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A b s t r a c t 

Algorithm design is a challenging intellectual activity that provides 
a rich source of observation and a test domain for a theory of 
problem-solving behavior. This paper describes a model of the 
algorithm design process based on observations of human design. 
The adaptation of that model to automation in the DESIGNER 
system helps us understand human design better, and the 
automation process helps validate the model. Issues discussed 
include the problem spaces used for design, the loci of knowledge 
and problem-solving power, and the relationship to other methods 
of algorithm design and to automatic programming as a whole 

I . T h e A l g o r i t h m D e s i g n T a s k 

A. Design as an Intellectual Activity 
Algorithm design is the process of coming up with a sketch, in a 
very high level language, of a computationally feasible technique 
for achieving a specified behavior. The design process combines 
cleverness in problem solving, knowledge of specific algorithm 
design principles, and knowledge of the subiect matter of the 
algorithm (e.g. geometry, graph theory, physics). When people 
design algorithms, their design repertoire includes discovery and 
visual reasoning in addition to the (ideally) disciplined application 
of problem-solving techniques 
Human design is a rich source of ideas for a model of algorithm 
design. Observing that design process and attempting capture 
the basic ideas in an automated system both helps us understand 
how people structure and use their knowledge about design and 
also validates our observations and model The DESIGNER project 
included such a study of human design and an initial version of an 
automated system [15. 16, 17. 26]." The goal of the project is to 
create an automatic design system that can apply existing design 
principles as well as exhibit some creativity. The observations of 
human design are to be incorporated, but the automatic system 
should take the strengths and weaknesses of both computers and 
people into account. We are not trying to model human problem-
solving behavior as an end in itself. 

•This paper describes research performed while the author was at Carnegie-
Mellon University. The research was supported in part by DARPA and in part by 
NSF. 

•'The research described here is joint work with Allen Newell and David Steier 
Many of the ideas I draw on are theirs, but the opinions expressed here are my 
own 

The next section of this paper (I.B) presents a sample algorithm 
design problem (finding the convex hull). Section II summarizes 
our observations of human designers working on that and on 
other algorithms. Section III then discusses where the problem-
solving power in our model lies: in the ability to search in multiple 
spaces (relying on knowledge from the domain as well as 
knowledge about algorithm design), on efficiency knowledge, and 
on the ability to execute partial algorithm descriptions on 
examples. Finally, this model of design is compared in Section IV 
with other approaches to automating algorithm design and to 
automatic programming as a whole. 
B. A Challenge: The Convex Hull Problem 
Consider the problem ot finding a convex hull, which has 
applications, for example, in algorithms for vision and graphics. 
The problem is this Given a set of points in two dimensions find a 
polygon whose vertices are a subset of those points that encloses 
all the other given points. 

Now if I drew some points on a blackboard or piece of paper, you 
would probably have no trouble sketching their convex hull. (If 
you need a picture to help you understand the problem, see Figure 
1.) Suppose instead I asked you, or an automatic design system, 
to create an algorithm suitable for (later) encoding as a computer 
program in a conventional high-level language. Think of sketching 
out an algorithm in the terms you would use for describing it to a 
colleague or to a programmer, without worrying about the low-
level implementation details As you work on this problem, 
observe your problem-solving behavior. Do you write down any 
formal problem descriptions? In what language? Do you draw 
pictures? Create a variety of examples or counter-examples? 
Draw analogies to other algorithms? Draw on general knowledge 
of algorithm design principles? 

How did you convince yourself that your algorithm was correct? 
Did you design it by applying correctness-preserving 
transformations? Did you use geometric or other mathematical 
theorems? Find proofs for conjectures? Test your algorithm on 
sample data? Explain the algorithm to yourself or a friend in 
words? Write pseudo-code? 

How do you decide when your algorithm is complete? How do you 
decide when it is good enough? What does it mean to be a good 
algorithm? Do you know what the run-time or space performance 
of your algorithm will be? Did you worry about what the 
distribution of data would be in creating the algorithm? In 
determining performance? 

Now let's find out how some other people solved this problem and 
see how we might design an artificial intelligence program that 
could perform the same feat. 



