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ABSTRACT 
We introduce a graphical representation of 

quantifier-free predicate calculus formulas and a new 
rule of inference which employs this representation. 
The new rule is an amalgamation of resolution and 
Prawitz analysis which we call path resolution. Path 
resolution allows Prawitz analysis of an arbitrary sub­
graph of the graph representing a formula. If such a 
subgraph is not large enough to demonstrate a contrad­
iction, a path resolvent of the subgraph may be gen­
erated with respect to the entire graph. This general­
izes the notions of large inference present iu hyper-
resolution, clash-resolution, NC-resolution, and PL-
resolution. 

Two forms of path resolution are described for 
which deletion of the links resolved upon preserves the 
spanning property. 

1. Introduction 
Since about 1960 most of the effort in automated deduc­

tion has been concerned with refutation systems. The initial 
emphasis was on Prawitz analysis [7,9,10,12,20], in which the 
unsatisfiability of a sentence is deduced without inferring new 
formulas. By 1965, with the advent of resolution and (later) 
paramod illation, the emphasis shifted almost completely 
toward the use of inference [15,21,22,23,27]. Most of the work 
done within both schools of thought employed conjunctive or 
disjunctive normal form. More recently there have been adap­
tations of both techniques toward the use of unnormalized or 
less-normalized formulas [2,11 ,16,17,19,25,2ft]. 

We introduce a new rule of inference, path resolution, 
which operates on a graphical representation of quantifier-free 
predicate calculus formulas. The new rule is an amalgamation 
of resolution and Prawitz analysis. Our goal in the design of 
path resolution is to retain some of the advantages of both 
Prawitz analysis and resolution methods, and yet to avoid to 
some extent their disadvantages. 

The main advantage of Prawitz analysis is that, except 
for variants of original formulas, no new formulas are inferred 
which rapidly expand the search space. However, except for 
adding variants, Prawitz analysis is an all or nothing time-
bound search for a contradiction. In contrast, resolution and 
other inference based methods store the progress made at each 
inference by retaining the inferred formula. Eventually local­
ized evidence of a contradiction is produced (usually the empty 
clause). The required multiple variants of formulas are 
automatically (and often excessively) generated. But each new 
formula introduced interacts with others, expanding the search 
rapidly in both time and space.. 

One of the disadvantages of resolution is its reliance on 
conjunctive normal form. We avoid conjunctive and disjunc­
tive normal form and the duplication of literals that their use 
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may necessitate, since path resolution operates on formulas in 
negation normal form. We have found that the analysis is 
greatly simplified by a representation of NNF formulas which 
we call semantic graphs.' 

Path resolution allows Prawitz analysis of an arbitrary 
subgraph of the existing graphical representation of formulas. 
If such a subgraph is not large enough to demonstrate a con­
tradiction, a path resolvent of the subgraph may be generated 
with respect to the entire graph. Path resolution operations 
include (properly) all resolution-based inferences of which the 
authors are aware, such as hyper-resolution, clash-resolution, 
NC-resolution, and UL-resolut ion. 

It will be obvious to the informed reader that the work 
reported here, while new, has been synthesized from a number 
of important ideas developed by others. The most influential 
of these are Robinson's clash resolution [21], Kowalski s 
connection-graph procedure [14], the work of Andrews [2] and 
Bibel [3,4] on paths, matrices, and the spanning property, and 
the non-clausal systems of Stickel [25] and of Waldinger and 
Manna [2ft]. 

In the next section we introduce the notation and termi­
nology required for expressing formulas and their semantics in 
terms of semantic graphs and paths. We further develop this 
formalism in section 3; section 4 introduces the rule of infer­
ence, path resolution. Section 5 contains a sample refutation, 
and section ft introduces two link deletion strategies. We omit 
many proofs for lack of space; they are available in [18]. 

2. Semantic Graphs and Paths 
A semantic graph is a means of representing a logical for­

mula, and paths determine the semantics of the graph. We 
assume that the reader is familiar with the definitions of atom, 
literal, formula, resolution, and unification. We will consider 
only quantifier-free formulas in which all negations are at the 
atomic level. 

A semantic graph is empty, a single node, or a triple 
(N,C,D) of nodes, c-arcs, and d-arcs, respectively, where a 
node is a literal occurrence, a c-arc is a conjunction of two 
non-empty semantic graphs, and d-arc is a disjunction of two 
non-empty semantic graphs. Please note that a node is a 
literal occurrence, so that if a literal occurs twice in a formula, 
we will label both nodes with that literal. Each semantic 
graph used in the construction of a semantic graph will be 
called an explicit subgraph, and we shall insist t hat each proper 
explicit subgraph be contained in exactly one arc. We will use 
the notation (G,H)c for the c-arc from G to H and similarly 
use ( G ,H )d for a d-arc. The subscript may be omitted if there 
is no possibility of confusion, and we will use the term graph 
only for semantic graphs. 

