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Abstract 
We discuss the automation of mathematical 

reasoning, surveying the abilities displayed by human 
mathematicians and the computational techniques 
available for automating these abilities. We argue 
the importance of the simultaneous study of these 
techniques, because problems inherent in one tech-
nique can often be solved if it is able to interact 
with others. 
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1. Introduction 
A major goal of artificial intelligence is to 

automate reasoning. Solutions to this goal will have 
both technological applications, enabling us to build 
more powerful expert systems, and scientific ap­
plications, providing models to compare with human 
reasoning. Mathematics is an excellent domain for 
exploring the automation of reasoning because: 

(a) it provides a wide range of examples of 
reasoning, from the simple and shallow 
to the complex and deep; 

ematicians. The main theme will be that math­
ematical reasoning consists of more than just 
theorem proving, and that the simultaneous automa­
tion of other reasoning processes, e.g. learning, 
simplifies the automation task. Each reasoning 
process outputs knowledge but also demands 
knowledge as input. If a computational technique 
for automating a particular reasoning process is 
studied in isolation then the provision of its input 
knowledge may prove a major barrier to automation. 
But the input knowledge of one technique is the 
output knowledge of another, so that the tech­
niques f i t together in an intercommunicating net­
work. Some techniques for automated reasoning may 
involve search. In isolation the search involved may 
be computationally expensive. But one technique 
may be used to control the search of another, 
especially if the two techniques are co-routined or 
even merged into one. The power of a system in 
which the various techniques interact in well-crafted 
ways will be more than just the sum of the power 
of the parts. 

I advocate the simultaneous study of all the the 
processes of mathematical reasoning with particular 
emphasis on the possible interactions between the 
techniques that automate them. 

(b) it is possible to detach this reasoning 
from other considerations, such as sen-
sory input of data; and, 

(c) to a first approximation, the problems 
of knowledge representation have been 
solved. 

2. Reasoning Abilities in Mathematics 
What processes are involved in mathematical 

reasoning? In this section we discuss the various 
processes and the AI techniques that have been 
proposed to automate them. More details about 
these techniques can be found in [Chang &, Lee 
73. Bundy 83]. 

Compare mathematics with other AI domains in which 
reasoning plays a part, e.g. natural language under­
standing or visual perception. In mathematics one is 
not bogged down with huge amounts of noisy data, 
nor concerned that what seems to be a difficult 
reasoning issue may evaporate if the knowledge 
representation were changed. One is free to con­
centrate on the reasoning problems and then make 
an attempt to translate any solution found to 
other domains. 

In this paper I discuss the automation of math­
ematical reasoning, by which I mean any cognitive 
activity that mathematicians engage in as math-
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The first problem we face is how to classify 
mathematical reasoning into different processes 
- what my psychology friends call defining the task 
ecology. Our starting point is a 'folk ecology' of 
reasoning processes, i.e. the terms used in pre-
scientific discussion of reasoning. We will call these 
mathematical abilities. With these abilities we must 
associate computational techniques which implement 
them. These techniques will form our scientific 
classification. But the association of abilities to 
techniques not a neat 1-1 mapping. We are likely 
to find many techniques to associate with each 
ability. Some abilities, e.g. learning, have so many 
diverse techniques associated with them that they 
seem highly unsuitable as scientific categories, 
whereas the techniques associated with some 
abilities, e.g. theorem proving, all have a strong 
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family resemblance. Some abilities require a com­
bination of techniques. Consider, for instance, anal­
ogy which requires separate techniques for finding 
and then using the analogy. Each of these tech­
niques will require sub-techniques. Some of these 
techniques may contribute to several different 
abilities. Consider, for instances, resolution-type 
deduction techniques, which are ubiquitous. 

We list below the mathematical abilities we will be 
considering under the heading of mathematical 
reasoning and mention some of the techniques which 
have been used to implement these abilities. 

