS(0,6) = G.

WS(G,G) = 0.

WS(H,G) e WS[H X)WV WS[Hy, V)il G =(X,Y]),

WS(H,G )= WS{Hy X))V WSHy YT G =(XT),
snd H meets both X and V.

WS(H .G ) = WS(Hy,X ) (or WS(Hy,Y)) if G = (X,1),
and H io contained in X (in Y, respectively)

We will write WS(H,X]) for WS(H X' ). Notice that po
nodes appear more than once i WS{H,G), and that W5S(H,G)
is uniquely defined. In Theorem 4, we skow that Q(H.G) =
WS(H,G), which tells us that Q{#, &) can be computed
without first discovering a proper ¢-family.

Theorem 4. If His a subgraph of a semantic graph G,
then Q(H, G) = WS(H,G).

It should be noted that ounly structural redundancien are
eliminated by weak split; it is certainly possible that the
literals which occur in 7 will resubt in WS(H.G) beiug a tautol-
og¥. Iu view of Theorem 4, we will use oply the notation
WE(H, (7). The followiug corollaries are immediate.

Corollary 1. Let ff be a subgraph of s graph G, aad let
[ be ao interpretation which satisfies a c-path p through .
Thea if p does not. pass through H, [ satisfies WS(H, G,

Corollary 2. If /f is a cblock in a graph G, then
WS H. (7} 18 isomorphic to Aux(H, ),

4. Path resolution.

The discussion of paths and graphs gives a (we think use-
ful) representation of logical formulas as graphs. The primary,
concem of this paper is path resolution, a rule of inference. To
this end, we define a chain in a graph to be a set of pairs of
cconnected nodes such that each pair can simultaneously be
made complementary by an appropriate substitution. A link
is an element of a chain, and a chain is full if it is not prop-
erly contained in any other chain. A graph G is spanned by
the chain K if every c-path through G contains a link from K.
Notice that if a graph is spanned by a chain, the graph must
be a contradiction since no c-path which contains complemen-
tary nodes can be satisfied. If K is a chain, we use the nota-
tion Gk for the subgraph of €' relative to the set of nodes
which appear in K. If Gg is spanned by K, K is said to be a
resolution chain, and G is said to be a resolution subgraph.
Example 2:

D A

_1 |
IA—'EAﬂ)J
| |

B ;ﬂ_i//{c — K]

The curves between A and A and between B and B represent
links which form a chain. The subgraph relative to the chain

B — A - !

The cpaths arc {B A A) and {B A B}. Each obviously con-
tains a link, so we have a resolution chain and a resolution
subgraph.

A rule of inference is of course a procedure which pro-
duces a formula from a given formula, and such a procedure is
sound if any interpretation which satisfies the original formula
also satisfies the inferred formula. Resolution is such a rule; in
essence, it applies to formulas in cnf and operates on chains
consisting of a single link. We will define a generalization of
resolution which we call path resolution. It applies to any
semantic graph and operates on arbitrary spanning chains.

Let K be a resolution chain in a semantic graph G, and
let R — Gk . If | is any interpretation which satisfies G, it
satisfies a c-path through G. Since R cannot be satisfied, ¢
cannot pass through R. Hence, by Theorem 4, / must satisfy
W\E(R, G). We call WS(R,G) the path resolvent of R in G, and
we have

Theorem 5. Path resolution is a sound rule of inference.



Consider Example 2 again. We have alrcady scen that

B — A] -

ot |

is a resolution subgraph. The c-blocks are [B — A} and the
d-path {K B}. The auxiliary subgraph of the serond is
[C — E] since the (partial) d-path {A D} does not pass
through the resolution subgraph. The path resclvent is

¢ —~E]
|
D
|

(A — B

Onee a resolvent has been inferred, it may appear natural
to conjoin it with . There is a better way o handle this: the
aplit. subgrapb should be formed in the smallest full block Af
containing the resolution chain Fi, and the resolvent should
then be ronjoined to A rather than to all of (+. That is, we
replace M in & with (M, WS{M, . M)}, We will rall 1he
resulting graph the weak resultant of & with respert to K and
depote it WRes( G [2), lo the previous examples, (and quite
often in general,) M ia a union of level 1 ¢-connected subgraphs
of €, and therefore WRes{ G.R} = ( (7, WS(R ., G ))..