We will consider an empty graph to be an empty disjunc­
tion, which is a contradiction A construction of a graph may 
be thought of as a sequence of c-arcs and d-arcs. There will 
always be exactly one arc (X,Y) with the property that every 
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Note that horizontal arrows are c-arcs, and vertical 
arrows are d-arcs. There are two d-arcs: 
(A —> B,C) and ( A, D -> C); and there are three c-arcs: 
(A,B), (D,c), and the entire graph. Some of the explicit sub­
graphs are each of the nodes, A —> b, and the right-hand part 
of the graph. 

The formulas we are considering are in negation normal 
form (nnf) in that all negations are at the atomic level, and the 
only connectives used are AND and OR. 

If A and B are nodes in a graph, and if a = (X',y') is an 
arc (c- or d-) with A in X and B in >', we will say that a is the 
arc connecting A and B. If a is a c-arc, we will say that A 
and B are c-connected, and if a is a d-arc, we will say that A 
and B are d-connected. 

Lemma 1. Let G he a semantic graph, and let A and B 
be nodes in G. Then there is a unique arc connecting A 
and B. 

One of the keys to our analysis is the notion of path. Let 
G be a semantic graph. A partial c-path through G is a set c of 
nodes such that any two are connected by a c-arc. We allow 
the empty set or a singleton set to be a partial c-path. A c-
path is a partial c-path which is not properly contained in any 
partial c-path. Notice that any partial c-path is extendible to 
a c-path, and hence partial c-paths are always subpaths of c-
paths. We similarly define d-path using d-arcs instead of e-
arcs. The next lemma is an immediate consequence of Lemma 
1. 

Lemma 2. If A and B are nodes in a graph G, then 
there is a c-path or a d-path (but not both) containing A 
and B. 

Using paths, we can define the conjunctive normal form 
of a graph as the conjunction of the d-paths, and the disjunc­
tive normal form as the disjunction of the c-paths. If a for­
mula is multiplied out using the distributive laws, then the 
graph changes and so may the normalized forms. 

Paths can be defined in a somewhat more structural 
manner. Define a structural c-path (scp) c in a graph G as fol­
lows: if G consists of a single node A, then c is the 9et {A}; if 
the final arc of G is a d-arc, then an scp in G is an scp in one 
of the final subgraphs; and if the final arc is (X,Y' )c, then c is 
the union of an scp in X and an scp in Y. Lemma 3 states 
that the two formulations of path are equivalent, and as a 
result we will abandon the terminology structural c-path after 
the lemma. 

Lemma 3. Let G be a semantic graph and let c be a set 
of nodes in G. Then c is a c-path iff c is an scp. 

There is an obvious similar statement about d-paths; we 
leave the proofs to the reader. 

The proofs of Lemmas 1 and 3 and of many lemmas and 
theorems that follow often use induction on the number of 
arcs in the graph. The base case is always trivial since the 
graph will then consist of a single node or arc. Since each 
explicit subgraph will always have fewer arcs than the entire 
graph, the inductive hypothesis amounts to assuming that the 
result holds for all explicit subgraphs. As a result, in proofs 

we do include in this paper, we will ignore the base case and 
begin by assuming that the result holds for all explicit sub­
graphs. 

We will use the notation c = xy when two pat lis in sub­
graphs are put together to form a path in a graph as in the 
lemma. 

Lemma 4. Let G be a semantic graph. Then an 
interpretation 1 satisfies (falsifies) G iff I satisfies (falsifies) 
every literal on some c-path (d-path) through G. 

We will frequently find it useful to consider subgraphs 
which are not explicit; that is, given any set of nodes, we 
would like to define that part of the graph which consists of 
exactly that set of nodes. The previous example is shown 
below on the left. The subgraph relative to the set {A, C, D} 
is the graph on the right. 

If A is the node set of a graph G, and if Nr ' is con­
tained in N, we define GN , the subgraph of G relative to 
A ' as follows: If A ' = N', then GN < = G . If the final 
arc of G is (X',Y ), and if the nodes in N ' all appear in A'or 
in Y, then GN < = XN < or GN =YN , respectively. 
Otherwise, GN = (XN > , YN > ), where this arc is of the 
same type as (A', Y). The following lemma says in essence 
that the subgraphs we have defined are the objects we want. 

Lemma 5. Let G be a semantic graph with node set A', 
and let A ' be a subset of A. Then 
i) Every node in N ' is a node in some arc in GN . 
ii) If p ' is a path through GN , then p ' is the restriction 

to A ' of a path p (of the same type) through G; in par­
ticular, if p ' is a partial path in G consisting of nodes 
from A ' , then p ' is a partial path in GN . 