- Proving theorems: The ability that has 
received the most attention in the AI 
study of mathematical reasoning, almost 
to the exclusion of all others, has been 
theorem proving. Automated theorem 
proving has been an important subfield of 
AI throughout its history. The main 
techniques required to automate theorem 
proving are deduction which involves 
search control. Deduction traverses a 
search space of legal inference steps. 
Search control decides which of these 
steps to try. 

- Formalizing Problems: However, math­
ematicians, especially applied math­
ematicians, spend a large part of their 
time translating informal problem state­
ments into mathematical formulae to 
which deduction, etc. may be applied. 
The initial stages of this translation in­
volve natural language understanding, visual 
perception, etc - but these are not 
specifically mathematical techniques. 
Later stages involve the specifically math­
ematical technique of formula extraction 
from the internal meaning representation, 
which may itself involve deduction (see 
section 3.5). 

- Learning: This term covers a multitude of 
processes, for instance, the learning of 
new mathematical theorems, the learning 
of new proof methods, the defining of 
new concepts, the conjecturing of 
results, etc. New theorems must be as­
similated into the theorem proving ability 
so that they may be used effectively in 
the future. The assimilation technique 
required will depend particularly on the 
search control technique being used, e.g. 
the new theorem will need to be labelled 
so that it can be accessed when needed. 
Similarly, new proof methods must be in­
corporated into the current search con­
trol technique. This may involve a proof 
analysis technique to analyse new proofs 
and generalize them to extract control 
information, e.g. proof plans. Defining 
new concepts can be done by inductive 
inference from descriptions of examples 
and non-examples of the concept.2 Con­
jecturing of theorems can be done by 
considering the hypothesis of the conjec­
ture to be a concept to be defined 

using the above techniques. 

- Using Analogy: Mathematicians use analogy 
to suggest conjectures and new defini­
tions, and to guide proofs. All uses 
require analogical matching techniques to 
find and apply the relationship between 
the target and the source of the analogy 
(see [Owen 85] for a survey). This is all 
that is required for suggesting conjec­
tures and definitions, but to use a 
source proof to control the search for a 
target proof a further proof plan ap­
plication technique is required. 

This is by no means an exhaustive list; math­
ematicians also find counterexamples, write, publish 
and deliver papers, teach students, read textbooks, 
etc. Unfortunately, we have nothing to say about 
these other abilities, so they are omitted. 

3. Mathematical Reasoning Techniques 
In this section we classify and discuss some of 

the techniques that have been developed for 
automating the mathematical abilities described in 
the last section. There is only space to discuss 
those we consider particularly promising. We group 
these techniques according to their computational 
purpose and mutual similarity, e.g. deduction, 
search control. inductive inference. etc. This 
provides a more scientific classification of math­
ematical reasoning processes than the list of math­
ematical abilities above. But even this classification 
is bound to be improved as we discover new tech­
niques and gain a better understanding of the ex­
isting techniques and their inter-relationships. It 
should therefore be regarded as both incomplete 
and highly preliminary. 

3.1. Deduction 
The most well known deduction technique is 

resolution, [Robinson 65]. Resolution is a rule of 
inference for Predicate Calculus, that is. it is a 
rule for deducing new logical formulae from old. 
To prove that a conjecture is a theorem of a 
mathematical theory both the axioms of the theory 
and the negation of the conjecture are expressed 
as clauses (a normal form for Predicate Calculus 
formulae). Resolution takes a pair of clauses and 
makes subparts of each identical using a matching 
technique called unification. The remaining parts are 
combined together to make a new clause. Resolu­
tion applied repeatedly to the initial clauses and to 
their successors defines a search space of clauses. 
This is searched for a contradiction. If the search 
is successful then the conjecture is a theorem. 

The representation of axioms and conjectures as 
logical formulae is given in the texts of math­
ematics and logic. It is in this sense that I 
claimed that the knowledge representation problem 

Note that inductive infaranca it not tha same as math-
ematical induction (••• •action 3.2 below), which ia a 
daductive rule of inference. 
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was solved to a f irst approximation. 