6. A Refutation Proof

Consider the following formulas taken from Chang and
Lee [5].
(1) W (B(x) A ~V(x] — Zy (S(x.y) A Cly))
(2) =k (P{x) A\ E(x) A Oy (S(x.y) => P(¥)})
(3) i (Plx) => ~V(x])
We wish 10 show that (1), (2}, and (3) imply {4) below.
(4) e (P(x) A Clo))
The semantic graph for (1], {2), (3). and the denial of (4) is
shown below. WNotice that the nede P{x) is derived from the
atom P(x) in both {3} and the depial of [4). If we had
represented (3) and --(4) as separate c-connected graphs, the
proof below would stil] go through: links 3 and 5 would simply
coniain different nccurrences of

E(X‘j t
lmmqaﬂ

V{XI — Pla) — E(a)—

w m
505, 10) = A100)

Links 1, 2, and 3 span their associated subgraph and therefore
form a resolution chain. The weak split of this chain with
respect to the entire graph is the graph S(a.f(a)) — C{f{a}).
We show thia path resolvent below along with a portion of the
original graph:

Sta.y) Vix) = T
i - | -~ S{af{a}) — Cif(a)}
Py} 2 ——PF{x}
Resolving on links 4 and 5 yieids V{T(a)) — C(Ha)).
Say) Vix) - TH) S
I - | — S(af(a)) — ClH{a)) — V({a)} — T{fa))

P(y) P{x)
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It is now easy to see that the link {C(f(a)), C(f(a))} is a resolu-
tion chain that spans not only its subgraph but the entire
graph. Therefore this link produces the empty graph upon
activation. The careful reader may have noticed that this last
link is inherited from {C(x), C(f(a))} which could have been
added to the resolution chain used in the second inference.
The resulting chain would have produced a contradiction shor-
tening our proof to two steps. A binary resolution refutation
for these formulas given in [5] uses eight steps.

We do not claim that the search space for determining an
appropriate resolution chain is small. However, the existence
of a 2-step derivation for this example is certainly somewhat
favorable. Moreover, we note that both path resolution steps
admit link deletion under certain extensions of Theorems 7
and 8. Space limitations preclude discussion of those exten-
sions here. A derivation of a logic program by NC-resolution
is compared to a derivation of the same program by path reso-
lution in [18].

Stickel [25] has pointed out that in a non-clausal connec-
tion graph system it may be wise to avoid inferences on non-
atomic complementary subformulas. Two reasons cited are
that complementary subformulas may be difficult to detect,
and that such inferences may be duplicated by resolving on
single literals only. Path resolution may help to solve both of
these problems. We only link atoms and their complements,
not non-atomic structures. The presence of complementary
subformulas is detected by a resolution chain. The subformula
relative to a resolution chain is frequently (but not always!) a
conjunction of complementary subformulas comprised of the
literals appearing in the chain, even though these literals may
be scattered throughout the entire sentence.

6. Link Deletion

Path resolution is so general that it admits as special
cases all resolution-based inference rules (e.g. hyper-resolution,
clash resolution UL-resolution, NC-resolution) of which the
authors are aware. In fact, if enough copies of formulas from
an unsatisfiable set are represented, then a resolution chain
will exist whose path resolvent is the empty d-path. We may
therefore view semantic graphs and path resolution as a uni-
fying framework for all resolution-based inference and
Prawits analysis.

This generality is elegant from a theoretical point of
view, but it also admits a proof-search space larger even than
that of unrestricted binary resolution. It is natural to ask
whether restrictive strategies exist that would take advantage
of path resolution's generality, and not just mimic known stra-
tegies applicable to (say) clausal logic. One natural restriction
is to large chains; that is to avoid resolution chains that are
proper sub-chains of currently known resolution chains. Our
intuition is that such a strategy is favorable for refutations,
and this is an area of ongoing investigation.

Another way to reduce the search space is to delete links
after activation. In [3] and [4], for example, Bibel dealt with
these issues within binary resolution. We develop two link
deletion strategies for path resolution below.

6.1. Link deletion using full blocks

It is more or less the case that a necessary and sufficient
condition for a link deletion strategy to be acceptable is that
the spanning property be preserved. That is, if a graph is
spanned by a set of links, and if a rule of inference which
deletes links is applied, then the resulting graph should still be
spanned. Theorems 7 and 8 introduce dasses of resolution
chains for which path resolution has this property. Theorem 6
gives a condition when certain links can be deleted. It should
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be poipted out that since we are consiklering hink deletion, we
will not in geoeral be dealing with the ful} set of Jinks, and we
will nol. need to inkerit all links, §F L, is the current et of Tinks
in a graph ¢/ and if K is the resnhvent with respeet to a resolu-
tion subgraph of the forw (£, V), such that the conditions of
Theorem 7 or B are satisfied, then we need uwor inherit any
links from {7 or from V to K. The reasan is that the only
paths 1o the new graph we need he concerned ahout are those
which pass through ({7, V) in Theorems 7 and B we essen-
tially show that extensons of such paths through 1 must con-
tamn an inherited ok, and this allows deletion of the links
R.

