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ABSTRACT 

In this paper, we show how we conceive the proof of 
theorems by sructural induction Our aim is to facilitate 
the proof of the theorems which can lead, in a context of 
automatic theorem proving, to very lengthy (or even im-
possible) proofs 
We use a very simple tool, the i-matching or induction-
matching, which allows us, on the one hand to define an 
original procedure of generalization, and on the other 
hand to define an original way of generating lemmas. 

1 Introduction 

In this article we intend to show how we understand 
the problem of the generalization of the theorems. We 
shall propose two examples With this help, we shall 
demonstrate that the solution we propose is : 

1 clearly justified by our aim of facilitating the proof 
of theorems 

2 clearer than the solutions proposed by Boycr and 
Moore, Aubin, and also includes them 

2 The formal system 

In Kodratoff-Castaing \A\ , we presented an automatic 
theorem proving based on the principle of structural in 
duction |3|. We followed on from the works done by Boyer 
and Moore [2], Aubin I1 | and Huet and Hullot [5]. Our 
method is now implemented in Lisp (Vax). 

Generally, when we want to prove a theorem using struc­
tural induction, we first have to prove one or more basic 
cases and then, one or more induction steps, In our 
method we try a new and we hope an original approach, to 
prove the induction steps. We use a very simple tool which 
we call l matchimg (induction -matching) . Briefly, it is 
used as follows (for a more detailed explanation see our 
previous article |4|): let M => N be any induction steps to 
be proven, M be any hypothesis and N the associated con­
clusion. If there is any substitution o such that : o(M) - N, 
and the induction variables chosen do not belong to the 
domain of substi tution, then the induction step M => N is 
proved. Such a substitution o characterizes the induction 
-matching. It also shows that the hypothesis M is general 
enough to consider the conclusion N as an instance of M, 
and to put N among all the accepted hypotheses . 

It is obvious that only easy theorems can be proved by in­
duction - matching. If the matching of M toward N fails , 
we try to remove the causes of the matching failures ei­
ther by generalizing the theorem, or by generating inter­
mediate lemmas. So, proving theorems in our method is 
in fact solving the problems of matching. 

We suppose that all the conditions which allow us to 
manipulate the theorems, and to prove them by using in­
duction in abstract data types are verified . That's to say: 

1 the domain (type support) is generated by a family 
of constructors supposed not to be related We can define, 
on this domain, the following well-founded ordering, 
denoted by < ; 

x < y iff x is a subterm of y 

2 the functions are complicity defined by a set of ax 
loms [5]. From these axioms, one can obtain a canonical 
rewrite system named R. 

3 the particular properties of the functions given by 
the users are contained in the set of equations E. 

In this paper, we apply our method to the following two 
examples : 

r, • (eql (app x (app x x)) (app(app x x) x)) 
t2 : (eqll (rev x) (foo x nil)). 

The first theorem shows that the function app (append in 
Lisp) is associative. The second shows the equivalence 
between two programs which compute the reverse of a 
list. The domain is the set of lists of integers , denoted 
by List. It is generated by the two constructors (nil , 
cons), where cons is the binary operator cons : Int x List 
-> List (lnt denotes the set of natural integers, generated 
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When we dispose of a canonical rewrite system, we can 
evaluate any term M and find its normal form, denoted by 
Ml, by applying the rules in any order. But, it may happen 
in some particular case, that we have to define a precise 
order in the application of the rewrite rules. In this arti­
cle, we use call- by- need evaluation [7]. We show how we 
can apply it. 
We proceed by steps . First, we try to reduce M at the 
empty sequence of occurrences, i.e. wc try to apply one of 
the rewrite rules which gives the definition of the leftmost 
function symbol in M. If we succeed, we reduce M and ob­
tain a new term M' to which we apply again the same pro­
cess of evaluation. If we fail, we let (u1 Up) be the se­
quence of the occurrences of subterms of M, which must 
be evaluated in order to apply one of the previous 
rewrite rules. Then, we reduce M successively at the oc­
currences u1, up by applying the same process of 
evaluation. 

The call-by-need evaluation stops either in the case where 
the normal form of M is an element of the domain, or in 
the case where the subterms of M to the occurrences 
u1 up .denoted by M/u1, M/Up,, are variables. In this 
case , to use Aubin's terminology, we say that these vari­
ables are recursion variables, or are in the recursion posi­
tion. Generally, we can also say that the subterms of M 
which must be evaluated in the call-by-need rule, are in 
the recursion position. 

