
P A T H R E S O L U T I O N W I T H L I N K D E L E T I O N

Neil V. Murray

State University of NY at Albany
Department of Computer Science

Albany, NY 12222

ABSTRACT
We introduce a graphical representation of

quantifier-free predicate calculus formulas and a new
rule of inference which employs this representation.
The new rule is an amalgamation of resolution and
Prawitz analysis which we call path resolution. Path
resolution allows Prawitz analysis of an arbitrary sub­
graph of the graph representing a formula. If such a
subgraph is not large enough to demonstrate a contrad­
iction, a path resolvent of the subgraph may be gen­
erated with respect to the entire graph. This general­
izes the notions of large inference present iu hyper-
resolution, clash-resolution, NC-resolution, and PL-
resolution.

Two forms of path resolution are described for
which deletion of the links resolved upon preserves the
spanning property.

1. Introduction
Since about 1960 most of the effort in automated deduc­

tion has been concerned with refutation systems. The initial
emphasis was on Prawitz analysis [7,9,10,12,20], in which the
unsatisfiability of a sentence is deduced without inferring new
formulas. By 1965, with the advent of resolution and (later)
paramod illation, the emphasis shifted almost completely
toward the use of inference [15,21,22,23,27]. Most of the work
done within both schools of thought employed conjunctive or
disjunctive normal form. More recently there have been adap­
tations of both techniques toward the use of unnormalized or
less-normalized formulas [2,11 ,16,17,19,25,2ft].

We introduce a new rule of inference, path resolution,
which operates on a graphical representation of quantifier-free
predicate calculus formulas. The new rule is an amalgamation
of resolution and Prawitz analysis. Our goal in the design of
path resolution is to retain some of the advantages of both
Prawitz analysis and resolution methods, and yet to avoid to
some extent their disadvantages.

The main advantage of Prawitz analysis is that, except
for variants of original formulas, no new formulas are inferred
which rapidly expand the search space. However, except for
adding variants, Prawitz analysis is an all or nothing time-
bound search for a contradiction. In contrast, resolution and
other inference based methods store the progress made at each
inference by retaining the inferred formula. Eventually local­
ized evidence of a contradiction is produced (usually the empty
clause). The required multiple variants of formulas are
automatically (and often excessively) generated. But each new
formula introduced interacts with others, expanding the search
rapidly in both time and space..

One of the disadvantages of resolution is its reliance on
conjunctive normal form. We avoid conjunctive and disjunc­
tive normal form and the duplication of literals that their use

and Erik Rosenthal

University of New Haven
Department of Mathematics

West Haven, CT 06516

may necessitate, since path resolution operates on formulas in
negation normal form. We have found that the analysis is
greatly simplified by a representation of NNF formulas which
we call semantic graphs.'

Path resolution allows Prawitz analysis of an arbitrary
subgraph of the existing graphical representation of formulas.
If such a subgraph is not large enough to demonstrate a con­
tradiction, a path resolvent of the subgraph may be generated
with respect to the entire graph. Path resolution operations
include (properly) all resolution-based inferences of which the
authors are aware, such as hyper-resolution, clash-resolution,
NC-resolution, and UL-resolut ion.

It will be obvious to the informed reader that the work
reported here, while new, has been synthesized from a number
of important ideas developed by others. The most influential
of these are Robinson's clash resolution [21], Kowalski s
connection-graph procedure [14], the work of Andrews [2] and
Bibel [3,4] on paths, matrices, and the spanning property, and
the non-clausal systems of Stickel [25] and of Waldinger and
Manna [2ft].

In the next section we introduce the notation and termi­
nology required for expressing formulas and their semantics in
terms of semantic graphs and paths. We further develop this
formalism in section 3; section 4 introduces the rule of infer­
ence, path resolution. Section 5 contains a sample refutation,
and section ft introduces two link deletion strategies. We omit
many proofs for lack of space; they are available in [18].

2. Semantic Graphs and Paths
A semantic graph is a means of representing a logical for­

mula, and paths determine the semantics of the graph. We
assume that the reader is familiar with the definitions of atom,
literal, formula, resolution, and unification. We will consider
only quantifier-free formulas in which all negations are at the
atomic level.

