CMSTRATEGY: A METHODOLOGY FOR INDUCTIVE THEOREM PROVING
OR CONSTRUCTIVE WELL-GENERALIZED PROOFS.

Mart a FRAN OVA

L.R.l., Bat. 490. 91405 Orsay Cedex, France

ABSTRACT

The main problem, when automatically proving theorems by
Induction is the problem of strategy, or, how to automati-
cally direct deductions. This is not trivial, and, at present,
only a mixture of complicated strategies have been investi-
%ated The essential contribution of this paper is therefore

e proposmg of a new strategy for inductive theorem prov-
mg, inspired by a new mecanism called Constructive Match-

ng (CM), and used for automatic Tprogrammlng [fO4].

e also dpropose a new method for the reco%nltlon of predi-
cates and functions, necessary to prove a theorem by our
pproach that are not defined in the knowledge-base
("invention" of new operators). FlnaII?/ we illustrate the
obtalncment of a suitable generallzed emma necessary for
the proof

INTRODUCTION

Ore of the earliest techniques for program synthesis, the
automated construction of computer programs, has been
the deductive approach [m05], in which the program is
dcvelopped by proving -a theorem corresponding to the given
specification.

The special techniques needed for the fulfilment of this
deductive approach nave inspired us to develop a construc-
tive methodology for inductive proofs. For this, we deter-
mined, step by step, all the tools we needed for inductive
automatic theorem proving, i.e.,

(i) we determined in which "data-types", proofs by induc-
tion can be performed automatically (requirements on
axioms, definitions of functions and predicates, ...), (but we
do not treat the problem of how to transform "bad" data into
"good" data),

(ii) we determined by what the choice of (a scheme of) the
induction principle is influenced, and (because we find it pos-
sible), we formulated an induction principle which helps us
to automatically "generate" induction hypotheses (in the
form) that are necessary for the proof of a given theorem;
(iii) we determined how to proceed from given data (axioms
;r injiuction hypotheses) to the given theorem (i.e the stra-
egy,

In the present paper only (ii) and (iii) are treated

The novelty of our approach, and a comparaison with
already existing inductive theorem proving systems is
exemplified in [f08], and therefore not explained here. But,
let us point out an essential difference: We construct directly
(without transformations) the desired formula. This
difference appears to be very important, as soon as one real-
bxs. that in our approach

- the application of induction hypotheses is not one of "most
difficult points", as it is, for instance in [bl2], pg. 90;

- special heuristics for transforming a given formula into an
other, to which an induction hypothesis can be applied, are
not needed as in [m05].

Due to a lack of space we are forced to present our system
from a methodological (nevertheless correct) point of view
rather than to give its complete algorithmic description.
Such a description requires the introduction of notions that
are not published elsewhere (but with which our system
works) and therefore an algorithmic description without
specifying these notions would be confusing,

The organization of the paper is as follows We start with a
motivation, i.e. a presentation of our methodology in an
intuitive way. We also answer the question: Why can proofs be
directed by CM-strategy? Section 2 presents our formula-
tion of the Induction Principle, and indicates the links
between information included explicitly, or implicitly, in
given (to be proved) theorems and information one can
express explicitly when one has a "good" formulation of the
structural induction principle. Section 3 (the most impor-
tant from the methodological point of view) gives the formal
definition of Constructive Matching. In this section, we also
describe how one can recognize subproblems with regard to
a given theorem and our knowledge base. In the conclusion
we explain why we were motived by Beth's method of seman-
tic tableaux and why we did not use them in their original
form. APPENDIX | contains a list of axioms used in the
paper. APPENDIX Il shows our methodology working in
automatic programming. When we refere to appendices, we
write »~ , and ="Il respectively.

1. MOTTVATION

Let us start with an cxample which is nothing more than a
presentation of our methodology when proving theorems by
induction.

The rcader is asked to work through this example with us
carefuly, because it will then allow a better understanding of
the theoretlcal explanation which follows in next sections.

Let us suppose that we want to prove

wx (EQL (REV x) {FFOO x null}},
noted “wx Q{x). where x is of the type LIST-of-NAT given by
the family of constructors {null. unit. append| NAT is the
type of natural numbers. EQL is the equality on LIST-of-NAT.
FOD and REV are functions
FOO: LIST-of -NAT x LIST-of-NAT + LIST-ol-NAT,
REV: LIST-0f-NAT » LIST-of-NAT, defincd by following axioms:
A, (FOD mull 1) = 1
Ag: {FOD {unit a) 1) = {append (unit a) 1)
Ag: (FOU (append (unit a{l) L) = (FOO | {append (unit a) L))
Ay (REV nul B = null
Ag: RL‘VEumt a)) = (unit a}
Ag: (REV (append {(unit a) 1)) = {append (REV 1} (unit a)).

Consider the family of constructors (here (null, unit,
append)). It decomposes the induction proof into cases,
each possible valuation of the induction variable x producing
a case. Since this valuation is a kind of equality, wc shall

denote it by EQT.

Dur e ie has three cages:

case(l) (EQT x null), prove Q{x):

case{il) (EQT x {unit a}} , prove Q(x}

&a:;c il) (EQT x (append (mnit a) 1)), suppose Q1) and prove
X).

Let us note (Valuat x} a chosen valuation of x. Let o, be Ix

« {Valuat x)}.

Iatwiteve description of CM-strategy:

Wr describe ({x) by its "partern” PTQ. As an illustration, let
us suppose that it 1s PTQ = {H EXPR! EXPRZ). Inthe above
example, 1 = EQL, EXPR1 = (REV x), EXPRZ = (FOO x null).
Vsing the valuation of x in cach case, (by the evaluation of H
with regard to EXPR1 and with regard to the given valuation,
and by an application of induction hypotheses, If it is the
case) one deduces a valid lormula which has the pattern
PTQ = (H EXPR1 EXPR1"). Inthis step, the value of EXPRE
is not taken into account.