1244 E.Kant 

I I . M e t h o d s f o r D e s i g n i n g A l g o r i t h m s 
Since the design of complex algorithms is currently best 
accomplished by human beings, observing their performance 
would appear to be a profitable starting point for automating the 
design process. However, since the talents of computers are not 
those of people, it is reasonable to search for a different method if 
the goal is total automation of design or a novel mixture of human 
and machine design. I his issue is discussed in Section IV 

1 he model of design presented here is based on the analysis of a 
set of protocols from approximately fifteen sessions with computer 
science faculty, graduate students, and undergraduates (A 
methodology for protocol analysis is described elsewhere [8. 20] ) 
Uur designers were independently given the task of creating 
algorithms to find convex hulls, closest pairs (if point:, and 
intersecting line segments. Several protocols have been analyzed 
in great detail while the others have been gone over more lightly 
and used primarily as confirming evidence. 

Before summarizing the features of human design, some caveats 
on the general applicability of the observations are in order (1) 
We observed the design of individual algorithms whose complyitv 
is due to a requirement for cleverness rather than to the 
information processing overload of combining an overwhelming 
number of small but straightforward parts (2) The algorithms 
depend on applying an appropriate set of operations rather than 
on designing a specialized data structure (3) Our study did not 
include any interaction between people and design aids other 
than pencil and paper or blackboard (However, no one 
volunteered any feelings that a calculator, computer, or any other 
automated device would have been of any help in designing their 
algorithm.) (4) The design sessions we observed were on the 
scale of hours rather than the months spent by research algorithm 
designers. Other processes than those we observed may take 
place in such long time periods 

Our observations may be at least partially valid in a wider context 
despite the caveats. Other researchers have studied the design 
process in software engineering and have made observations 
similar to ours [1,12]. Also, there is anecdotal evidence that 
similar problem-solving techniques are used tn the design of 
algorithms that are highly dependent on clever representations 

The processes that we observed our designers draw upon include: 
1 Understand the problem. 
2. Select a problem to work on 

3. Plan a solution around a kernel idea and 
refine or elaborate the kernel structure 

4. Execute the partially specified algorithm. 

5 Notice and formulate any difficulties 
or opportunities. 

6. Verify that the structure is a solution 
(i.e. meets its specifications) 

7. Evaluate the solution (e g for efficiency) 

After the processes in this collection are summarized the issue of 
control — how the processes are ordered and evaluations within 
each step — will be discussed. The explanations draw on all of 
our observations and those of our colleagues who have studied 
the design process in software engineering. However. I will give 
illustrations primarily from the stones of two particular designers 
from our study D1 and D2. who tried to solve the convex hull 
problem. Each part of a story is prefaced by a the designers name 

and number for future reference For example the first step of 
Designer I s story is labeled [D I 1 | 

A. Understand the Problem 
In classical discussions of problem solving |22| one important 
problem-solving process is understanding the problem, perhaps 
by listing properties of the objects in question, and considering 
reformulations of the problem. Some of our designers (but not D1 
or D2) did draw a picture of a convex hull (or whatever) early on. 
which may have led to some unverbalized observation of or 
reasoning about properties of convex hulls and seemed to have 
convinced them that they understood the problem. 
[D6.11 D6 drew the picture shown in Figure 1. 

[D3.1 ] D3 wondered whether using polar coordinates might not 
be a useful way to think about the problem. 

B. Plan and Refine Solution 
Assuming that a problem specification has been understood, 
design begins with a kernel idea or solution plan, quickly selected 
from those known to the designer Depending on the designer's 
background, the idea may vary in sophistication from generate 
and test to input process output to more complex strategies such 
as divide and conquer or dynamic programming. The designer 
lays out the basic steps of the chosen idea and follows through 
with it unless the approach proves completely inapplicable 
|D1.1| D1 had the initial idea that the algorithm should be one 

that generated all points in the input in some arbitrary 
order and tested each to determine whether it was on the 
hull. This had the potential of running in linear tim»-
(proportional to the number of input points') 

|D2 1| 1)2 decided to try a divide and conquer algorithm (th*-
special torn) of divide and conquei in which the input', are 
divided into subsets, the algorithm is recursively applied 
to each, and the results are back together) 

Winch kernel idea do you think will lead to a better algorithm? 