The resolution search space is guaranteed to con­
tain a contradiction if and only if the conjecture is 
indeed a theorem. The if part is called complete­
ness and the 'only if part is called soundness. The 
snag is that if the conjecture is not a theorem 
then the search may never terminate. The number 
of new clauses generated rises exponentially, or 
worse, with the length of the proof. If the proof 
is non-trivial then either the storage capacity of 
the computer or the patience of the human 
operator is exhausted before the proof is found. 
This is an example of the phenomenon called the 
combinatorial explosion. 

Various refinements of or alternatives to resolu­
tion have been designed and implemented, with the 
aim of improving on its space and/or time efficiency 
without losing completeness. One of the most 
powerful alternative deduction techniques is the 
Connection Calculus, [Bibel 82]. These improvements 
reduce the combinatorial explosion, however, but do 
not conquer it. 

There have also been attempts to avoid the com­
binatorial explosion by proposing radically new 
deductive techniques. This has sometimes led to 
techniques which are efficient at proving restricted 
classes of theorems, e.g. rewrite rules [Huet & 
Oppen 80]. It has also led to the reinvention of 
the wheel - some researchers have rejected the 
logical approach, only to reinvent it together with 
the attendant problems of incompleteness and/or 
combinatorial explosion. 

Rather than reject logical deduction techniques it 
is necessary to augment them with heuristic tech­
niques to control the search for a proof, [Hayes 
77]. Search control techniques developed have 
ranged from weak but general purpose ones, e.g. 
evaluation functions based on the complexity of the 
formulae, to powerful but special purpose ones, 
such as those described in the next section. For a 
survey see [Bledsoe 77]. 

3.2. Search Control 
A number of powerful search control techniques 

have been developed by careful analysis of the 
proofs of human mathematicians to extract the un­
derlying control ideas and express them computa­
tionally. 

The simplest technique, called heuristic rules, is to 
add these control ideas into the mathematical for­
mulae as preconditions for their application. For 
instance, the LEX program, [Mitchell et a/ 81], uses 
rewrite rules to symbolically integrate algebraic 
terms, e.g the rule: 

is used to integrate by parts. One class of terms 
which this rule successfully integrates is those 
where u is a variable, x, and dv/dx is a constant 

Note that this precondition is too general; trig 
includes tan, for which the rule does not work. 
We discuss this problem in section 3.3 below. 

Note that these preconditions can get very com­
plicated since the same rule may be used success­
fully in a number of different circumstances and 
the precondition must be the disjunct of these 
circumstances. Note also that the rule now con­
tains a mixture of factual and control knowledge. 
These complications can cause difficulties, e.g. in 
the automatic learning of such rules, so some 
researchers prefer to separate factual and control 
knowledge. 

For instance, the Boyer/Moore Theorem Prover, 
[Boyer & Moore 79], represents its control 

knowledge as procedures for manipulating the math­
ematical formulae. This theorem prover exploits the 
relationship between recursion and mathematical in­
duction to guide inductive proofs of the properties 
of Lisp functions. The recursive definitions of the 
Lisp functions are first used to symbolically evaluate 
the conjecture to be proved. This may fail because 
the conjecture contains arbitrary constants and the 
evaluation process requires lists with internal struc­
ture. This failure is used to guide the choice of 
induction scheme and variable, so that when symbolic 
evaluation is applied to the induction conclusion just 
enough structure will be available to enable the 
induction step to be performed. We will call this 
technique, recursion guidance. 