3. Blocks 
Consider the graph (A -+ B) — C. The non-explicit sub­

graph B —> C "feels" much like an explicit one, and certainly 
the graph A —► (B -> C) is essentially identical to the original 
graph. Indeed, the graph A —► C is an explicit subgraph of 
another essentially identical graph: (A — C) -— B. Subgraphs 
with this property can be characterized with the notion of 
block. A c-block C is a subgraph of a semantic graph with the 
property that any c-path which includes at least one node 
from C must pass through C; that is, the subset of the c-path 
consisting of the nodes which are in C is a c-path through C. 
A d-block is similarly defined with d-paths, and a full block is a 
subgraph which is both a c-block and a d-block. From Lemma 
4 we know that the c-paths through a graph determine the 
semantics of the graph, and that the d-paths also determine 
the semantics. This might lead one to believe that c-blocks 
and d-blocks are full blocks. This is not the case, as the fol­
lowing simple example illustrates: 

The subgraph relative to {A,B} is obviously a c-block, but it is 
not a d-block since {AC} is a d-path which meets the sub­
graph but does not pass through it. 

We define a strong c-block in a semantic graph G to be a 
subgraph C of G with the property that every c-path through 
G contains a c-path through C. A strong d-block is similarly 
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Proof. Since p does not pass through H, it must fail to 
pass through C, for some i. Hence, p must entirely miss G, , 
and so p must meet and hence pass through Aux(C, ,G). • 
Example 1: 

Let S be the subgraph relative to {A, B, G, A, B, C}. S may 
be partitioned into the following four c-blocks: {C, B}, {A}, 
{B}, and {C, A}. However these are not maximal; in particu­
lar, the last two c-blocks may be combined to form {C, B}, 
{A}, and {B, C, A}. But we still do not have a proper c-
family. The c-block {A} is not maximal because the node B 
can be added and {A, B} is still a c-block; {C, B}, {A, B}, and 
{S, C, A} do form a proper c-family. 

Under the conditions of Theorem 2, it is immediate that 
the disjunction of the auxiliary subgraphs is satisfied by I. (In 
the above example, any c-path that misses the first c-block 
must hit subgraph {Q, P}. A c-path missing the second c-
block hits {P}, and one missing the third c-block hits {R}.) 
We denote this disjunction by P{H,G). We shall soon see that 
there are redundancies built into P(H,G) which can be elim­
inated. These redundancies arise from the fact that the auxili­
ary subgraphs need not be disjoint. Theorem 3 indicates how 
to remove them. First, define a subgraph of a graph G to be a 
d-full block if it is a full block and a strong d-block. Note that 
for // to be a d-full block in G, H must be a disjunction of one 
or more level 1 subgraphs of G. 

Theorem 3. Let {C1,,..., Ck} be a proper c-family in a 
subgraph H of a semantic graph G, and let K be the intersec­
tion of Aux(G, ,G ) and Aux( Cj ,G ). Then K is empty or a d-
full block in Aux( C,,G). 

The significance of Theorem 3 is that the redundancies 
which appear in P[H,G) are its level 1 subgraphs which appear 
more than once. In example 1, the auxiliary subgraphs of the 
intersecting c-blocks are the subgraphs relative to {P, Q} and 
{P}. Their intersection is of course the node P which forms a 
level 1 subgraph in both auxiliary subgraphs and in their dis­
junction. However, we can form the disjunction of auxiliary 
subgraphs to build P(H,G) and leave out the redundancies; i.e., 
use the intersections of the auxiliary subgraphs only once. We 
denote the resulting graph by Q(H,G). We prove that Q(H,G) 
is unique by defining an object WS(H,G), the weak split graph 
of H in G, and showing that WS(H,G) — Q(H,G). (We intro­
duce strong split graph in section 6.) We define WS(H,G) as 
follows: 

4. Path resolution. 
The discussion of paths and graphs gives a (we think use­

ful) representation of logical formulas as graphs. The primary, 
concern of this paper is path resolution, a rule of inference. To 
this end, we define a chain in a graph to be a set of pairs of 
c-connected nodes such that each pair can simultaneously be 
made complementary by an appropriate substitution. A link 
is an element of a chain, and a chain is full if it is not prop­
erly contained in any other chain. A graph G is spanned by 
the chain K if every c-path through G contains a link from K. 
Notice that if a graph is spanned by a chain, the graph must 
be a contradiction since no c-path which contains complemen­
tary nodes can be satisfied. If K is a chain, we use the nota­
tion GK for the subgraph of 6' relative to the set of nodes 
which appear in K. If GK is spanned by K, K is said to be a 
resolution chain, and GK is said to be a resolution subgraph. 
Example 2: 

The curves between A and A and between B and B represent 
links which form a chain. The subgraph relative to the chain 

The c-paths arc {B A A) and {B A B}. Each obviously con­
tains a link, so we have a resolution chain and a resolution 
subgraph. 