The next step is the constructive onc: We try to find vald
transformations of EXPR1™ mte EXPRZ, 1e. we transform
EXPR1' into EXPR1”. so that EXPR1" = g, (FXPR2).

It may happen thar a direct transformation of EXPR1' into
FXPR2 15 not possible. We then cvaluate EXPR2 for the
current valuation. This leads to EXPR2'. Then, either EXPRI'
can be transformed into EXPR2', or the equality EXPR1 =
FEXPRZ becomes a new thearem, to be treated as hefore. The
last case may well generate an Inflnite sequence of theorems
to be proven.

Now the example will show how we construct this equality,
and how some infinite sequences are reduced to a general-
1zed theorem.

casefi):

{EQT x null}, o, is | x + null]. Here,

PTQ" = (EQL (REV x) null} becausc of 4,. We now try to find
the axioms that can translorm EXPR1'(= null) inte EXPR2 {=
(FOO ...}). The axiom A, 1s the only one which can be used,
because it may have instances of the form null = (FOO).
¥We obtain the cquality (which 15 an instance of A;): null =
(YOO null null), i.c. we have succeeded in obtaining a
transformation of EXPR1' {= aull) into FXPR1"” (= {FOO nul!
null)}. Moreover,

EXPR1" = o, (FXPR2). This completes the proof of case {1).

case{li):

(EQT x {unit a)}, g, is {x + {unit a)}. Herc,

PTQ = (EQL (REV x) (unit a)). We therefore try to transform
EXPR1" = {unit a} into an expression of the form {FOU . . .}
¥We have no space here to explain why, but only two axiems,
which may have instances of the form {umt a) = (FOO . .).
can be used: A; and 4z Using A, one finds that EXPRY (=
{unit a)) can be transformed into EXPR1” (= {FOO null (umt
a))). But

EXPR1" # g,(FXPRR), therefore this pessibility is rejected.
Because {unit a) 1s (append {unic a) null), using the instance
of Ay (Le. {unit a) = {FOO {unit 2} null)), onc Ands that
EXPR1" is (FCO (unlt a} null).

EXPR1" = g {EXPR2) is satisfled, and this completes the
proof of case(li).

case(lid}:
(EQT x {(append (unit a) 1)), og is {x « (append (unit a) 1)}, In
this casc we have at our dispasal the induction hypothesis:
(EQL {REV 1} {FOO 1 null}).

By the evaluation of (REV x) with regard te the given valua-
tion of %, and an immediate application of the induction
hypothesis, we obtain

PTQ" = (EQL (REV x) {(appecnd (FOO | null} (untt a)}}.

M. Frahova 1215

As thers are no axloms that have an Instance matching
{append (FOO | null) (unit a)) = {(FOO . .), wt must evaluate
EXPR2. We obtain EXPR2' = {FOO | (unit a)). We want to
prove EXPR1'= EXPR2', L.e.

@{l.a): (append {FOO1 null) {unit a)} = (FOO | {unit a)).

This equality becomes a new theorem to be proven:

vl wa @,{l.a).
We skip the application of our methodology te this new
theorem. 1t "lails” again by lcading to a new EXPR1Y and
EX:;RE' that arc different, as hefore. The new theorem reads:
Q! a.b):
(append (append (FOO I'null} {unit b)) (unit a))
= {FOOI' (append {unit b) {unit a}}).

Continuing this way we obtaln, that for proving &2 we nced
to prove @y, for proving @ we nced to prove Q,, ... After
aeveral steps we try to see, whether It is possible to find a
gcncralich theorem determined by §,, @ Q. &, -

The reader can see that the structures ol @, and @ are very
similar, being of the form

Q*(1,L}: ¥1 w1 {EQL (append (FOO | null) L) (FOQ 1 L))
Theretore Q* will be this generalized theorem.

In this case, the automation of the common structure of @,
and @y is trivial since Q% is simply the least generalization of
@, and &, (more details can be found in [k31]).

We have undertaken the proof (scill at a conjectural state)
that provable theorems can be expressed as a sequence of
theorems which can be generalized.

The proof of Q*{L,L} 1s not difficult, and lefr to the reader.

Why coud we conjecture such a “simple” form of the
sequence of constructed theorems? Why can proofs always

follow the same scheme (evaluation of an expression, appli-
cation of the induction hypothesis, directed transformation

of ancxpression into an other one, ...)? The reasons are sim-
fe:

1) The form of a gtven theorem indicates which is the for-
mula-we have to obtain for a given valuation of the induction
variable. This directs the construction of expressions neces-
sary for a construction of this formula.

2) Functions and predicates are defined recwursively, and
with regard fo a given family of construcrors. This facili-
tates a scarch for links among expressions. and together
with the {orm of the formula we want to obtain, it indicates
missing lemmas.

A) Mereover, a good formulation of the structural induction
principle points at the elements for which we should expli-
citely express the induction hypothesis, and therefore an
application of inductlon hypotheses no longer s (contrary to
[b12]} onc of the mest difficult problems when proving
theorems by induction.

These arguments are only consequences of next sectiens.

2.1. PROCFS BY INDUCTION

In practice, when we try to prove by induction a theorem
Sz A{x} with x of the type T we know {or should know} some
primitéive functions (or constructors) by which we can
obtain elements of the type T by a simple combination of
these primitive functlons. Functions with a codomain T will
be called generators of T,

Moreover, we suppose that we know selectors, i.e. functions
which for an element & of the type expressed by some primi-
tive function [azs (f ¥} gives the result y.

Finally, we suppose that we have at our disposal predicates
which take the value TRUE only if an element of the type has
been constructed using the given primitive function.

By theae predicates py, ..., py we can deflne the cquivalence
rclation ~on the type T: for x, y of the type T x~y iff there is
Py such that {p; x) = {p; ¥) = TRUE.