Note that recursion guidance involves an analysis 
of the conjecture and its failed proof, and the 
choice of an appropriate proof technique on the 
basis of this analysis. This analysis uses meta-
concepts4 to describe the conjecture, its proof and 
the proof methods, e.g. the terms induction 
hypothesis, induction step, etc in the Boyer/Moore 
Theorem Prover or trigonometric function in LEX. 
These meta-concepts must be discovered by study 
of existing proofs, introspection, etc. It is in this 
sense that the knowledge representation problem is 
only solved to a first approximation, since the num­
ber of possible meta-concepts is open ended and 
the choice of appropriate ones determines the suc­
cess or failure of the technique. 

Or an additional rule uaad for aach circumtances. 

4Tha term meta' ia uaad bacause tha concepts in quaation 
daacriba the rapraaantation of the problem, i.a. they ara 
about it rathar than of i t . 
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This process of analysis and guidance using meta-
concepts is itself a reasoning process and can be 
conveniently represented as deduction - but deduc-
tion in a meta-theory, rather than the theory it-
self. Such a use of deduction to guide deduction 
is made explicit in the PRESS system, [Bundy & Wel-
ham 81], for solving equations. The PRESS meta-
concepts describe the equation to be solved, e.g. 
the number of unknowns, their distance apart, the 
kind of functions involved, etc, and they describe 
various methods of solving equations or of achieving 
useful subgoals, e.g. reducing the number of un­
knowns, moving them closer together, making them 
occur within identical subterms, etc. Deduction 
with these meta-concepts induces an implicit, but 
highly controlled, search for the solution to an 
equation. We call this technique, meta-level in­
ference (see figure 3-1). 

applied and how this reason f i t ted into the overall 
proof plan. For instance, sin u.cos u = 1/2.sin 2u 
was applied to reduce the occurrences of u from 2 
to 1 in order that that single occurrence could be 
isolated on the left hand side of the equation. 
This kind of analysis is performed by the LP 
program. [Silver 84], which was able to learn new 
methods of equation solving and extend the range 
of problems that PRESS could solve. The technique 
used by LP is called Precondition Analysis because it 
discovers new methods by considering how un­
explained steps establish the preconditions of suc­
cessive steps. 

In the case of the LEX program for symbolic 
integration (also described in section 3.?) the tech­
nique of back propagation was developed to analyse 
successful solutions and extract the control infor­
mation. This technique was incorporated in the LEX2 
program, [Mitchell et al 833. In back propagation 
the successful sequence of rewrite rules was applied 
in reverse order to a generalized answer to see 
what constraints this would impose on the original 
problem. These constraints then became the precon­
ditions of the first rule of the sequence. For 
instance, given a successful integration of cos7(x), 
LEX? used back propagation to discover that the 
same sequence of rules would have worked on any 
term of the form cosn(x). where n was an odd 
integer. The first rule of this sequence, 

These meta-concepts can also be used to express 
proof plans, e.g. the plan to move two unknowns 
closer together, then merge them and then isolate 
the remaining occurrence. This plan might be 
provided by the programmer or learnt by proof 
analysis of a worked example (see section 3.3). Al­
ternatively the proof plan may be at the object-
level, e.g. the proof of an analogous theorem, or a 
generalized proof. [Plummer & Bundy 84]. In each 
case it must then be applied by a proof plan 
application technique. This application might be 
straightforward - the target proof exactly following 
the plan - or the plan may need to be relaxed or 
augmented at various points. A variety of tech­
niques have been suggested for realising such a 
flexible plan application technique (see, e.g. [Silver 
84]) 

3.3. Proof Analysis 
The process of constructing and augmenting 

powerful search control techniques, by adding meta­
knowledge gained from analysing proofs, can itself 
be automated. This analysis will depend crucially on 
the search control technique in question. For in­
stance, in the case of the PRESS system, described 
in section 3.2. the solution to an equation must be 
analysed using the meta-concepts of PRESS. For each 
step an account must be given of not only what 
algebraic identity was applied but also why it was 

was then given the precondition, f-cos &, odd(r). In 
forming this constraint. back propagation also 
defined the concept. odd* as any number of the 
form 2k+ 1, where k is an integer. 