A semantic graph is empty, a single node, or a triple
(N,C,D) of nodes, c-arcs, and d-arcs, respectively, where a
node is a literal occurrence, a c-arc is a conjunction of two
non-empty semantic graphs, and d-arc is a disjunction of two
non-empty semantic graphs. Please note that a node is a
literal occurrence, so that if a literal occurs twice in a formula,
we will label both nodes with that literal. Each semantic
graph used in the construction of a semantic graph will be
called an explicit subgraph, and we shall insist t hat each proper
explicit subgraph be contained in exactly one arc. We will use
the notation (G,H)c for the c-arc from G to H and similarly
use (G ,H)d for a d-arc. The subscript may be omitted if there
is no possibility of confusion, and we will use the term graph
only for semantic graphs.

We will consider an empty graph to be an empty disjunc­
tion, which is a contradiction A construction of a graph may
be thought of as a sequence of c-arcs and d-arcs. There will
always be exactly one arc (X,Y) with the property that every

1188 N. Murray and E. Rosenthal

Note that horizontal arrows are c-arcs, and vertical
arrows are d-arcs. There are two d-arcs:
(A —> B,C) and (A, D -> C); and there are three c-arcs:
(A,B), (D,c), and the entire graph. Some of the explicit sub­
graphs are each of the nodes, A —> b, and the right-hand part
of the graph.

The formulas we are considering are in negation normal
form (nnf) in that all negations are at the atomic level, and the
only connectives used are AND and OR.

If A and B are nodes in a graph, and if a = (X',y') is an
arc (c- or d-) with A in X and B in >', we will say that a is the
arc connecting A and B. If a is a c-arc, we will say that A
and B are c-connected, and if a is a d-arc, we will say that A
and B are d-connected.

Lemma 1. Let G he a semantic graph, and let A and B
be nodes in G. Then there is a unique arc connecting A
and B.

One of the keys to our analysis is the notion of path. Let
G be a semantic graph. A partial c-path through G is a set c of
nodes such that any two are connected by a c-arc. We allow
the empty set or a singleton set to be a partial c-path. A c-
path is a partial c-path which is not properly contained in any
partial c-path. Notice that any partial c-path is extendible to
a c-path, and hence partial c-paths are always subpaths of c-
paths. We similarly define d-path using d-arcs instead of e-
arcs. The next lemma is an immediate consequence of Lemma
1.

Lemma 2. If A and B are nodes in a graph G, then
there is a c-path or a d-path (but not both) containing A
and B.

Using paths, we can define the conjunctive normal form
of a graph as the conjunction of the d-paths, and the disjunc­
tive normal form as the disjunction of the c-paths. If a for­
mula is multiplied out using the distributive laws, then the
graph changes and so may the normalized forms.

Paths can be defined in a somewhat more structural
manner. Define a structural c-path (scp) c in a graph G as fol­
lows: if G consists of a single node A, then c is the 9et {A}; if
the final arc of G is a d-arc, then an scp in G is an scp in one
of the final subgraphs; and if the final arc is (X,Y')c, then c is
the union of an scp in X and an scp in Y. Lemma 3 states
that the two formulations of path are equivalent, and as a
result we will abandon the terminology structural c-path after
the lemma.

Lemma 3. Let G be a semantic graph and let c be a set
of nodes in G. Then c is a c-path iff c is an scp.

There is an obvious similar statement about d-paths; we
leave the proofs to the reader.

The proofs of Lemmas 1 and 3 and of many lemmas and
theorems that follow often use induction on the number of
arcs in the graph. The base case is always trivial since the
graph will then consist of a single node or arc. Since each
explicit subgraph will always have fewer arcs than the entire
graph, the inductive hypothesis amounts to assuming that the
result holds for all explicit subgraphs. As a result, in proofs

we do include in this paper, we will ignore the base case and
begin by assuming that the result holds for all explicit sub­
graphs.

We will use the notation c = xy when two pat lis in sub­
graphs are put together to form a path in a graph as in the
lemma.

Lemma 4. Let G be a semantic graph. Then an
interpretation 1 satisfies (falsifies) G iff I satisfies (falsifies)
every literal on some c-path (d-path) through G.

We will frequently find it useful to consider subgraphs
which are not explicit; that is, given any set of nodes, we
would like to define that part of the graph which consists of
exactly that set of nodes. The previous example is shown
below on the left. The subgraph relative to the set {A, C, D}
is the graph on the right.

If A is the node set of a graph G, and if Nr ' is con­
tained in N, we define GN , the subgraph of G relative to
A ' as follows: If A ' = N', then GN < = G . If the final
arc of G is (X',Y), and if the nodes in N ' all appear in A'or
in Y, then GN < = XN < or GN =YN , respectively.
Otherwise, GN = (XN > , YN >), where this arc is of the
same type as (A', Y). The following lemma says in essence
that the subgraphs we have defined are the objects we want.