We can then choose the representative rep; of the class

1216 M.Frahova

P =1x (& x) = TRUE]. t=1, ...k

For instance, for T = LIST-of-NAT we have the predicates
null?, unit?, append? and the representatives of the
appropriate classes are null, (unit a), {append {unit a)).

So, when we want to prove ‘' A(x) of the type T it is enough
to take all the represcntatives rep,, .., repy, and to prove
Alrepi)foreachi=1, . . k

Now we introduce the notion of the valuation of one clemeant
x as the choice of onc rep; which will be noted (EQT x repy}.
and very often we say that x is represented by rep. So EQT
Is in a sense an equality on T. It is not an equality throughout
the proof but only in the considered case {for a given
represcntative). When we speak about one possible not-
explicitely determined valuation of x, we will write (Valuat x),
te (Valuat x) e [rep;. ..., repyd.

2.2. THE STRUCTURAL INDUCTION PRINCIPLE - FORMULATION

Let us Airst Introduce some notions and notations. Let us
denote by FGT the familly of generators of soms well-founded
type, and by FCT the famlily of conscructors of the type T,
te. FCT ¢ FGT. We classify elements of FCT 1n the following
way:

- constants of the type T(1.e fy: »T)
- buic-T—opefarorsyac. IR X X
thereisnom ¢ | 1, ... n; | such that B}, is Tx:
- general-T-functions (1e. f;: D{ x . x D.{j =+ T, such that
there is at leastone m € | 1, ..., ny | such that Df 1s T).

~ T, such that

PRINCIPLE OF STRUCTURAL INDUCTION

Let us suppose that we want to prove that A{a) holds for an
arbitrary clement a of the type T. A{a) holds for all a of the
type T provided that the following hold:

- A(f.) holds for every constant f of FCT.
- A(S(xd, } can be proved for every basic-T-

constructor f; of FCT with the arbltrary arguments xj, .
:‘, (x4 is of the type Df, for m € { 1. ... n;]) considered,
during the proof of A(f(=4. ... x{’ M. as local constants (i.c.

they do not change their value during the proof-pracedure),
- Al7i{=l. .., x})) can be proved for every general-T-

consteuctor f, Witgl =, ... :c;{’ considered during the proof
as local constants, and starting the proof procedure by sup-

posing

(1) explicit validity of A(x{) for each local constant xj' of
the typeT(xf' €z, ... = ’})

(i) émplicie validicy of Alp,) for any p,, < xj‘ . where x}' isa
local constant and p, belongs to the weli-founded ordering
ot T, called D"',

Here. Lmplicit means that during the proof procedure a new
parameter p,, of T can be constructsd, and Pay 13 smaller
than xj, . We can then suppose Alp,) to be valid. Naturally,
fr, will not occur explicitely in A(f;(={, .., x.{J)}. which is
the tast formula of the deductlen

(144) implicic validity of A{q} tor any q < fy{={. ..., xl’).

As one can ecasily notice, this principle of structural induc-

tion cuts a proof of WwxA(x) into two cases (distinguished by
the existence of induction hypotheses).

2.3, STRUCTURAL INDUCTTON AND STRUCTURE OF FORMULAE

In this section we explain that the structure of a formula A
{when proving Ywx Ex) can lead to some heuristics when
uslng the structural induction principle during the proof of
the desired theerem.

Remark 25 1.;

It may happen that we de not want to prove wx A{x) for all
elements of the type T, bur only for elements which satisty
some conditlon P, l.e. we want to prove wx (P(x) =b A{x}).
The predicate P in our (inductlvcg approach czanot be arbl-
trary, because we must be able to determine constructors of
the type Tp = | x| xeT A P(x) holds}. Then instead of proving
wx (P(x) = A(x)}, we prove the theorem v A(x) in Tp.

Example £.3.1. Let us suppose that in NAT we want to prove
the theorem:

Wy (odd y) = [(2div ¥} = (Suc (2div (substr1 ¥))}]. where
2div is the integer-division-by-two function, the meaning of
odd, Suc and substrl s clear.

The predicate odd determines the type NATg in which
cach elemeat 15 either {Suc 0) or can be written as {Suc (Suc
a)) for a € NAT,g. It means that we will cry to prove

vy [(2div ¥) = {Suc (Rdiv {substrl y}))] in the domaln
NAT qa .

Remark 232

ln A{x) may also occur some functions or predicates which
arc defined with the help of a “selective” function 2f of the
type T{le. dfi Ty x T+ T where 7y canbe Tand for hpe 7,
{df hp q) is ap element of T smaller than q.}

In a such case, when we want to prove A{x) for x given by
some representative of T cxpressed by a general-T-
eonstructor, we Lnclude in our Induction hypothescs also a
hypothesis whp A({df hp x}}. One can sce that hp here
represents all elements p of 1) for which A{(df p x)) is
satisfled. We call such a hp the help-parameter. A predicate
A defined with the help of a selective fuaction will be called
the predicate d?ending on a help-parameter, which will be
written: A depends on hp.

Example 2 3 2. Let us suppose that we want to prove

Yx Jz{x.z), where Q(x.z?is {PERMLUT x zg A {ORDERED z).
The definition of PERMUT, given by (AL23)-{AL27) in =], con-
talns a "selective” function DELETE. When we have to prove
3z Q({append (unit a) 1),z), we usc the induction hypothesis
Wp dz” Y(append {unit a) (DELETE p 1)).2 }A(MEMBER p 1) as
well as the more classical one Hz'" Q(lz"'). One cannot know
in advance which one is to be used (may be both}. In general
one has to use all the possible induction hypotheses induced
by the "sclective” function

What {s gained by using of our structural induction principle
as a method of proving theorems? Nothing more than

- the knowledge of the form (or pattern) of the formula
which we want to obtain, 1.e., A(f,(x{, ... xi’)} from given
axioms and {ormulac Alp, } A(z],) for elements Pa, and xf,
described in the formulation of the structural induction
principle, and

- the generation of induction hypotheses tn the required
form.