Example : 

We evaluate the term M = (eql (app x (app x x)) (app(app 
xx)x)). 

Step-1 : we try to reduce M at the empty sequence of oc­
currences. We have to evaluate the subterms of M at the 
occurrences 1 and 2, in order to apply one of the four 
rules r1 r4, which give the definition of eql. 

Step-2 : for evaluating the subterm M/l, we must instanci-
ate the variable at the occurrence 1.1. For evaluating the 
subterm M/2, we must evaluate the subterm M/2.1, 

Stcp-3; we have to instanciatc the variable at the oc­
currence 2.1.1. 

The two occurrences of the variable x, 1.1 and 2.1.1, are in 
the recursion position. 

3 Generalization : existant solutions 

The need for an efficient procedure of generalization 
has been expressed in [1,2,4,8], In such a procedure, we 
have to define a criterion of choice of the subterms to be 
generalized in a theorem, verify the new proposition ob­
tained, and give a new way of proceeding if the general­
ized proposition obtained is a false one. Otherwise, the 
method proposed fails. 

We now analyse Boyer and Moore s and Aubin's solu­
tions. 

Boyer and Moore choose the subterms to be general­
ized according to their syntax. They replace, in the 
theorem to be proved, some syntatically identical sub-
terms by the same new variables. This simple procedure 
suits the proving of a large class of theorems, because it 
is used in a framework of the strategy of cross-
fertilization [2]. This strategy reduces the induction 
steps P' = Q' => P =h (Q') where P'.Q' and P arc recursive­
ly defined functions, to a new lemma P = h(P') to be 
proved. If the term P is defined by g(P'), then the new 
theorem to be proved g(P') = h(P') can be generalized to 
g(u) = h(u), where u is a new variable. We must be careful 
if we want to extend the application of this principle, be­
cause the new proposition obtained can be a false one. 
For example, if we generalize the theorem t1 by this prin­
ciple, the new theorem obtained by replacing the sub-
terms (app x x) by a variable u is in fact a false one. 

Thus, we can make some remarks about the Boyer and 
Moore 's solution. Their principle docs not indicate how to 
go on if the proposition obtained is a false one. Their prin­
ciple cannot be fully justified. One can only establish that 
very often, the generalized theorem can now be proved 
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Aubin proposes two heuristics of generalization in ord­
er to improve on the Boyer and Moore s principle In 
these two heuristics, he chooses the subterms to be gen­
eralized according to their position in the theorem. He 
distinguishes a recursive function from a tail-recursive 
function. In practice, the distinction between these two 
kinds of functions is the presence in a tail-recursive func-
tion of accumulators which are variables, whose role is to 
contain the partial result of the evaluation of the function. 
For example, the function foo whose definition is given in 
the paragraph above, is a tail-recursive function, because 
the variable y is an accumulator, while the function app is 
a recursively defined one. 

For recursive functions, he uses the same criterion for 
selecting induction variables, and for choosing the sub-
terms to be generalized, He chooses the induction vari­
ables among the recursion ones So, he selects among the 
set of occurrences of the same subterm in the theorem, 
those which are in position of recursion, and gives them 
the same name 
For example, he generalizes the theorem r, by replacing 
the occurrences 1.1 and 2 11 of the same variable x , by a 
new variable u He thus obtains the new proposition to be 
proved, (eql (app u (app x x)) (app (app u x) x)). 

Generally, if the new proposition obtained is a false 
one, he analyses the subterms which are left in the 
theorem, and tries to generalize those which are syntati-
cally identical to the recursion subterms. 

For tail-recursive functions, Aubin generalizes the con­
stants which are in the position of accumulators. The prin­
ciple used is called "indirect generalization", because the 
subterms to be generalized are now in the accumulator 
position, and not in the recursion position. 
Aubin justifies his choice by the following remark : if the 
theorem to be proved is an equivalence one, the presence 
of these constants causes the failure of the proof by 
cross-fertilization. 
Let us verify this remark with the help of theorem t2. 