Proof analysis can also be used to analyse faulty 
proofs and repair them. For instance, a classic 
faulty proof in the history of analysis is due to 
Cauchy. namely that a convergent series of con­
tinuous functions is continuous. This proof can 
be analysed using deduction and the fault identified 
as a missing occurs check during unification (see 
section 3.1. This suggests an obvious patch, namely 
changing the order of quantifiers in the theorem 
statement, and this generates three new concepts 
and three new and correct theorems. One of these 
is the traditional replacement of convergence by 
uniform convergence; one is a trivial theorem whose 
conclusion is always true; and one is a new theorem 
involving the concept of equi-continuity. This 
reasoning process, which we will call argument 
removal, has been implemented in a program, SEIDEl , 
described in [Bundy 85]. 

It would have been more powerful to remember the whole 
sequence as a proof plan and make the constraints the 
preconditions of the plan rather than just its first step. 

In contrast to the deduction of the equation solution, which 
is called object-level inference. 

See [Lakatos 76] for a discussion of this proof and its 
history. 
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For a survey of the use of proof analysis for 
learning see [Boswell 85]. 

3.4. Inductive Inference 
Inductive inference has received a lot of atten­

tion in the learning literature, with a number of 
techniques being developed. For a survey see 

[Dietterich et al 82] and for an analytic com­
parison of some of these techniques see [Bundy et 
al 833. They all learn a concept from examples and, 
sometimes, non-examples of it. From examples of 
the concept the techniques might generalise: 
replacing specific relations and terms with more 
general ones. From non-examples of the concept 
the techniques might discriminate: pruning away rela­
tions and terms that are not an essential part of 
the concept. 

This can be used for the learning of both new 
object-level (factual) and new meta-level (search 
control). For instance, Mitchell et al's LEX program, 

[Mitchell et al 81], used induction to learn the 
meta-level conditions for applying a particular 
strategy for integrating by parts. Given that the 
strategy worked correctly to integrate 3x.cos(x) and 
5x.sin(x), LFX generalized these terms to hypothesise 
that the strategy will work for terms of the form 
nx.trig(x), where n is any integer and trig any 
trigonometric function. 

Both the sub-techniques of generalization and dis­
crimination are crucially dependent on the descrip­
tion space. For instance, in LEX the description 
space contains concepts like 3, 5, n, cos, sin, trig, 
etc. The generalization of two concepts is the 
most specific concept in the description space 
which includes both of them, e.g. trig is the 
generalization of cos and sin. However, if a term 
for sine or cosine" were added to the description 
space then it would replace trig as the generaliza­
tion of cos and sin. In fact, this is the concept 
required, as discussed in section 3.1. Without it, 
LEX overgeneralises to trig. 

3.5. Formula Extraction 
A key technique in the mathematical formalisation 

of problems is the extraction of formulae from a 
meaning representation, e.g. the semantic represen­
tation of an English description of the problem. 
Formulae extraction techniques have received little 
attention in Al despite their importance in human 
mathematical reasoning. However, the MECHO 
program, [Bundy et al 79], contained a formula ex­
traction technique called the Marples algorithm, for 
forming equations to describe mechanics problems. 

The Marples algorithm is a kind of plan formation 
technique. Equations are formed by instantiating 
physical laws, e.g. F=MA. With each law is stored a 
list of the things it is about and a logical descrip­
tion of how these things relate to the variables in 
the law. For instance, F=MA is about an object and 
a direction. The variable M is the mass of the 
object, A its acceleration in that direction, and F 
the sum of the forces acting in that direction. A 
law and a situation are chosen after an analysis of 

the unknowns and givens of the problem. The vari­
ables are then instantiated by inferring the logical 
description from the meaning of the English problem 
statement. 