3. CONSTRUCTIVE MATCHING

The idea of constructive matching comes from realizing that
a glven theorem wx A(x), to be proved in a theory F,
cxpresses a form A{x) of a formula B which should be proved
from axioms and hypotheses, i.e. we would like to construct
a B, valld in F, such that there s a substitution ¢ such that

gA(x) = B.
3.1. DEFINITION AND EXAMPLES

Definition 3 1.1.- Formula B matches formula A iff there ts a
substitution o such that oA is Identical to B {l.c. gA=B),

Fxample 3.1.1.;

Let B be {{Suc a) = xp*e, + (Suc ux))a (Suc ug)<ey), lot A
be (2, = xp*2, + zg}A (zp<xy)). Then, B matches A with the
substitution [z, « (Suc a), z, v u;, zo ¢+ (Suc ug)).

Definition 3 1.2.: If formulae A and B do net match, but from

the theory F and B we can prove B’ which matches A, then
the process of fnding B' is called Construcrive Hatching
{CM) of A and B.

When proving the theorem WxA{x). using the structural
induction principle, we have to prove the validity A{rep) for ¢
€ {1, ... k], for all the representatives rep;, .., rep, Let us
note o, the substitution [x « rep;|. Then, in the case (EQT x
rep;) we have to obtain the formula o,(A(x)). One can see
that (EQT x rep;) and A(x) do not match, but, I ‘wxA{x) is

ovable in F, we can prove A{rep;) from theory F (extended
E; possible tnduction hypotheses), and (EQT x rep,}.

HOW TO PERTORM THE CONSTRUCTIVE MATCHING

Let @ 7y X Tz + BOOL be a recursive predicate, defined with
respect to tepresentatives of 7). Let vep be a representative
glven by a general-Ty-constructor. Then the part of the
definition § with respect to rep can be expressed symboli-
cally as foliows:
Q{x,.xz) holds

xi=rep A Qsrep f 1 (x)) A Pi(fd(rep) fd(x2))

. x=rep a Qsrepa f Hx)) A Polf #(rep) fB(x4))

x=rep A Qsrepy, J7x2)) A Pu(f T (rep) S 5 (x2)).
where, tor j € {1,....m}, the followlng arc satisfied: srep, 18
obtained from rep by some selector, for any y fi(y)<y. P
are already defined predicates, f{ are already defined fune-
tlons, morcover, for any rep and any x5, the following condi-
tion, called CONDP,
PS4 {rep).fd(x2)) v P f B(rep) £ §(x2))
v .. v Pu{fB{rep) fT{xa))
is TRUE.

Let us call the j«h line of the deflnition Q for X repressnted
by rep, the formula)

Qsrep; J{(x)AP;(fi(rep). f(x2)). _
On cach pth line x3 is consicfercd as completely (symboli-
cally) determined by f{(xz) and fi{xz).i.e. there is a "func-
tion” Gy(f{.£4) such that Gi(f{(m).f4(m})=m for any m.

Let EXPR be an unquantified expression depending on one
varlable only, say x, and let wx Q{x,EXPR} be the theorem to
be proved using the structural induction principle.
x>, 2} is deflned with regard to x, Therefore to prove Wx
x.EXPR} mecans, for an arbltrary x, to prove that EXPR
belongs to the class, say &, of all xg for which Q{x.xg) halds.
Let us conelder the case, where x is represented by a
gencral-Ty-constructor rep. Then we have to consider the
above mentioned part of the definition of §. T.et us note 75
the substitution {x « srep;).
If x is represcnted by rep, the class is implicitly detee-
mined by the definition of Q: If Q{srep;. 4,) A Pi(fé(rep).qa)
helds for some ¢y, g then we know that G{g,.92) € Gup. L€
there exists an xy from Gp such that fz(xs)zq, and
Ji{xs)=q..
Moreover, xp ® C,ﬁ only i there is a j-th line such that

(** (srep; . f(x2)) A Py(f 4(rep) (14(xs))
Is satisfied. This is to say that if Yrepxp) is valid, then there
is a jth linc such that {**) is satisfied. Let us call {**) the
valid part ol Q{rep.xy) (correspondig to j-th line). One can
aec that as soon as the valld part {**) of the formula

M. Frahova 1217

Q{rep.x;) was obtalned, in our consideration we can replace
(**} by Qrep.xe)

In our approach, finding out whether or not EXPR € Gp. for

the given representation of ¥ by rep, 1s performed by vaking
an x3 € Cnp. and veritying whether or not 2, 1s equal to {or
can be transtormed into} EXPR, 1.c. we “construct” the for-
mula Q{rep.EXPR) in the following way:

¥e take an xp for which Q(rep.x;) ia known. Then we verify
the possibility of a transformatlon of x; into EXPR (for the
glven representation of x by rep).

The choice of xp is not arbitrary. We only choose an x; which
has some links with EXPR. The links between elements of Gy
and EXPR are expressed in induction hypotheses.

We will show, how these links may be explicited:

Let us suppose, that Q does not depend on hp (see Remark
2.3,21%. i.e. that srep; does not depend onhp forj=1,2
m. tn, we have at our disposal the induction hypothesis
Qsrep;, T;{EXPR)). where 1; 1s {x « srep;}. Because we want
EXPR to be from Gy, for some j must 7;{FXPR) be
S1(EXPR),

Moreover, for the same j, F{fi{rep). FA(EXPK)) must be
satisfled.

Now, if srep; depends on hp for some j, {.e. srep;=(df 1, rep)
for some r,. let us note p; the replacing of ¢, by hp. Then, we
have at our disposal the induction hypothesis

(Hig) “hp p;(Qsrep; . 7,(EXPR)).