Example: 

t2 - (eql (rev x) (foo x nil)) 
Let M = t2 (x); Let N = t2 (x <- (cons a x))! = (ecjl (app (rev 
x) (cons a nil)) (foo x (cons a nil))). 
The induction step is M -> N. To cross-fertilize is to apply 
the hypothesis as a rewrite rule. We can extract two 
rewrite rules from M. The first one, (foo x nil) -> (rev x), 
can not be applied, the presence of the constant nil in the 
accumulator position of the function foo, leads the match­
ing of (foo x nil) with (foo x (cons a nil)) to fail The second 
rule, (rev x) -> (foo x nil) reduces the induction step to a 
new lemma, ta - (eql (app (foo x nil) (cons a nil)) (foo x 
(cons a nil))). 

In order to prove t3. we have to prove the induction step 
t3 (x) => r3 (x <- (cons b x)). By applying again the same 
strategy of cross-fertilization, we can now establish that 
the presence of the constants nil and (cons a nil) at the 
occurrences 1.1.2 and 2.2 prevents us from using the hy­
pothesis as a rewrite rule. So, the proof of t2 fails accord­
ing to the argument given by Aubin. 

If the new proposition obtained by replacing the same 
constants by a new variable is a false one, (and that is the 
case in our example, the proposition obtained (ecjl (rev x) 
(foo x v)) being a false one), Aubin proposes to make ap­
pear some new constants in the theorem, that he also 
generalizes. We describe how he proceeds. 
He matches M with N and looks for the other causes of the 
failure Let us suppose that the matching fails because 
the substitution is attempted on a function symbol. He 
tries to remove this failure by applying a procedure called 
a procedure of expansion [6]. He introduces in M the func­
tion symbol which is responsible for the failure, and com­
pletes its definition in order to obtain a new hypothesis M' 
equivalent to M. This last condition is satisfied if the func­
tion introduced has a neutral element. 

Example : 

M = (eql (rev x) (foo x nil)). 
N = (eql (app (rev x) (cons a nil)) (foo x (cons a nil))). 
The matching of M with N fails at the occurrence 1, be­
cause the substitution is attempted on the function sym­
bols rev and app, and fails at the occurrence 2.2, for the 
reason given by Aubin. 
According to the procedure of expansion, Aubin intro-
duces at the occurrence 1 the symbol app, and completes 
its definition by adding the term (rev x) followed by the 
neutral element of app which is nil. 
The new hypothesis obtained is M' - (eql (app (rev x) nil) 
(foo x nil)). Now, the generalized expression of M', (eql 
(app (rev x) v) (foo x v)). is the new theorem to be proved. 

The two solutions given by Aubin allow us to extend the 
class of theorems which can be proved. But, we can point 
out some weaknesses. 
The heuristic used for recursive functions is not fully 
justified. Indeed, the new variable introduced in the 
theorem is considered as an induction variable at the 
next step, when the same method is applied again : we do 
not know whether the proof of the new theorem obtained 
can now be facilitated or even carried out. Moreover, we 
do not like the combinatorial aspect which is associated 
to the choice of the subterms to be generalized. 
The second heuristic proposed is more interesting. It is 
justified by the intention of its autor to use the hypothesis 
as a rewrite rule. On the other hand, we think that the 
Aubin's way of continuing, when the generalized proposi­
tion is a false one, can be extended without considering 
the different kinds of functions. The real purpose is to re­
move the causes of the failure of the matching of M with 
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N. We now show, using theorem t1 as an example, that the 
subterms choosen by Aubin, at the occurrences 1.1 and 
2.1.1, are in fact a part of all the subterms which arc 
responsible for the matching failure. 

Example : 

1 we detect a contradictory substitution on the vari­
able x, x <- x and x <- (cons a x) at the occurrences 1.1, 
2.1.1. 2.1.2, 2.2. 

2 the substitution is attempted on the function sym­
bols cons and app at the occurrence 1.2. 
The subterms responsible for the matching failure are at 
the occurrences 1.1, 1.2, 2.1.1, 2.1.2, 2.2. Aubin general­
izes the subterms at the occurrences 1.1, 2.1.1, which are 
only two causes of the matching failure. 

Our method systematizes this approach. 

4 Our solution 

It consists of two steps, the first one will be exemplified 
by the proof of theorem t1 the second one by the proof of 
theorem tz. 
We assume that the basic cases arc proved 
Let M => N be any induction step. If M i-matches with N 
then the induction step M => N is proved. Let us suppose 
that the i-matching fails. As we have already indicated in 
the introduction, the i-matching is a particular matching 
such that the induction variables do not belong to the 
domain of of the substitution. So, we can deduce that ei­
ther the matching fails, or one of the induction variable 
belongs to the domain of the substitution. 
We put in the two lists LM and LN, all the subterms of M 
and N which are responsible for this failure, each of them 
being labelled by its occurrence in M or in N. 