This inference process may use deduction and 
default reasoning to fill gaps between the state­
ment of the problem and the knowledge required to 
instantiate the law. MECHO used resolution guided 
by meta-level inference for the deduction and the 
closed world assumption for the default reasoning. 
Deduction was needed, for instance, to work out 
the contributions to the sum of forces from 
gravity, the tensions of strings, the reactions of 
contact surfaces, etc. Default reasoning was used, 
for instance, to assume that the only surfaces in 
contact were those mentioned in the problem 
statement. 

4. The Interaction of Reasoning Techniques 
The mathematical reasoning techniques outlined 

above can interact in a variety of ways. For 
instance, successful deductions might provide the 
material for proof analysis and for analogy. Proof 
analysis may suggest proof plans to aid deduction. 
The desire to make a particular theorem hold may 
trigger a process of proof analysis that leads to 
changes in definitions and axioms. Sometimes these 
interactions can be more intimate. Several deduction 
techniques may be co-routined or even merged so 
that each prunes the search space of the others. 
We discuss some of these possibilities in more detail 
below. 

4.1. The Interaction of Techniques in the PRESS 
Family 

In my research group work has continued over a 
number of years on a family of programs working 
on the common domain of symbolic equation solving. 

- As described in [Bundy &, Welham 81] and 
section 3.2 above, the PRESS program 
used the deduction technique of rewrite 
rules to generate solutions to equations. 
This deduction technique was guided by 
the search control technique of meta-
level inference. 

- The LP (Learning PRESS) program (see 
[Silver 84] and section 3.3) used the 

proof analysis technique of precondition 
analysis to extract and conjecture new 
methods of solving equations which were 
then used by PRESS. 

- The IMPRESS (Inferring Meta-knowledge 
about PRESS) program, [Sterling & Bundy 
82], was a theorem proving program for 
proving properties of logic programs. It 
was used to prove properties of the 
Prolog code of PRESS using a modified 
version of recursion guidance (see section 
3.2). For instance, it proved the correct­
ness of some PRESS equation solving 
methods, i.e. that under appropriate 
preconditions the methods would achieve 



1226 A. Bundy 

their goal. gence. 
- As described in [Bundy et al 79] and sec­

tion 3.5 above, the MECHO program solved 
mechanics problems stated in English by 
extracting and solving equations using the 
Marples algorithm. The equation solving 
part was done using PRESS as a sub­
program 

Each of the above techniques is incomplete on its 
own. Meta-level inference requires a rich supply of 
meta- level concepts to analyse problems and bring 
to bear appropriate methods of solution. These 
meta-level concepts can be extracted from example 
solutions by precondition analysis. The new methods 
conjectured by precondition analysis can be shown 
to be correct using recursion guidance. The ex­
ample solutions required by preconditions can be 
supplied by deduction with a less constraining search 
control. The problems to be solved by deduction 
can be supplied by the Marples algorithm, but this 
technique requires deduction together with meta-
level inference to bridge gaps between the 
knowledge it requires and that provided in the 
problem statement. The interactions are summarised 
in table 4-1.8 

But proof analysis techniques cannot merely 
replace inductive inference techniques as learning 
processes. Proof analysis techniques work only on 
single examples and this limits the amount of 
generalization that they can do unaided. For in­
stance, we saw that back propagation was able to 
generalize a particular problem from cos x to cosnx, 
where n is an odd integer. 7 is generalized to n 
by considering the constraints forced by the par­
ticular sequence of rules used in the successful 
solution. However, a similar sequence will also in­
tegrate terms of the form sinnx where n is an odd 
integer; a rule for cos needs to be replaced by a 
similar rule for sin. To recognise this similarity and 
build a general proof plan for both cases requires 
inductive generalization, [Boswell 84]. Alternatively, 
one might use analogical matching to recognise the 
similarity and a flexible proof plan application tech­
nique to apply the cos sequence to the sin problem. 
Note how back propagation narrows down the search 
which would otherwise be involved in finding an 
analogous solution, but then uses analogical matching 
to further narrow its own search. Therefore, 
techniques of proof analysis, inductive inference 
analogical matching and proof application need to 
work in concert to achieve maximum learning power. 