Lemma 5. Let G be a semantic graph with node set A',
and let A ' be a subset of A. Then
i) Every node in N ' is a node in some arc in GN .
ii) If p ' is a path through GN , then p ' is the restriction

to A ' of a path p (of the same type) through G; in par­
ticular, if p ' is a partial path in G consisting of nodes
from A ' , then p ' is a partial path in GN .

3. Blocks
Consider the graph (A -+ B) — C. The non-explicit sub­

graph B —> C "feels" much like an explicit one, and certainly
the graph A —► (B -> C) is essentially identical to the original
graph. Indeed, the graph A —► C is an explicit subgraph of
another essentially identical graph: (A — C) -— B. Subgraphs
with this property can be characterized with the notion of
block. A c-block C is a subgraph of a semantic graph with the
property that any c-path which includes at least one node
from C must pass through C; that is, the subset of the c-path
consisting of the nodes which are in C is a c-path through C.
A d-block is similarly defined with d-paths, and a full block is a
subgraph which is both a c-block and a d-block. From Lemma
4 we know that the c-paths through a graph determine the
semantics of the graph, and that the d-paths also determine
the semantics. This might lead one to believe that c-blocks
and d-blocks are full blocks. This is not the case, as the fol­
lowing simple example illustrates:

The subgraph relative to {A,B} is obviously a c-block, but it is
not a d-block since {AC} is a d-path which meets the sub­
graph but does not pass through it.

We define a strong c-block in a semantic graph G to be a
subgraph C of G with the property that every c-path through
G contains a c-path through C. A strong d-block is similarly

N. Murray and E. Rosenthal 1189

1190 N. Murray and E. Rosenthal

Proof. Since p does not pass through H, it must fail to
pass through C, for some i. Hence, p must entirely miss G, ,
and so p must meet and hence pass through Aux(C, ,G). •
Example 1:

Let S be the subgraph relative to {A, B, G, A, B, C}. S may
be partitioned into the following four c-blocks: {C, B}, {A},
{B}, and {C, A}. However these are not maximal; in particu­
lar, the last two c-blocks may be combined to form {C, B},
{A}, and {B, C, A}. But we still do not have a proper c-
family. The c-block {A} is not maximal because the node B
can be added and {A, B} is still a c-block; {C, B}, {A, B}, and
{S, C, A} do form a proper c-family.

Under the conditions of Theorem 2, it is immediate that
the disjunction of the auxiliary subgraphs is satisfied by I. (In
the above example, any c-path that misses the first c-block
must hit subgraph {Q, P}. A c-path missing the second c-
block hits {P}, and one missing the third c-block hits {R}.)
We denote this disjunction by P{H,G). We shall soon see that
there are redundancies built into P(H,G) which can be elim­
inated. These redundancies arise from the fact that the auxili­
ary subgraphs need not be disjoint. Theorem 3 indicates how
to remove them. First, define a subgraph of a graph G to be a
d-full block if it is a full block and a strong d-block. Note that
for // to be a d-full block in G, H must be a disjunction of one
or more level 1 subgraphs of G.

Theorem 3. Let {C1,,..., Ck} be a proper c-family in a
subgraph H of a semantic graph G, and let K be the intersec­
tion of Aux(G, ,G) and Aux(Cj ,G). Then K is empty or a d-
full block in Aux(C,,G).

The significance of Theorem 3 is that the redundancies
which appear in P[H,G) are its level 1 subgraphs which appear
more than once. In example 1, the auxiliary subgraphs of the
intersecting c-blocks are the subgraphs relative to {P, Q} and
{P}. Their intersection is of course the node P which forms a
level 1 subgraph in both auxiliary subgraphs and in their dis­
junction. However, we can form the disjunction of auxiliary
subgraphs to build P(H,G) and leave out the redundancies; i.e.,
use the intersections of the auxiliary subgraphs only once. We
denote the resulting graph by Q(H,G). We prove that Q(H,G)
is unique by defining an object WS(H,G), the weak split graph
of H in G, and showing that WS(H,G) — Q(H,G). (We intro­
duce strong split graph in section 6.) We define WS(H,G) as
follows:

4. Path resolution.
The discussion of paths and graphs gives a (we think use­

ful) representation of logical formulas as graphs. The primary,
concern of this paper is path resolution, a rule of inference. To
this end, we define a chain in a graph to be a set of pairs of
c-connected nodes such that each pair can simultaneously be
made complementary by an appropriate substitution. A link
is an element of a chain, and a chain is full if it is not prop­
erly contained in any other chain. A graph G is spanned by
the chain K if every c-path through G contains a link from K.
Notice that if a graph is spanned by a chain, the graph must
be a contradiction since no c-path which contains complemen­
tary nodes can be satisfied. If K is a chain, we use the nota­
tion GK for the subgraph of 6' relative to the set of nodes
which appear in K. If GK is spanned by K, K is said to be a
resolution chain, and GK is said to be a resolution subgraph.
Example 2:

The curves between A and A and between B and B represent
links which form a chain. The subgraph relative to the chain

The c-paths arc {B A A) and {B A B}. Each obviously con­
tains a link, so we have a resolution chain and a resolution
subgraph.