A. f irst step : generalization 

Deflnition-1 : We say that wc "savagely" generalize the 
term M at the occurrences u1, uq, if we replace the 
subterms of M at these occurrences by new distinct vari­
ables v1...,vq. 

Deflnition-2 : Let M/ui be an element of the list LM. Let M/ 
u1 M/ uin be the set of all the subterms of M which are 
syntatically identical to the subterm M/ ui If we general­
ize M to the occurrences ux uin, we call the new vari­
ables introduced, vl vn, separated variables 

Deflnition-3 : We collect a set of separated variables 
Vi vkl if we give them the same variable name, let be u, 
The susbtitution r - ( v, <- u vk <- u) symbolizes this 
collection. 

Basic idea 

Broadly speaking, we apply a strategy which general­
izes too much, and then find for particular values of the 
variables, the conditions which make the generalization 
true So, we savagely generalize M at the occurrences 
U1, uq, given in the list LM. Let MG (X, v1 ...vg) be the 
generalized expression obtained, where X is the set of all 
the variables of M different from the Vi. Generally, this 
expression is a false proposition. We look for the condi-
tions on the variables vi's, so that MG (X,v1...,vg) can now 
be specialized in a new proposition which is true, and 
upon which we apply our method of proof once again. 

In practice, it is very difficult to find the conditions on 
the Vi. If M contains a predicate of equality, to special­
ize MG (X, v1,.... vq) is in fact to solve some equations of 
diophantinc type. So, we limit ourselves to simply finding 
the equality relations between the variables vt's. We now 
show how we proceed. 

Practical application 

We consider the first cause of failure in LM, m = M/u1. 

1 We savagely generalize M at the occurrences of all 
the subterms of M which are syntatically identical to m. 
Let v1....vn be the sequence of separated variables intro­
duced in M. We successively give the particular values 
e1 em to the variables of X, and we compute the normal 
forms MG-1 = MG (X <- e1, v1 vn) MG-m = MG (X <-
em< v1, vn). These particular expressions only contain 
separated variables 

2 Let i = 1. We apply the call-by-need evaluation to 
the term MG-i. Let VRi = (vi vk) be all the recursion 
variables of MG-i. 

3 Let VRi = (-U, vn) - VRt be the set of all separated 
variables which arc left (if any are left). We first collect 
the variables of VRi by giving them the same name u, then 
we also collect the variables of VRt' by giving them the 
same name v. Let r be the substitution which symbolizes 
these two collections. 
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B. Second step : generating lemmas 

We only consider the subterms of M and N which are 
put in lists LM and LN, and which are not variables. The 
presence of these subterms in lists LM and LN shows that 
the substitution has been attempted on the function sym­
bols. We propose to remove them from these lists cither 
by using the lemmas given in the set of equations E or by 
using the hypothesis. 

Using lemmas given in E 

Let M/u1 and N/ui be two subterms of M and N put in 
lists LM and LN such that the function symbols fi = M (ui) 
and gi - N (tq) at the occurrences ui of M and N are dis­
tinct If we find in E an equation of the form x - (gi x e), 
we reduce M at the occurrence ui using the rule x <- {gx x 
c). So, we make appear the function symbol & in M. We 
proceed in the same way as Aubin, when he applies the 
procedure of expansion. Let M' be the new hypothesis ob­
tained by reducing M to the different occurrences given in 
LM and LN. The new induction step is now M' ~> N. If M' 1-
matches with N, the proof of the induction step is com­
pleted, and so is the proof of M -> N. Otherwise, we put in 
the two new lists LM" and LN all the causes of this failure, 
and we come back to the first step, after removing from E 
all the equations of the form x = (gi x c) which have been 
used 
If the equations in E do not allow us to reduce M, we go on 
now, using the induction hypothesis. 

Using the induction hypothesis 

General case : 
Let M = (P m, mp) and N = (P n1. , np), where P is a 
predicate to be proved Let us suppose that one subterm 
mi i-matches with the subterm nt, with the substitution . 
It is obvious that M i-matches with the term N' = (P o 
(m1j)... o (mp)). So, if we are able to prove the p-1 lemmas 
o (rrtj) - tij, we will have proved the induction step M => 
N. 