4.2. The Interaction of Learning Techniques 
In section 3.4 we described the importance of 

the description space in constraining the kinds of 
inductive inference that were possible, old concepts 
can only be generalized or specialized to new con­
cepts that are contained in the description space. 
In section 3.3 we described how the techniques of 
back propagation and argument removal could be 
used to define new concepts and thus extend the 
description space in a principled way by adding a 
needed concept, e.g. odd integer, uniform conver-

8, Not all these interactions have been implemented. 

Faced with formulae A -> B' and B" -> C the 
resolution rule applies substitutions to either for­
mula in an attempt to make the Bs identical so 
that cut can be applied. Unification (see section 
3.1) will find the most general such substitution. 
Up to renamings of variables this substitution is 
unique - a far cry from the infinite branching of 
undirected substitution. Thus the merging of modus 
ponens and substitution controls the search implicit 
in the later rule by making its application subser-
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ent to the former. VI 

Similar mergings of other deduction techniques 
have been suggested. For instance, some axioms 
have been built-in to the unification algorithm. In 
associative resolution, [Plotkin 72], the associative 
axiom for a function, f, is deleted from the set of 
axioms and built-in to the unification algorithm, i.e. 
it can be used in the attempt to match two 
expressions. This merging of unification and as­
sociativity has the effect of controlling the ap­
plications of associativity by making it subservient 
to unification. Other examples are higher order 
unification, [Huet 75], which builds the axioms and 
rules of lambda calculus into the unification algo­
rithm, and E-Resolution, [Morris 69], which builds the 
equality axioms into the unification algorithm. 

The advantage of such mergings is not just in the 
shrinking of the search space; they can also assist 
the application of proof plans by bringing the key 
steps of a proof to the top of the search space. 
A proof plan may identify a particular step as a 
key one, but it might take several minor steps to 
transform the problem into a state where this key 
step can be applied. For instance, the key step 
may be to resolve with a particular clause, but 
several applications of associativity may be required 
to allow the resolution to go through. These minor 
steps may create a combinatorial explosion of their 
own before the key step is reached. By making 
the minor steps subservient to the key one the key 
step can be applied first and the application of 
the minor ones can be controlled. 

Merging may also be applicable to non-deduction 
techniques. For instance, given a problem to solve, 
an analogical matcher might be able to find a 
similar solved problem in order to use its solution 
as a proof plan. Sometimes a solved problem will 
match the given one in several different ways. 
Rather than work through each way in turn, the 
match may be left incomplete until further instan-
tion is required to continue with the proof plan 
application. Thus the analogical matching will be 
made subservient to the plan application technique 
and its search thus controlled. 

4.4. Lenat's AM Program 
The AM program, [Lenat 8?], is an interesting ex­

periment in the interaction of a number of tech­
niques for finding examples, defining concept, 
making conjectures, etc. These are set in a 
framework of heuristic rules controlled by heuristic 
search. An evaluation function is used to decide 
what concepts to define or find examples of, what 
conjectures to make. AM's performance is impres­
sive; starting with some simple set-theoretic con­
cepts, it defines some relatively complex and inter­
esting concepts, e.g. prime numbers, and makes 
some interesting conjectures, e.g. the prime unique 
factorization theorem. It also defines a lot of 
uninteresting concepts and makes a lot of silly con­
jectures. 

trying to solve, faulty proofs it is trying to cor­
rect or successful solutions it is trying to 
generalise. Its sense of direction comes entirely 
from its evaluation function which is guided by the 
patterns, coincidences, etc that it notices in its 
example finding. It would be interesting to link 
AM's techniques to those outlined above to get a 
better directed process of mathematical discovery. 
This would involve separating the different tech­
niques used in AM and implementing a wider inter­
action of mathematical techniques. However, such a 
programme would not be easy. The techniques used 
by AM are not clearly explained, are embedded in 
complicated Lisp code, and are difficult to dis­
entangle from the heuristic rules. 