73 is §x « srep; |. Therefore 7;(EXPR) depends on hp, as well,
But, {f srep; depends on hp, it means that in the deflnition of
Q the expression ¢, Is d’:tcrmmed as g{fi(xe)) for some
function g Therefore instead of taking Al we usc
.oé('r,-(o(x,mm} with By = {t, + g(F {{EXPR})}.

ccause we want EXPR to be from G, for some |,
p;{7;{EXPR)} must be f{(EXPR) (or. i they arc not same,
7;{EXPR) must be transformable into f{{EXPR)).

Morcover, Py(fi(rep), £4(EXPR)) must be satisficd.

Notice, that &t may happen that while 7;(EXPR) and
J{(EXPR} may not be the “same” expressions (for instance
(Suc {+ a b)) and (+ a (Suc b)) arc not the same expres
stons), 7,{EXPR) can be transformed into f{{EXPR).

With regard to preceeding remarks, the constructton of
?(x.EXPR)' for the given representation of x by rep, is az fol-
ows: :
Let £ be a symbol representing elements z; € [wp: Lt us
note (*} the formula (x.{). As mentioned above, {*) for x
represented by rep holds, only if there is a j-th line such that
{**) is satisfied.
We therefore take the definition of @ on j-th Line (j=1,....m).
We write

(1) Qorepy S(O) A P(Fi{rep). s §(8)).
srep; <rep, therefore we have at our disposal the iaduction
hypothesis Q(svep;, 73 (EXPR)). resp. pi{Ysrep; T, (FXPRY)) if
srep; depends on hp. The induction hypothesis allows us to
replace £{(¢) in (1)) by 7,(EXPR). resp. by p,(7,{EXPR)).
So we h?vc)ccg(mtructed

(2]} Qorep, 7 (EXPR)) A B (fhlrep).s4(E)).
resp. {2)') py(Ysrep; 7 (EXPR))) A Pj(fé(ffp).fs.u(t))-
Now, we verity whether or not

Pi{1 t(rep).f §(EXPR))

Is satisfied. I it 1s, we verlfy whether or not
G{{?,(D(PR)JQ(EXPR)).
resp. G,(pﬁ{f,(FD(P W.JE(EXPR)) is cqual to (or can be
transformed into) R.

It Py{r{(rep). FA{EXPR)) is not satisfled for the j-th line, we
call this line a total-failure-line, because there Is no sense in
looking for some strategy by which we could succeed in con-
structing {x.EXPR) on this linc. But if the theorem is prov-
able, then, with respect to the condition CONDP. there must

1218 M.Frahova

be at lcast one line which is not a total-fallure-{ine, and for
which Gy(7;(EXPK)},f4(EXPR)) can also be transformed into
EXPR.

It may also happen that G (1;(EXPR,F§(EXPR)) cannot be
transformed directly tnto EiPR. Then, we look for a rule {a
lemma} of the form:

Qrep. G (1;(EXPR}. F4(EXPR}) A ... = ({rep EXPR).

In such a way, If we succeed in constructing a valld part of
Q{x.EXPR}. for the given representation of X by rep, we can
conclude that we have constructed the formula Q{x.EXPR).
valid tor the glven representation of x by rep.

Remark: One can argue that we should first verlfy the condi-
don Py, rather than immediatly apply induction hypotheses.
This oLjectlon is not valid if cheorems wx JzQ{x.z} are also
treated (sce= [}

In order to link this discussion with our intwltive description

of the CM-strategy (section 1}. onc can notice that H is Q
here, EXPR! s x EXPR2 s EXPR EXPR1l s
Gy{75(EXPR), fA{EXPR)). resp. Gy{p;(T;(EXPR)).f$(EXFR)).

Let us supposc that Fy{fi{rep). FE(EXPR)) is satisfled. The
English commentary produced during the proof is then: By
the cvaluation of @ with regard to x represented by rep, and
with regard to { representing the class G, we obtaln

K= G{ (6. 78(8))). Then by the application of the
corresponding induction hypothesis, we ogtaln the formula

Q(X-Ggg(mm-fﬁ(mm)))
resp. QUx.G(oy(7,(EXXPR)). S E(EXPR))}. wvalid for the
representation o{x f:y rep.

Finding the valid transformation of G{7;(EXPR)}.f{{EXPR))
into EXPR by ... { axiems and rules giving this transformation
are mentioned), the formula Q%x,EXPR), valid for the
representation of x by rep, is consldered to be constructed.

Example: Let us suppose that we want to prove

Y'x (PEKMUT x (append {uait (last x)) (DELETE (last x) x})}}
the definition of PERMUT. in® 1, leads us, for x represeated
by (append (anlt a} I), to consider the following two lines of
the definition of PERMUT:

{PERMUT x, x;) holds

=(append (unit a} 1) A(PERMUT | {CDR 23))
| %, (aPPCA(.(t‘a_- (tc.:% l')} xz)

x;=(append (unit a)) »
{PERMUT {DELETE 'SCAR xg) (append (unit a) 1)}
{CDR xg)} a{a » (CAR xg))

We have: f{ is CDR, f§ i3 CAR, fi is CAR, srep, is], srep; is
(DELETE (CAR xg) {append {unit a))}. PERMUT is defined
with regard to the selective function DELETE. For the given
EXPR, (CAR EXPR) is (last x).

The corresponding induction bypotheses are therefore

{H,) (PERMUT |{append {(unit {last 1)} (DELETE (last 1) D))},
Tls[x~

H,
((PQE):RMUI'
&DELEnT;Z (last x) (append (unit a) 1))

appe
unit (last (DELETE (last x} (append {unit a) [)))}
DELETE (last (DELETE (last x?{a.ppend {unit a) 1))}
{DELETE (last x) (append (unit &) 1}))})
A(MEMBER (last x)} {appe mf Furut a) 1)),
75 = | x « (DELETE (last x) {append {unit a) [)} |.