After formulating a plan, the designer refines the basic steps of the 
kernel idea. By and large, this elaboration proceeds by stepwise 
refinement. The designer may lay down the major components, 
effectively decomposing the problem into subparts, or may add 
new inputs or assertions about details of the structure. The 
refinement steps (1) may be suggested by knowledge appropriate 
to the problem and task domain or (2) may be a natural result of 
attempting to execute an algorithm 
[D22] An example of the application of appropriate knowledge 

about algorithm design principles is D2's expansion of the 
notion of using a divide and conquer algorithm into the 
sequence of steps: divide input point sets into 
subproblems, find the convex hulls recursively, merge 
subsolutions back into a convex hull 

[D2.3| Furthermore, D2 recognized from previous experience 
with geometric algorithms that a likely possibility for the 
divide step of the divide and conquer algorithm was to 
sort the points by one of the coordinates and find the 
median 
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However, the refinement process is hardly one of pure top-down 
design. 
[D1.4] Such a point-on-hull test didn't reveal itself, but another 

related test did, and D1 proceeded to modify the 
hypothesized algorithm to exploit the new test. 

Most design falls in between having the correct knowledge and 
searching. At some steps the designer knows what to do and 
knows what the implications of the refinement step are; other 
times, search is required. 
[D2.4] D2 did not find the merge step as obvious as the divide 

step. Do you? 

C. Execution of Algorithms 
Trial execution of algorithms is often used as a technique for 
making inferences about the algorithm developed so far. We 
observed two kinds of execution of partially specified algorithms 
— one on concrete data (which we call test-case execution) and 
the other on symbolic exemplars (which we call symbolic 
execution). Both forms of trial execution help elaborate the 
algorithm description by exposing difficulties and opportunities. 
We found it useful to view execution as a technique for selectively 
propagating constraints (which we call assertions.) by moving 
them around in the order in which steps of the algorithm are 
executed. This limits the reasoning that might otherwise be 
necessary to find contradictions and make inferences 

D. Noticing Difficulties and Opportunities 
Designers notice problems both in their algorithms as described 
abstractly and in pictures they draw to help them design While 
executing the proposed algorithm difficulties (missing steps, 
inconsistencies between parts of the algorthm may arise, leading 
the designer to further refinements Thus, we say that the 
designer's refinement process is difficulty driven. 
[D1.5] In DVs algorithm a difficulty arose when the test 

involving line segments was combined with the generator 
of points and D1 had to modify the algorithm to 
accommodate this. 

Here one assertion propagated by the execution process (that a 
point is produced by generating over the input set) contradicts 
another assertion (that a line segment should be the input to the 
test rather than the point it is handed). 
[D1.6] D1 eventually changed the kernel idea from generate and 

test to a greedy algorithm that attempted to generate the 
hull points in the order they occurred on the hull polygon, 
using backup to handle guessing failures. 

The algorithm execution also can expose opportunities for 
improvement or modification of the algorithm. 
[D2.5] After working on a sample problem, D2 realized that the 

merge step would be easier if the two subsolutions shared 
a common point and went back and modified the divide 
step to ensure that that would happen. 

Most people draw example figures during algorithm design. The 
examples are used initially for understanding the problem, and for 
reasoning about the task domain (using visual reasoning in the 
geometric domain) as well to help try out the partially developed 
algorithms in test-case execution. Often, the designers notice 
things about the sample figures that they were not looking for 
When what the designers notice turns out to be useful in 
developing their algorithm, we say that they have made a 
discovery. 
[D1.7] In looking at Figure 3 D1 realized that if a line segment 

had points on both sides of it. that segment could not be 
on the convex hull D1 was executing an algorithm with a 
test for points being on the hull or not; the line segment in 
the figure was recording the fact that the points A and B 
had been generated so far 

[D2.6] D2 created Figure 4 in attempting to find a merge step by 
considering all segments between vertices of the two 
hulls and testing which were in the merged hull. D2 knew 
that this brute force search would be too expensive, but 
had no other ideas. The picture reminded D2 of another 
unrelated algorithm (the traveling sales representative) in 
which a shorter path replaced two adjacent segments. 
D2 then applied a similar idea to the merge step, 
replacing segments ad and d-e by segment a.e (D2's 
picture was not actually labeled). The generalization D2 
made was that convex angles in the merged hulls were to 
be replaced by a segment connecting the two end points. 

Figure 4. D2 s discovery of a merge operation 

Do you have enough information yet to guess the algorithms? 
(The discoveries are described in more detail in cite(Kant82b).) 