A rule of inference is of course a procedure which pro­
duces a formula from a given formula, and such a procedure is
sound if any interpretation which satisfies the original formula
also satisfies the inferred formula. Resolution is such a rule; in
essence, it applies to formulas in cnf and operates on chains
consisting of a single link. We will define a generalization of
resolution which we call path resolution. It applies to any
semantic graph and operates on arbitrary spanning chains.

Let K be a resolution chain in a semantic graph G, and
let R — GK . If I is any interpretation which satisfies G, it
satisfies a c-path through G. Since R cannot be satisfied, c
cannot pass through R. Hence, by Theorem 4, / must satisfy
WS(R,G). We call WS(R,G) the path resolvent of R in G, and
we have

Theorem 5. Path resolution is a sound rule of inference.

N. Murray and E. Rosenthal 1191

It is now easy to see that the link {C(f(a)), C(f(a))} is a resolu­
tion chain that spans not only its subgraph but the entire
graph. Therefore this link produces the empty graph upon
activation. The careful reader may have noticed that this last
link is inherited from {C(x), C(f(a))} which could have been
added to the resolution chain used in the second inference.
The resulting chain would have produced a contradiction shor­
tening our proof to two steps. A binary resolution refutation
for these formulas given in [5] uses eight steps.

We do not claim that the search space for determining an
appropriate resolution chain is small. However, the existence
of a 2-step derivation for this example is certainly somewhat
favorable. Moreover, we note that both path resolution steps
admit link deletion under certain extensions of Theorems 7
and 8. Space limitations preclude discussion of those exten­
sions here. A derivation of a logic program by NC-resolution
is compared to a derivation of the same program by path reso­
lution in [18].

Stickel [25] has pointed out that in a non-clausal connec­
tion graph system it may be wise to avoid inferences on non-
atomic complementary subformulas. Two reasons cited are
that complementary subformulas may be difficult to detect,
and that such inferences may be duplicated by resolving on
single literals only. Path resolution may help to solve both of
these problems. We only link atoms and their complements,
not non-atomic structures. The presence of complementary
subformulas is detected by a resolution chain. The subformula
relative to a resolution chain is frequently (but not always!) a
conjunction of complementary subformulas comprised of the
literals appearing in the chain, even though these literals may
be scattered throughout the entire sentence.
6. Link Deletion

Path resolution is so general that it admits as special
cases all resolution-based inference rules (e.g. hyper-resolution,
clash resolution UL-resolution, NC-resolution) of which the
authors are aware. In fact, if enough copies of formulas from
an unsatisfiable set are represented, then a resolution chain
will exist whose path resolvent is the empty d-path. We may
therefore view semantic graphs and path resolution as a uni­
fying framework for all resolution-based inference and
Prawits analysis.

This generality is elegant from a theoretical point of
view, but it also admits a proof-search space larger even than
that of unrestricted binary resolution. It is natural to ask
whether restrictive strategies exist that would take advantage
of path resolution's generality, and not just mimic known stra­
tegies applicable to (say) clausal logic. One natural restriction
is to large chains; that is to avoid resolution chains that are
proper sub-chains of currently known resolution chains. Our
intuition is that such a strategy is favorable for refutations,
and this is an area of ongoing investigation.

Another way to reduce the search space is to delete links
after activation. In [3] and [4], for example, Bibel dealt with
these issues within binary resolution. We develop two link
deletion strategies for path resolution below.