Hecall that any full block s a copjuncticn or a disjnne-
tion of level | subgraphs of some explicit subgraph J1IF the
final are of /1 is a ronjunction, then the e-extension of § s M
and the d-extenston of {Fis {itself. The situation is reversed
if the final arc of I ix a deare. We will use the notation ()
and DI for the ¢- and d-extensions, respecrively, of 1

Lemma 10. let {7 be s fuli bloek in o graph 7 whose
final are s @ c-are. Let 4 = CE[{/ ) and 1/, = U, and for
i> 1 debine Z.YV,, and 17, recursively  an follows:
Y,=0DEZ) Z,=0CEY Jand ', =V 7. Then
i) Lither Z, = or there exists an m  such 1l

=Y =Gili>m
1) I pisae-path through G, then there exista a k wueh tha

p pasues through 7 but completely misses ¥ Tor b < k.

[We do not exelude the possibility that p passes through

e, that k =0

Proaf. The proof 15 actually fairly trivial. Olwerve that
rach 2, v a level 1 subgraph of V), aod that each ¥ is a leved
I subgraph of 7 ;. Observe Turther that 17 s 1he full Llock
ronsisting of the disjunction of 1the level 1 subgraphs of ),
different from 2,. Ta see that 1) holds, note that if 2, s nm
all of 5, then Y, | is the level 1 subgraph of ( containing
Te see that i) bolds, pote thal there i a Jeast k sech tha p
passes throngh ¥, Then p misses 2 fori < k. »

Example 3:

'll
Q| 4
A = B = A - |
| I
B

let U, be the (subgraph relative ta) the single node A
which is obviously a Tull block. Then, ax defined in Lemma 10,
L= (A Yy = DHIAN = (0 A) U~V 2 = (0,
7, = CE(Y, }-.- {Q. P, A}, Y. = DE4,) = {G. P, A B,
U,= Y, = {RB}, and 7, = [ I (Y.) = the entire p;mph
Nnilt‘(‘ that any c-path must pass thr(m].,h Uy, Uy or U

Theorem 6 is a generalization of Hibel's !’urf Lemma [3).

Theorem 8. L.t {7 be a full block in a semantic graph
¢, let. L. be a ser of links, snd suppose that po node in [ is
coutaived in a Jink from L. Let L' be the set of links Trom L.
which do not roniain a node froan DE(TY). Thee ¢/ in spanned
by L iff G i« spanned by 1.7

Froaf. Since L' ix 2 subset of L, we peed only consider
the case when ¢ is spanped by L. I DE(I )= 1", then
L' =L, and there is nothing to prove. H not, let
D =DE{l{}and 7" =0 - U let p be a c-path lhmug}l
(. We must show that p coutains a link from L' . I p does
uot pass through /' | there is nothing to prove since the
links deleted from L. all contain nodes from &' ' . [f p does
pass through /" let p=r' s, where r' is a path through
{7' and s ix the rest of p. Let r be any r-path tlrough (V.
Note that every node in 8 is c-connected 1o all of D sinee D s

a full blork and the nodes of 8 are r-connceted o some nodes
in 1Y (pamely, those in r' ). Then rv ix a c-path through 7
and must contain a tink from L. This link is in L' sinee po
link in 1, contains 4 node from {7 which contains r. This com-
pletes the proof since this link must be in s aned therefore
tnp. .

The next theorem gives s condition under whiel links
may be deleted. 1 osayy that if (U,V ) is a resolution sub-
graph in which { and V are cach full blecks in ¢, and if the
links in the chain all go from 10 ¥V, then we may delete all
tinks from {to V-

Theorem 7. let B be o resolution chain in semantic
graph 7 such that 7y las the form ({7 V'), where { and ¥
are Tull blocks in f4, and where cachk hink in U gnes from ' to
V. Suppose further that 7w spanned by a «et of links 1.0 Lot
H o= WRes{R ) and It LT be the set of snberiied links
together with all tinks in L which de net go from ' ro 1.
Then L' spans £,

Proof. We prececd by induction an the number ol ares m
7 The case Tor one arc is trivinl If (A V) i the dinal are of
¢, then R ust he emtirely contained 1o X or in 3 oand the
imluction hypothesis gives the desired resalt, I the final are is
(VY% and if R s rontained in Vor in }, agmin the induction
bypothesis applies. So suppose that the lina) are is o c-are amd
i meets both X and V. By the frst isomorphism theorem, we
may assumpe that {7 and Voare exphicit subgraphs=. Henee nei-
ther ean meet botl X and ¥V Assume that {7 contnined i X
and v In contiuined n ¥ Observe T
Ho= [, WSt (),

Lt p o be a c-path through B We must show thiast p con-
tains o dink frem L' . Note that pois (he uniom of e-paths
by througlh X0 Y, and & == WS 60 ), respectively. The
only cuse we necd consuder is when popasses throngh 7, and
all Imks in pypy come fram . Sinee N ix the disjuscnion of
WS XY and WS, YV we assume without joss of generality
that p, % a e-patl throngh W, X3 Sieee I0is an explici
subgrapl, we know that e split is isomorphic (o Aux{f’ \]
by Carallary 2 of Theorem 4. Let py'  he the isomorphic
image of pyin Auxt{d’, X

Vising the notation of Lemmas 10, apply part ij of th
lemma to py . Since py' passes through Auxft’, N) it misses
I/ and henee k > 00 As o the prool of Lewma 10, let
py == sr, where rois i e-path through 20 Ir iw ehyvious chat
apy i o path through X, so sp,' p, contains a link from 1.
Thix huk is not in . Moreover, pa misses Aux( b, Y], so this
link wil} be inherited, and the proof is complete. .