¥e want to conatruct Q{x.EXPR) for x represented by
(append {upnit a) }).

Let us take the 1-st line of the definltion of PERMUT for x
represcnted by (append (unit a)). We wrlte
{PERMUT x £} holds only if

(1,} (PERMUT 1{CDR ¢)) A a=(CAR ¢)
We verify whether or not a = (CAR EXPR), { i.e. a=(last x}) is
satisfed for the given representation of x.
In our approach, this {s performed by checkling whether or
not a can be transformed into the form (last x} for x
represented by (append (unit a} 1). Therefore we lock at the
definition of the functlon last, and we sec that a can be
transformed lnto {last L) for L = (unit a}
or L = {append {unit b) (unit a}) for some b. Both possibili-
tics are rejected, and this fallure is registered as a total
faiture TF,.

Therefors, we take the second line of the definition of PER-
MUT for x represented by (append (unit a) 1). We write
{PERMUT x £) holds only if

(1z) {PERMUT (DELETE {CAR ¢) {ap[:;cnd {unit a) 1)) (CDR ¢}

A a# {CAR £}
?y the application of Hz we obtain
2g)
{(PERMUT

EDELEIE (last x) (append {unit a) 1))

appe
Pgmit {last (DELETE (last x) {append {unit a) 1}))}
(DELETE (last {DELETE (last xg'(app:nd {unit a) DY)
(DELETE (last x) {append (untt a) 1))}
A 2 # (CAR ¢).
We now verlfy whether or not a # [CAK £), ie.
a # {CAR (appcnd (unlt (last x)) (DELETE {last x) x)))
for the given representation of x by (append (unit a)). {CAR
EXPR) ts {last %), therefore a » ({CAR EXPR)} is verified as
{NOT {a = (last x)}. We verify, therefore, whether or not a
can be transformed Into {last x) for the given representation
of x. This {s not possible, and we concﬁudc that a ~ (CAR
EXPR) is satisfled.
Because a # (CAR () Is in (2} satisfled, (222) is nothing but
the valid part of {PERMUT x Ga(72(EXPR), f ${EXPR))).

The last step therefore is to vertty whether or not
Gg(Tg(E}CPR).f?{EXPR)) can be transformed inte EXPR, ie.
whether or not
{append {unit (last x))
(append (unit (last (DELETE (last x) (append (unit a) 1))))
DELETE (last {DELETE {last x) (append (unit a) 1))
(DELFTE (last x) {appcnd {unit a) li?:;))))
can be transformed into
{append {unit (last x)) {append {DELETE {last x} x))).
e equality of these two expressions is not possible, there-
fore we are iooking for a rule of the form
(PERMUTAB) A .. = {PERMUT AC).
¥ obtain that the rule we look for is the transitivity of PER-
MUT. Then, using the rule
{(CAR A)=(CAR B))A{(PERMUT {CDR A) (CDR B)}
=> (PERMUT A B)
together with Hy, completes the proof. For lack of space. the
detailed description of this last part is not glven here.

It {s very difficult to explain such constructions without
being too formal. We hope that the examples given Lo this
section, and section 1. as well, help us to be as tllustrative
as poasible.

3.2. SUBPROBLEMS WITH REGARD TO CM-PROCEDURE

During the proceas of CM wc can use oanly functlons and
predicates defined by axloms. But it may happen that the
proof ‘Wz Afx) needs more functions and predicates than
those currently available,

This situation is similar to the decompasition of the problem
into subproblems (see [s04]), but with a small difference: we
do not ask "how to decompose a problem into subproblems®,
but rather: How to determine that, for a prool of our
theorem Wwx A{x), we will need some new function or predi-
cate which is not exphaitely defined in our system?

The aim of this becomes ¢clear, when one realizes that these
new functions will help us to explicit seme parts of the
representatives ¢ {see preceeding section and =11).

[kfinition 3.2.1.:

Let M be a predicate (:T;xTy » BOOL) such that there exists
a function g T, » T» and three predicates @ TyxTy
BOOL, &y TixTy » BOUL. &y Tax1e s BOOL, such that

1. ¢y is the function represented by the Specification
Theorem

wx (P{x) = Hr Quxr) A (wy &lxy) = Galy.z))
where P, characterizes the Input domain;

2. M(p{ex p))is trucift oy &{p.y) => «y.(eu p)):

3 Be1s not a kind of equality;

4. Qe+ M;

Then, we call Mproblem the synthesis of gy from the
Specification Theorem. Any M for which we can define an M-
problem will be sald to have the V-praperty).

Example 3.2.1.. To the predicate LTL defined in = [, we can
associate the theorem (LTL-problem):
wl ({NOT {EQL | null)} =

(T (MEMBER z 1) A (wy (MEMBER ¥ 1} = (= z¥))))
which defines MIN (mimmum) of elements of |. For all u of
the type NAT, (LTL u 1) holds only if (< u (MIN1}).

Definition 3.2.2 ¢

Let C be a unary predicate. We call a formula S8p with the
free-variable x, such that (CG{x} <= SD(x)) holds for any x,
a semantic definition of a condition C(x).

Frample 322 oy {C{y) = Culx.y)). where), €y are two
known predicates, is a semantic definiion of C such that
Clx) T vy iy} = (G{xy).

fefinition 3.2.3

Cis a Trivial Conditton if 1ts semantic negation does not con-
tain existential quanufiers. 10 thus 15 not true, C s called a
Non-trvial Condition.

Fxampte 3.2.3 - (MEMBER a 1) is a Trivial Condition because
its semantic negation is s (MEMBER x 1) = (# x a).

