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ABSTRACT 

The main problem, when automatically proving theorems by 
Induction is the problem of strategy, or, how to automati­
cally direct deductions. This is not trivial, and, at present, 
only a mixture of complicated strategies have been investi­
gated. The essential contribution of this paper is therefore 
the proposing of a new strategy for inductive theorem prov-
ing, inspired by a new mecanism called Constructive Match­
ing (CM), and used for automatic programming [f04]. 
We also propose a new method for the recognition of predi-
cates and functions, necessary to prove a theorem by our 
approach, that are not defined in the knowledge-base 
("invention" of new operators). Finally, we illustrate the 
obtaincment of a suitable generalized lemma necessary for 
the proof 

INTRODUCTION 

One of the earliest techniques for program synthesis, the 
automated construction of computer programs, has been 
the deductive approach [m05], in which the program is 
dcvelopped by proving -a theorem corresponding to the given 
specification. 
The special techniques needed for the fulfilment of this 
deductive approach nave inspired us to develop a construc­
tive methodology for inductive proofs. For this, we deter­
mined, step by step, all the tools we needed for inductive 
automatic theorem proving, i.e., 
(i) we determined in which "data-types", proofs by induc­
tion can be performed automatically (requirements on 
axioms, definitions of functions and predicates, ...), (but we 
do not treat the problem of how to transform "bad" data into 
"good" data), 
(ii) we determined by what the choice of (a scheme of) the 
induction principle is influenced, and (because we find it pos­
sible), we formulated an induction principle which helps us 
to automatically "generate" induction hypotheses (in the 
form) that are necessary for the proof of a given theorem; 
(iii) we determined how to proceed from given data (axioms 
+ induction hypotheses) to the given theorem (i.e the stra­
tegy) 
In the present paper only (ii) and (iii) are treated 
The novelty of our approach, and a comparaison with 
already existing inductive theorem proving systems is 
exemplified in [f08], and therefore not explained here. But, 
let us point out an essential difference: We construct directly 
(without transformations) the desired formula. This 
difference appears to be very important, as soon as one real-
bxs. that in our approach 
- the application of induction hypotheses is not one of "most 
difficult points", as it is, for instance in [bl2], pg. 90; 
- special heuristics for transforming a given formula into an 
other, to which an induction hypothesis can be applied, are 
not needed as in [m05]. 

Due to a lack of space we are forced to present our system 
from a methodological (nevertheless correct) point of view 
rather than to give its complete algorithmic description. 
Such a description requires the introduction of notions that 
are not published elsewhere (but with which our system 
works) and therefore an algorithmic description without 
specifying these notions would be confusing, 

The organization of the paper is as follows We start with a 
motivation, i.e. a presentation of our methodology in an 
intuitive way. We also answer the question: Why can proofs be 
directed by CM-strategy? Section 2 presents our formula­
tion of the Induction Principle, and indicates the links 
between information included explicitly, or implicitly, in 
given (to be proved) theorems and information one can 
express explicitly when one has a "good" formulation of the 
structural induction principle. Section 3 (the most impor­
tant from the methodological point of view) gives the formal 
definition of Constructive Matching. In this section, we also 
describe how one can recognize subproblems with regard to 
a given theorem and our knowledge base. In the conclusion 
we explain why we were motived by Beth's method of seman­
tic tableaux and why we did not use them in their original 
form. APPENDIX I contains a list of axioms used in the 
paper. APPENDIX II shows our methodology working in 
automatic programming. When we refere to appendices, we 
write »~I , and ■"'II respectively. 

Consider the family of constructors (here (null, unit, 
append)). It decomposes the induction proof into cases, 
each possible valuation of the induction variable x producing 
a case. Since this valuation is a kind of equality, wc shall 
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CONCLUSION 

We have shown that the CM-procedure is used when we want 
"constructively" to prove a given theorem. It means that CM 
is the strategy used to orient our deduction when proving a 
given theorem from given axioms/A1, .... Ak. 
Beth proposed a solution to the problem of finding whether 

or not some formula V is a logical consequence of formulae 
A1( .... Ak. His solution is the method of semantic tableaux 
[b03], formalized by his Completeness Theorem for a system 
of Natural Deduction F. As Beth himself pointed out, the 
practical interest of his method is seriously impaired by 
complicated splittings of a tableau into subtableaux By a 
modification of Beth's method of semantic tableaux inspired 
by the CM-strategy, we have obtained a method for inductive 
theorem proving. 
Our modification consists in 
- including the structural induction principle in the set of 
rules for the construction of tableaux relative to ST and 
- orienting a development of tableaux (by CM-strategy) 
tow-ards the desired goal 
We do not give here our modification of Beth's method 
Our approach is currently under implementation, but has 
not been yet completed. Its main difficulty is due to the gen­
eralizations which will be left to the user in this first version. 
The efficency of our methodology depends on the truth of 
our conjecture relative to sequence of theorems generated 
by the recursively generated EXPR1' and EXPR2' (see section 
l). It may be that an elaborate strategy is needed in order to 
put this sequence in such a form that its generalization 
appears at once. 
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APPENDIX I 

Wc give here only the list of axioms explicitly used in the 
paper. 

TYPE NAT- given by 
Constructors: 0: -» NAT and Suc NAT --► NAT 
Selectors: Pred: NAT ~> NAT 
Predicates: zero?; NAT -> BOOL and Sue?: NAT -» BOOL. 

TYPE LIST-of-NAT - given by 
Constructors: null: -> LIST, unit: NAT ♦ LIST and append: 

LIST x LIST -► LIST 
Selectors: CAR. LIST -NAT and CDR: LIST -> LIST 
Predicates null?: LIST - BOOL, unit?: LIST --> BOOL, append'?: 

LIST -> BOOL 
Relations and Eunctions: 
EQL : LIST x LIST - BOOL 
MEMBER: NAT x LIST --> BOOL 
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