Particular case . 
Let M = (P m, mz) and N = P {n1 n2), where P is a predi­
cate of equality. Let us suppose that m1j and nx arc put in 
lists LM and LN, and that tn1 has one occurrence in n,. 
We reduce N to a new term N' by applying the rewrite rule 

to the occurrence of the subterm m1 in n1. We 
are left with a new theorem to be proved upon which we 
apply the same method of proof again. As the reader can 
remark, we proceed as Boyer and Moore do when they 
cross-fertilize. 
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LM= f((rcvx), 1), (nil, 2.2)], 
LN = [((app (rev x) (cons a nil)), 1), ((cons a nil), 2.2)]. 
E = [(app x nil) = x]. 
As the reader can remark, we fail on generalizing t2. So, 
we reduce M at the occurrence 1 by the rule x -> (app x 
nil). "We obtain the new hypothesis M' = (eql (app (rev x) 
nil) (foo x nil)). The i-matching of M' with N fails, and LM' 
is [(nil, 1.2), (nil, 2.2)]. We come back to the first step 
after removing the equation (app x nil) = x from E. So, E 
is now an empty set. 
We savagely generalize the term M' at the occurrences 1.2 
and 2.2. We obtain MG (x, v1 vz) = (eql (app (rev x) v1) 
(foo x v2)). We give to the variable x the particular value x 
= nil, and the normal form of MG (x <- nil, v1 v2) becomes 
(eql v1 vg). We collect these two variables which are re­
cursion variables : v = v1 - v2. The new theorem to be 
proved is now t3 = (ccjl (app (rev x) v) (foo x v)), 
Let us prove theorem t3. The basic case t3 (x <- nil) is re­
duced to true by our rewrite system. The induction step is 
M => N, where 

M = t3 (x) = (eql (app (rev x) v) (foo x v)) 
N = t3 (x <- (cons a x))> = (eql (app (app (rev x) (cons a 

nil)) v) (foo x (cons a v))). 
The subterm (foo x v) i-matches with the subterm (foo x 
(cons a v)) with the substitution o = (v <- (cons a v)) (x 
does not belong to the domain of a). So, the new theorem 
to be proved is now t4 = (eql (app (rev x) (cons a v)) (app 
(app (rev x) (cons a nil)) v)). Our procedure of generaliza­
tion proposes as a new theorem t5 = (eql (app u (cons a 
v)) (app (app u (cons a nil)) v)), which can now be proved 
by using the i-matching. We have facilitated the proof of 
theorem t2. 

Conclusion 

We can now specify the reasons which allow us to think 
that our method includes those of Boyer and Moore and 
Aubin. 

1 Our procedure of generalization contains the two 
heuristics used by Aubin for the choice of the subterms to 
be generalized. 

2 We use the same strategy of proof as these autors 
when we apply the procedure of expansion, or when we 
cross-fertilize. 

6 References 

[ l ] Aubin R. : "Mechanizing structural induction ". Ph.D ; 
thesis . Univ Edinburgh (1976). 

[2] Boycr R.S and Moore J S. : "A computational logic ". 
Academic Press (1980). 

[3] Burstall R. : "Proving propreties of program by struc­
tural induction". Computer J. 12 (1) (1969) p 41 - 48. 

[4] Kodratoff Y. and Castaing J. : "Trivializing the proof of 
trivial theorems ". IJCA1 (1983). Kalsruhe West Germany. 
Proceedings of the eight international joint conference on 
Artificial Intelligence p 930. 

[5] Huet G. and Hullot J-M. : "Proofs by induction in Equa-
tional theories with constructors". 21th IEEE Symposium 
on Foundations of computer Science (1980). 

[6] Wegbreit B. : "Goal directed program transformation 
'*. IEEE Trans. Softw. Eng. SE -2.2 Q 71) p 69-80. 

[7] Manna, et al. : "Inductive methods for proving proper­
ties of programs ". CACM, vol 16, no 8, (1973). 

[8] Abdali, et al. : "Generalization heuristics for theorems 
Related to recursively Defined Functions ", Proc. 4th Na­
tional Conf on Artificial Intelligence, Austin, (1984). 