The predicate LTL: NATXLIST-of-NAT +BOCL the semantic
definition of which is (LTL x 1)1

Iy ((MEMBER y I) = (< xy}}] is Non-trivial Condition. By
analogy, (PRIME x) 1ff

'y (Fy(x) A (y divides x} = (y = 1)) 15 a Non-trivial Condi-
tion.

When C {s trivial, it can cither be replaced by a simpler con-
dition, or its evaluation s trivial. It can therefore be used as
a predicate in the conditional part of a recursive definition.
When C is not trivial, since it has the 9-property. we shall
first try to synthettze a corresponding ¢p. Then, g will belp
us o simplify the condition C and explicit, if necessary,
some parts of ¢ {see = II),

Example 3.2.4.. Let us s se that we want to prove vl A’
(PERMUTI' 1) A {ORDEREDuil, . We can see that ORDFERED in
=11 is defined with the help of LTL, which has the V-property.
This is why, before starting the proof, we need to synthetise
¥ correspondig to the theorem

W1 {(NOT (EQL ! null}}) =

{3z (MEMBER z I} A (vy{MEMBER y [} => (< z y)}))}). (The
application of this cas be found tn =1].)

M.Frahova 1219

Onc should realize that therc is no general strategy for
proving theorems of the type wx ... 3y .. Wz To see this
try proving the well-known relative-prime-numbcer problem
{sec in [g02]):

wo 3N Wp Wq [RP(p.g) A pg >N => VB - ;L{:- _,.?LI“]

where RP(p.q) means that p and g are relative prime.
This s why in our system we have some heuristics in order
to solve some simple such problems.

CONCLUSION

We have shown that the CM-procedure is used when we want
"constructively" to prove a given theorem. It means that CM
is the strategy used to orient our deduction when proving a
given theorem from given axioms/Aq, Ax.

Beth proposed a solution to the problem of finding whether
or not some formula V is a logical consequence of formulae
Ay A His solution is the method of semantic tableaux
[b(£)3], formalized by his Completeness Theorem for a system
of Natural Deduction F. As Beth himself pointed out, the
practical interest of his method is seriously impaired by
complicated splittings of a tableau into subtableaux By a
modification of Beth's method of semantic tableaux inspired
by the CM-strategy, we have obtained a method for inductive
theorem proving.

Our maodification consists in
- including the structural induction principle in the set of
rules for the construction of tableaux relative to ST and
- orienting a development of tableaux (by CM-strategy)
tow-ards the desired goal
We do not give here our modification of Beth's method
Our approach is currently under implementation, but has
not been yet completed. Its main difficulty is due to the gen-
eralizations which will be left to the user in this first version.
The efficency of our methodology depends on the truth of
our conjecture relative to sequence of theorems generated
by the recursively generated EXPR1 and EXPR2 (see section
1). It may be that an elaborate strategy is needed in order to
put this sequence in such a form that its generalization
appears at once.

ACKNOMEDGEVENTS

I would like to express my warmest thanks to Yves
Kodratoff. | also thank Professor Georg Kreiscl for his
encouragement. Professor Jean-Luc Remy provided many
helpful remarks.

APPENDIX |

Wec give here only the list of axioms explicitly used in the
paper.

TYPE NAT-given by

Constructors: 0. » NAT and Suc NAT » NAT
Selectors: Pred: NAT ~> NAT

Predicates: zero?; NAT -> BOOL and Sue?: NAT -» BOOL

TYPE LIST-of-NAT - given by

Constructors: null: -> LIST, unit: NAT ¢ LIST and append:
LIST x LIST -» LIST

Selectors: CAR LIST -NAT and CDR: LIST -> LIST

Predicates null?: LIST - BOOL, unit?: LIST - BOOL, append"?:
LIST -> BOOL

Relations and Eunctions:

EQL : LIST x LIST - BOOL

MEMBER: NAT x LIST = BOOL

1220 M.Franova

LTL : NAT x LIST -+ BOOL defined by
ALS; ELTL x null)
ALD) (LTL x (unit y}) A (s x ¥}
ALIO; LTL x Eun.lt y) a{<x YB
AL11) (LTL x {append (unit y; B Al=xyle EL'I‘L x1)
AL12} (LTL x {append (unit ¥} D) A (<x¥) m (LTLx [}
ORDERED : LIST + BOOL
AL13} {ORDERED null)
AL14) {ORDERED EUNIT:&)
AL15) (ORDERED (append {UNIT x} 1))
A (LTLx 1) Ao {ORDERED 1)
{AL18) {ORDERED {append (UNIT x) {append (UNIT y) I})}
A (= x ¥) A {DRDERED {append (UNIT) 1))
{AL17) (ORDERED (append (UNIT xff‘append {UNIT y) D1
Alcxy)a {,ORDERED {append (UNIT y) 1))
DELETE: NAT x LIST - LIST
PERMUT: LIST x LIST « BOOL defined by
ALR3) (PERMUT null null)
AL24 {PERMUT §un1t) {unit ¥y A {=xy)
ALRS) (PERMUT {append {unit xg unit ¥))
(Egpcnd {unit ¥) {unit x})
(AL26) (PERMUT {append (uait x) [} (append (unit y) m))
(AL2") (PEROGT (appod (unt 2y (appead
AL27} (PERMUT {append (unit x) |} {append (unit y) m}))
A 5# x yg EE’(‘:MEMBER Yl PP

A (PERMUT (DELETE y (append (unit x) 1)) m)