A rule of inference is of course a procedure which pro­
duces a formula from a given formula, and such a procedure is 
sound if any interpretation which satisfies the original formula 
also satisfies the inferred formula. Resolution is such a rule; in 
essence, it applies to formulas in cnf and operates on chains 
consisting of a single link. We will define a generalization of 
resolution which we call path resolution. It applies to any 
semantic graph and operates on arbitrary spanning chains. 

Let K be a resolution chain in a semantic graph G, and 
let R — GK . If I is any interpretation which satisfies G, it 
satisfies a c-path through G. Since R cannot be satisfied, c 
cannot pass through R. Hence, by Theorem 4, / must satisfy 
WS(R,G). We call WS(R,G) the path resolvent of R in G, and 
we have 

Theorem 5. Path resolution is a sound rule of inference. 
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It is now easy to see that the link {C(f(a)), C(f(a))} is a resolu­
tion chain that spans not only its subgraph but the entire 
graph. Therefore this link produces the empty graph upon 
activation. The careful reader may have noticed that this last 
link is inherited from {C(x), C(f(a))} which could have been 
added to the resolution chain used in the second inference. 
The resulting chain would have produced a contradiction shor­
tening our proof to two steps. A binary resolution refutation 
for these formulas given in [5] uses eight steps. 

We do not claim that the search space for determining an 
appropriate resolution chain is small. However, the existence 
of a 2-step derivation for this example is certainly somewhat 
favorable. Moreover, we note that both path resolution steps 
admit link deletion under certain extensions of Theorems 7 
and 8. Space limitations preclude discussion of those exten­
sions here. A derivation of a logic program by NC-resolution 
is compared to a derivation of the same program by path reso­
lution in [18]. 

Stickel [25] has pointed out that in a non-clausal connec­
tion graph system it may be wise to avoid inferences on non-
atomic complementary subformulas. Two reasons cited are 
that complementary subformulas may be difficult to detect, 
and that such inferences may be duplicated by resolving on 
single literals only. Path resolution may help to solve both of 
these problems. We only link atoms and their complements, 
not non-atomic structures. The presence of complementary 
subformulas is detected by a resolution chain. The subformula 
relative to a resolution chain is frequently (but not always!) a 
conjunction of complementary subformulas comprised of the 
literals appearing in the chain, even though these literals may 
be scattered throughout the entire sentence. 
6. Link Deletion 

Path resolution is so general that it admits as special 
cases all resolution-based inference rules (e.g. hyper-resolution, 
clash resolution UL-resolution, NC-resolution) of which the 
authors are aware. In fact, if enough copies of formulas from 
an unsatisfiable set are represented, then a resolution chain 
will exist whose path resolvent is the empty d-path. We may 
therefore view semantic graphs and path resolution as a uni­
fying framework for all resolution-based inference and 
Prawits analysis. 

This generality is elegant from a theoretical point of 
view, but it also admits a proof-search space larger even than 
that of unrestricted binary resolution. It is natural to ask 
whether restrictive strategies exist that would take advantage 
of path resolution's generality, and not just mimic known stra­
tegies applicable to (say) clausal logic. One natural restriction 
is to large chains; that is to avoid resolution chains that are 
proper sub-chains of currently known resolution chains. Our 
intuition is that such a strategy is favorable for refutations, 
and this is an area of ongoing investigation. 

Another way to reduce the search space is to delete links 
after activation. In [3] and [4], for example, Bibel dealt with 
these issues within binary resolution. We develop two link 
deletion strategies for path resolution below. 

6.1. Link deletion using full blocks 
It is more or less the case that a necessary and sufficient 

condition for a link deletion strategy to be acceptable is that 
the spanning property be preserved. That is, if a graph is 
spanned by a set of links, and if a rule of inference which 
deletes links is applied, then the resulting graph should still be 
spanned. Theorems 7 and 8 introduce classes of resolution 
chains for which path resolution has this property. Theorem 6 
gives a condition when certain links can be deleted. It should 
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7. Summary 
We have introduced a graphical representation of formu­

las and a new rule of inference that employs this representa­
tion. The inference rule is path resolution, which is a generali­
sation of most previous forms of resolution. We have demon­
strated the rule's soundness. Completeness is immediate in 
the absence of the usual connection graph link deletion stra­
tegy; resolving exclusively on single-link chains amounts to 
atomic NC-resolution on unf formulas. We have introduced 
two classes of chains for which the activation and subsequent 
deletion of links is shown to preserve the spanning property. 
In light of Bibel's results [3,4] such link deletion strategies may 
reasonably be conjectured complete. 
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