Some other observations the designers made would have allowed 
only small optimizations. 
[D1.8] D1 noticed that points are always on the same side of the 

(directed) line segments of the hull. 
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While discovery is not a voluntary process that can be planned as 
a design step, it does arise from the process of making 
observations. The discoveries in our study all occurred when the 
designer was looking at a sample figure created for one reason 
and recognized a geometric property, or key step from another 
algorithm, that would solve an outstanding goal. That goal was 
not the one the designer was currently worrying about (finding a 
test for a point being on the hull, finding a way to tell if a segment 
was on the merged hull), but it was usually not completely 
unrelated (finding a segment test rather than a point test: finding a 
different type of merge step) Thus, discovery could be 
characterized as serendipidously satisfied goals 
Both key observations in the problem domain and knowledge of 
design principles are usually necessary for clever design Most 
algorithms published in papers, or given as exam problems have at 
least one good observation or trick that is novel at the time of the 
design otherwise we would probably say the algorithm is 
"obvious" or is "just" a brute force algorithm. Each of the trick:, 
must be stumbled upon as a discovery unless it is already -\nown 
to the designer Good tricks are eventually refined into principles 
but everything is a trick the first time each designer encounters it 

Although there is an element of chance in the discoveries there is 
no lack of readiness on the part of the designer The designer can 
be prepared both with immediate goals to exploit the observations 
and with a good understanding of design principles to fit the 
discovery into an overall algorithm. I he more experienced and 
disciplined the designers, the better prepared they are for the 
discovery An "experienced" designer is one with knowledge not 
only about algorithm design but also about problem domains. 
Domain knowledge can be derived either from past attempts at the 
problem or from experience with similar algorithms and domains 
(or different domains but the ability to reformulate problems in 
terms of other domains). 

E. Verifying Correctness 
Our designers determined whether their algorithms were correct 
primarily by testing them on specific examples and observing 
whether there were any difficulties. Symbolic execution car) in 
fact be made to do the job of full formal verification. To do this, 
the algorithm is executed on symbolic objects and all assertions 
are propagated to determine whether the results of the algorithm 
(and its subparts) match the specifications. If a specification 
includes performance constraints, then verification must also 
include an evaluation (see Section IIF) to determine whether the 
solution is efficient enough (in time or space complexity) 
according to the expectations 

During the initial algorithm design, the designers ignored "details" 
such as base cases or initialisations, boundary conditions 
degenerate inputs or unresolved notes to themselves, but they 
were more careful about this if they were attempting to determine 
if the algorithm was complete or correct. 
[D1 9) When D1 was asked for an algorithm summary during a 

pause, the response was that it wasn't an algorithm yet 
because the ca.se of the first point not being on the hull 
had not yet been tested 

The heuristic is to get an algorithm for the general case first then 
worry later about modifying it to take the exceptions into account 
Although some methodologies claim to eliminate the concern with 
special cases (tor example. [11 ]) they require that the specification 
or invariant be precisely stated before design begins. This is often 
difficult to accomplish. For more complex algorithms handling the 
exceptions can itself require a major problem solving activity and 
may yield new insights into the problem or solution. 

F. Evaluating Plans, Refinements, and Solutions 
The descriptions of the processes used in design did not detail 
how plans, refinement steps, and overall solutions are evaluated. 
Evaluation can be based on specific knowledge about the 
algorithm design principles being applied or on an analysis of the 
cost of the algorithm and its subparts. 

If the designer has the appropriate rules about the algorithm 
design principle and the domain, then the refinement process can 
be smooth and top down. For instance the appropriateness of the 
kernel ideas selected by the designers depends on the quality of 
their knowledge of algorithm design principles One can really 
observe here what expert systems researchers call domain 
specific knowledge. Generate and test is usually the fall back 
idea, which is sometimes very efficient (linear in the input size) 
and sometimes not. After an algonthm based on a kernal 
approach was sketched out, or after the approach seemed to be 
failing, some designers went on to an alternative approach 
[D1.10| After completing the revised algorithm for generating 

segments and testing whether they were on the hull. D1 
determined that the run time of the algonthm was 
proportional to the cube of the number of input points 
Declaring that this algonthm was only a "first shot D1 
went on to consider a dynamic programming approach 
and eventually to try divide and conquer 

(D4 1] In another problem involving finding intersections of line 
segments another designer D4. noted that there was a 
straightforward approach having to do with considering 
all pairs of segments, which was N squared However. 
D4 felt that there ought to be some way to use sorting in 
the solution to get an NlogN algorithm 