5. The DReaM Programme 
In this paper I have advocated the simultaneous 

study of a number of different techniques for 
mathematical reasoning, especially how these tech­
niques may be f i t ted together. I believe that 
problems associated with the individual reasoning 
techniques can often be solved by combining them 
together, and I gave a number of examples of this 
phenomenon in section 4 above. 

To realise these ideas I have instituted the DReaM 
(Discovery and Reasoning in Mathematics) Programme 
at the Department of Artificial Intelligence at Edin­
burgh University. This programme gives explicit 
recognition to an implicit programme of development 
of mathematical reasoning programs over a period of 
several years. Figure 5-1 explains the relationship 
between the various programs built in our group 
during this period. Each node is a program and 
each arc represents some historical dependence of 
the earlier program upon the later one. PRESS, LP, 

AM has no theorem proving ability. Its definitions 
and conjectures are not motivated by problems it is 
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ecological modelling 
packages, respectively. 

statistics 

- RUT, [Plummer 84], is a rational 
reconstruction of Bledsoe's natural deduc­
tion theorem prover, [Bledsoe 77], and 
VOYEUR, [Plummer 8, Bundy 84], extends 
RUT with the gazing technique described 
below. 

Our specific, short term objectives are to extend 
our existing reasoning techniques and invent new 
techniques in a variety of domains, and more 
centrally to investigate the interaction of: deduc­
tion, search control, proof analysis and inductive 
inference within a single reasoning system. The 
understanding gained from this investigation will be 
exhibited in a program for reasoning primarily in 
mathematics, but adaptable (we hope) to other 
forms of problem domain. 

niques for search control, proof analysis, inductive 
inference, matching, formula extraction, etc. In 
this paper I have outlined some of the most 
promising such techniques drawn from the work of 
my own group and from that of others. 

I have given examples of the interactions of 
these techniques and shown how these interactions 
can solve problems which can appear insuperable if a 
technique is studied in isolation. This constitutes a 
strong argument for the simultaneous study of 
reasoning techniques; to see how the total can be 
more than the sum of the parts. 

The DReaM project aims to conduct such a simul­
taneous study. Some of the preliminary results are 
reported above together with our plans to incor­
porate several techniques within a single system. 

The core of the system will be the MT program, 
[Wallen 83], which consists of two parts 

- the object-language: a logic for express­
ing problems; and 
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the meta-language: a logic for expressing 
proof plans. 

MT uses a process of meta-level inference to 
analyse a conjecture, choose an appropriate proof 
plan and use it to guide the search for a proof. 

The object-level deduction technique is based on 
Bibel's Connection Calculus. [Bibel 82]. The Connec­
tion Calculus is particularly suitable as a vehicle for 
proof plans as it does not demand that the conjec­
ture be put in a normal form and the proof is 
constructed using a detailed analysrs of the conjec­
ture. No new formulae need to be constructed 
during the proof. This makes it particularly easy to 
relate the original analysis of the conjecture to the 
proof plan and hence to the subsequent proof. We 
plan to design and implement several proof plans in 
the MT system. Heuristics developed from natural 
deduction proofs can be readily translated into the 
Connection Calculus. In particular, we will try to 
implement within MT one such technique, developed 
in the group, called gazing, [Plummer & Bundy 84]. 
Gazing is a heuristic technique for controlling the 
expansion of non-logical definitions and the use of 
previously proved theorems during a proof attempt. 

We plan to add to MT a learning component based 
on precondition analysis and other analytic learning 
techniques. This will analyse proofs using the meta-
level concepts already embodied in the MT proof 
plans and use this analysis to modify the existing 
plans and/or build new plans. These plans will then 
be added to MT to improve its theorem proving 
ability. 

6. Conclusion 
The automation of mathematical reasoning involves 

not just techniques for deduction, but also tech-
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