[t i+ worth noting that all angle link chains satisfy the

conditions of Theorem 7, and tliat the proof for this case i uo
easier since & pair of linked nodes plays the same role structur-
ally as the two Full blocks in the theorem.

Consider activating the single-link chain {A, A} in exan-
ple 3. This chain clearly satishies the conditions of Theorem 7.
Notice that the resnlant graph is sull spabned even though
the activated link is deleted:

P —— T
Q-1 I g - P

A — B_— A -~ |
| T P K
n><->ér’/ L7

8.2. Another form of path resolution

Consider the soundness argument for paih resolution as
defined in section 4. In some casen the c-paths that iss the
resolution chain are larger than the e-paths in the {weak) split



subgraph. To account for this we define the strong aphit of an
arbitrary subgraph H in ', SS{H,G), to be the same as
WS(H, (7] with tbe exceplion that if ¢ = (X ,}), aod H i»
contained in X, then SS(H ,G) = SSIH.X)IAY. IR is a
resolution chain, let M be the smallest full Block contnining B,
Tt is straightferward 1o verily that if ap interpretation satisfies
M then it satisfies S5{(7 . A7), and hence we may repluce Min
G with (M, S5(Gy, M)),. We call the resulting graph the
strong resullant of G with respect to R, and denote it SRes( (7,
1). The following lemma yields both soundness for strong
splits and spanuing preservation with link deletion for the
rlass of resolution chains described in Theorem &,

Lemma 11, [f X is a e-block in (2, then S85(X, 7} is iso-
morphic to the subgraph of & counsisting of all nodes that lie
on c-paths which misa X,

Preaf.  Suppose first  that & = {{7,V};. Then
SEXN LG = [55(X,17), S5(X ,V ), and the result follows from
the induction hypothesis, If & ={U/,V ], and if X meets
both {f and 1V then X in a stropg e-block and SS(X, &) is

empty. Fivally f X is contained in {4 then
RSN Gy = (8S(X.07), V). and the induction hypothesis
applies, *

Theorem 8. let R be u resolution chain in semantie

graph & such that ' has the form (X .V )., where X and V'
are c-blocks in ¢, and where each link in B goes from M to Y.
Let & be spanned by a st of links 1., and let M = {{/ V'), be
the smallest Tull block containing R, where {7 and ¥ are chosen

to contain X and ¥ respectively. Then H = SRes{7, ) is
spanned by 1. - B and the links inherited from L.

FProof. Let p be a e-path through H, and et
M ' = (M,S8|Gg . M)). I p docs not pass through M!' |

then p misses M' entirely since AM*

is a full block, s6 p must
have a link from I.

Assume p passes through Af* . Let
P = pyp.pa where p,.p..ps are c-paths through 7, V', and
S5( Gy, M) reapectively. Since X is a e-block in U/, Lemma 9
applies, so let p,'  be the isomorphic image of py in U Then
the c-path ps’ po has a link in 1. that is not in R and that is
therefore inheriled. .

Consider the two-tink chain {A. A}, {B, B}, agaio from
example 3. This chain satisfies the counditions of Theorem &,
but pot those of Theorem 7 because {A, B} is a r-block but
not a full block. Shown below is the outcome of activaling
thin chain with atrong aplit and deleting both links, Of course
the graph is still spapned. But potice that had we used weak
split, the resoivent would have included only P. and the e-path
{R, B, A, Q. P} wonld then be without a link.

/p-\
Q1 el RN
A = B — A -N] —- q@—pP

1_?@(—/ Po___ -~
B

7. Summary

We have introduced a graphical representation of formu-
las and a new rule of inference that employs this representa-
tion. The inference rule is path resolution, which is a generali-
sation of most previous forms of resolution. We have demon-
strated the rule's soundness. Completeness is immediate in
the absence of the usual connection graph link deletion stra-
tegy; resolving exclusively on single-link chains amounts to
atomic NC-resolution on unf formulas. We have introduced
two dasses of chains for which the activation and subsequent
deletion of links is shown to preserve the spanning property.
In light of Bibel's results [3,4] such link deletion strategies may
reasonably be conjectured complete.
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