APPENDIX 11

This appendix is for the automatic prograrnming orlented
reader, and 15 readable only if the section 3. has already
been understood.
Wc try to present, here, the CM-procedure as It appears in
our approach to automatic programming.
Let Q. rep be as described in sectlon 3. Let the part of the
definition of a predicate R with regard to x represented by
rep be as follows:
R(x) holds if

s=repaR(omeps JaPy (1 ()

x=repaRisrepe APy (f 2 (rep))

x=repaR(sreps JAR: (14 (rep)).
Let us suppose, that we want to prove a speclal theorem of
the form wxA{x) which {s ‘wx T Q(x.2} A R(z).
i x t5 represented by rep. then to find z such that
QA x.z2)aR(z) holds means:
Take an abstract representative { of all xp for which
Q{rep,xg)AR(xg) holds. Then with the information included in
axioms, induction hypotheses, rules, ..., try to explicite this
element. How can it be dene?
The deflnition of Q leads 1.(1)5(to con.s?(d;r m cases for the
Q{rep.t) part of the formula Q{rep £)AR(E):
Qavesy J1(00) A (7 d(rep Jié)? G=1...m)
Naturally, we have at our disposal the induction hy?:othesla
Az, Y orep;,z; JAR(2y), resp. Vhdp Az Y srepy.2;)AR(2)).
therefore 74 (z) can be replaced by 2;, and so we have:
Qlrep, %(zj. (€))) bolds
oaly it Pi(Fi{ren) FE(¢)) is satisfied,

Then we look at the definition of R and we look for a line, say
the i-th, where srep;’ and f{({) are the "same”. Because of
the induetion hypothesis R{arep,’) can be replaced by Rz,).
and theretore the condition F/(f('(¢)} together with
Py{ri{rep). 24(¢£)) will help us explicite the f,{£) part as a
tunctlon expreasion depending only on x, or 5. Let z;'(x) be
this explicitly expressed ri(¢). Let us note that
P,{f{(rep}.ﬂ,({)aﬁ'éf"(e)} cannot be verified as was the
case for the preceeding type of theorems, but it may be
reduced te the conditlon C"?}!(np).z '(xf). Then, naturally,
finding 7, for x represented by rep, will follow the scheme:
it G(ré{x).z;'(x)) bolds then z is Gy(z;,2; ' (x)).

Pxample :
Let us try to prove ‘wx 3z (PERMUT x z) A (CRDERED z) for
x represented by (appead (unit a) I) (l.e. to find a part of 2
program SORT when (append? x) is satisfied).
Then the structural inducticn principle gives the following
taduction li'y_gothcats:
EHI; (PER Tl'l’]) n (ORDERED l‘l-'l)
He) Whp JvlP (PERMUT (delete hp (append (unit a) 1)} vP#)

» (ORDERED v¥} A {(MEMBER hp (append {unlt a} 1)).
Dur to a lack of space, we will only consider the 1-at line of
the definition of PERMUT (sec scctlon 3.). Let ¢ be a symbol
denoting an element tor which (PERMUT x ¢} a (ORDERED ¢)
1s satisfied.
The first line of PERMUT indicates, that for the given
representation of x, (PERMUT x ¢) holds only if
(PERMUT I (CDR £)) A (a = (CAR £)} is satisfied. By (H,),
{CDR ¢) can be replaced by v;. We obtain:
(PERMUT x (append (CAR ¢) »))) bolds only it

(PEEMUT 1v,) A {a =(CAR ¢)) is satisfied,

le.
(l:ERMUI‘ x {append (CAR ¢) ©,)) holds only it
(a = (CAR 5)5 iz satisfled.

Now we tock at the definitlon of ORDERED, and, with regard
to (), we find that (ORDERED (append (CAR ¢) vy)) holds
only if (LTL (CAR £} v,) is satisfied. We obtain, therefore:
{PERMUT x {append [CAR {) v,}}
» (ORDERED (append (CAR ¢) v,)) holds, only if
{4 = {CAR £}) A {LTL (CAR ¢) v,) t5 satisfled. The condition
(a = (CAR ¢)) gives
(PERMUT x (append (CAR £) v,))
A (ORDERED {append {CAR &) v,)} holds, only If
(LTL a v,). Now, wec can change this condition (sec section
3.2) to (= a (MIN v,}).
Because v, 13 (SORT {CDR x}) we obtaln the following part of
the program SORT:
if {append? x) then
tf {CAR x) < (MIN {SORT (CDR x}})
then (append (CAR x) (SORT (CDR x))).

REFERENCES

808] Beth EW.: The Foundations of Mathematics; Amster-
m 1958,
[812] RS Boyer, J.5 Moore: A Computational Logic;
Academic Press, 1979,
[f63] M Fradiovd: Program Synthesls and Constructive
proofs Obtained by Beth's tableaux, 1n Cybernetics and Sys-
term Research 2, R. Trappl eds, North-Holland, Amsterdam
1884,pp. 715-720.
[ro4] M Frafovd: CM - Strategy - Driven Deductions for
Automatic Programming; In T.0O'Shea (ed.): ECAILS4:
Advances tn Artificial Intelllgance, Flsevier Science Publish-
era B.V. (North-Holland), 1984, pp. 573-578.

[r08] M. Frafiovd: A Methodology for Automatic Program-
ming based on the Censtructive Matchlng Strategy: to
car in: Proccedings of EUROCALL 85, Linz, April 1085,
;QEB] M. Frafovd: Inventing is Moderate Cheating or a

eory of Humble Invention, to appear: in Proceedings of
Cognitiva "85, Parts, June 1685,
502] Girard J.-Y.: Proof theory, to appear.
k51; Y Kodratoff: Generallzing and Particularizing as the
Technlquea of Learning, Computers and Artificlal Intelligence
Vol.2, pp.417-442, 1083,
[mo5] Z.Manna and R Waldinger: A Deductive Approach to
Program Synthesis; ACM Transactlons on Programming
L;nguages and Systems, Vol 2. No.1,January 1880, pp. BO-
121,
[£04] R.D Smith: Top-Down Synthesis of Simple Divide and
Conquer Algorithm; Technical Report NPS52-82-011, Naval
Postgraduate School, Monterey, CA 93940, November 1082,