6.1. Link deletion using full blocks
It is more or less the case that a necessary and sufficient

condition for a link deletion strategy to be acceptable is that
the spanning property be preserved. That is, if a graph is
spanned by a set of links, and if a rule of inference which
deletes links is applied, then the resulting graph should still be
spanned. Theorems 7 and 8 introduce classes of resolution
chains for which path resolution has this property. Theorem 6
gives a condition when certain links can be deleted. It should

1192 N. Murray and E. Rosenthal

N. Murray and E. Rosenthal 1193

7. Summary
We have introduced a graphical representation of formu­

las and a new rule of inference that employs this representa­
tion. The inference rule is path resolution, which is a generali­
sation of most previous forms of resolution. We have demon­
strated the rule's soundness. Completeness is immediate in
the absence of the usual connection graph link deletion stra­
tegy; resolving exclusively on single-link chains amounts to
atomic NC-resolution on unf formulas. We have introduced
two classes of chains for which the activation and subsequent
deletion of links is shown to preserve the spanning property.
In light of Bibel's results [3,4] such link deletion strategies may
reasonably be conjectured complete.

References
1.

2

3.

4

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22

23.

24

25.

26.

Andrews, P.B. Refutations by mating*. IEEE Transactions on
Computers 25,8 (Aug. 1976), 801-807
Andrews, P.B. Theorem proving via general matings JACM
28,2 (April 1981), 193-214.
Bibel, W. On matrices with connections. JACM 28,4 (Oct
1981). 633-645.
Bibel, W. A Strong Completeness Result for the Connection
Graph Proof Procedure. Technical Report ATP-3-IV-80.
Chang, C.L. and Lee, R.C.T. Symbolic Logic and Mechanical
Theorem Proving, Academic Press, New York, 1978.
Chang, C.L., and Slagle, JR. Using rewriting rules for connec­
tion graphs to prove theorems. Artificial Intelligence 12 (Aug
1979), 159-178.
Chinlund, T.J., Davis, M., Hineman. P.G., and Mcllroy, M.D.
Theorem proving by matching Bell Laboratory, 1964.
Clark, K. The Synthesis and Verification of Logic Programs.
Third Conference "on Automated Deduction, August 1977
Davis, M. and Putnam, H. A computing procedure for
quantification theory. JACM. vol. 7 (1960), 201-215.
Davis, M. Eliminating the irrelevant from mechanical proofs.
Proe. Symp. of Applied Mathematics 15 (1963), 15-30.
de Champeaux, D. Sub-problem finder and instance checker -
two cooperating processors for theorem provers Proc. 4th
Workshop on Automated Deduction, Austin. Texas, Feb 1979,
110-114.
Gilmore, PC, A Proof method for quantification theory. IBM
Journal of Research and Development, vol. 4 (1960). 28-35
Henschen, L.G. Theorem proving by covering expressions
J.ACM, 26,3 (July 1979). 385-400
Kowalski, R. A proof procedure using connection graphs
J.ACM 22,4 (Oct. 1975), 572-595.
McCharen, J., Overbeek, R. and Wos, L. Problems and experi­
ments for and with automated theorem-proving programs.
IEEE Transactions on Computers, C-25,8 (Aug. 1976). 773-782
Murray, N.V. Completely non-clausal theorem proving
Artificial Intelligence 18.1 (Jan. 1982), 67-85.
Murray, N.V. An experimental theorem prover using fast
unification and vertical path graphs. Fourth National Conf. of
Canadian Society of Computational Studies of Intelligence, U.
of Saskatchewan, May 1982.
Murray, N.V. and Rosenthal, E. Semantic graphs. Technical
Report 84-12, Department of Computer Science, SUNT at
Albany, Nov. 1984.
Nilsson, N.J. A production system for automatic deduction
Technical Note 148, SRI International, 1977.
Prawitz, D. An improved proof procedure Theoria 26 (I960).
102-139.
Robinson, G.A. and Wos, L. Paramodulation and theorem
proving in first order theories with equality Machine Intelli­
gence 4, 1969, Edinburgh University Press.
Robinson, J.A. A machine oriented logic based on the resolu­
tion principle. J.ACM 12,1 (1965), 23-41.
Robinson, J.A. Automatic deduction with hyper-resolution
International Journal of Computer Mathematics, 1 (1965), 227-
234.
Robinson, J.A. "Theoretical Approaches to Non-Numerical
Problem Solving," Springer-Verlag, New York, Inc., 1970, 2-20
Stickel, M.L. A nonclausal connection-graph resolution
theorem-proving program. Proc. AAAI-82 Nat Conf on
Artificial Intelligence, Pittsburgh, Pennsylvania. Aug 1982,
229-233.
Waldinger, R. and Manna, Z. A deductive approach to pro­
gram synthesis. ACM TOPLAS 2,1 (1980), 90-121
Wos, L., Carson, D. and Robinson, G. Efficiency and complete­
ness of the set of support strategy in theorem proving J.ACM
12,4 (1965), 536-541.