When experts (people with a strong background in algorithms and 
m the subiect matter of the problem) design, they consider a 
variety of alternative refinements, select the best (remembering 
the rest for possible later use), and apply it to advance the design 
with one more level of detail in the refinement process. What is 
"best" is based on efficiency in the cases of algorithm design we 
studied, but is based on ease of implementation or modification in 
other cases. In expert design, the breadth first process tends to 
be followed for all aspects of the design at a given level, with 
interactions between the different parts of the design predicted 
and taken into account 

In contrast, if the designer's only idea is naive (use sorting 
somehow), then the technique of executing hypothesized 
algorithm parts is more likely to be followed in a depth first search 
from which the designer may never successfully return (The idea 
may not have been wrong, but the designer may not have had the 
knowledge to carry it through.) Fxperts as well as novices are 
prone to a satisficing style of design when they are under pressure 
and don't have time for more exploratory design Of course they 
are better at it since they have more experience, can make better 
predictions, and guess right more often 

Even when performance constraints are not explicitly specified 
the designer often evaluates an algorithm or algorithm stop's 
performance relative to other alternatives or to known or 
estimated lower bounds. Extreme cases of inputs may be tested 
to estimate worst case performance. Complexity analysis may be 
earned out in parallel with execution and verification by more 
experienced designers, or may be an explicit subtask of a 
conscious evaluation. 
[D2.7] After discovering the way to merge by removing convex 

angles, D2 estimated the run time of the divide and 
conquer algorithm by arguing that even for the worst 
possible input, the merge time was linear in the number of 
points on the two subhulls and therefore the overall run 
time was acceptable. 
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Figure 5. A worst case input for divide and conquer 

D2's final algorithm had a prepass step to sort all the points 
according to their X coordinate. The basic algorithm was to divide 
the input through the point closest to the median, recursively find 
the convex hulls of the two resulting point sets, and merge the 
solutions back together by eliminating concave angles (starting 
from the shared point) 1 The base case is that two or three point 
input sets can be made into convex hulls immediately. 

G. Control Issues 
The design processes described in the preceding sections do not 
always run to completion and do not take place in any fixed order 
Evaluations within each step, as described above, may cause the 
designer to terminate one approach and go on to another The 
ordering of the design processes (including when they begin and 
end) seems to arise naturally out of the mechanism of trial 
execution. 

Selecting a problem to work on is a natural consequence of the 
problems exposed by symbolic and test-case execution The 
character of the elaboration process appears to be an progressive 
deepening that takes each of the constructs in the algorithm a 
little further, sometimes backing up to higher levels to keep the 
overall picture in mind However, the development of the different 
parts of the algorithm is not always even. If one aspect of the 
algorithm is a potential problem (i.e., other parts of the design 
depend on it and the outcome is uncertain), then it is more likely to 
be expanded to ensure that the algorithm as a whole is feasible. If 
it has an obvious solution or refinement and the implications of 
that decision seem well understood, at least at the current level of 
detail, it is not considered further. (Of course the assumptions 
may be wrong.) New components of the design are refined in the 
order they are executed, subject to the two previous 
considerations. 

Verification and complexity analysis also seem to be achieved in 
part by propagating assertions during execution. Thus, other 
processes that contribute to control fit in nicely with this basic 
mechanism and can occur at the same time. 

In short, design processes are applied as appropriate. Control is 
not a special source of intelligence. It comes out of responding to 
the data and out of the problems and opportunities arising during 
execution. 

I I I . L o c a t i n g t h e P r o b l e m - S o l v i n g P o w e r 
An important question to ask about any agent that exhibits 
intelligent behavior is where the knowledge and problem solving 
power lie. Knowing the loci of intelligence gives us some clues for 
how to produce similar behavior automatically. Thus, we have 

attempted to formalize the problem-solving behavior we observed 
in our designers in terms of concepts that lend themselves to 
automation 
One common view of problem-solving behavior is that it is 
basically search in a problem space, with knowledge used to limit 
search Knowledge is carried by the problem spaces themselves, 
in what objects and operators they have available and in the 
heuristics they have for when and how to apply the operators In 
this view, problem solving is a process of repeatedly changing a 
context by selecting a goal to achieve, a problem space to work in 
to attack that goal, a at ate within that space to work on. and an 
operator (and instantiations of its arguments) to transform the 
state [18]. Different types of knowledge can be identified with the 
selection process for each element of the context 

A. The Power of Search 
In design as in most tasks requiring intelligence, both search and 
knowledge are needed Search is the backup for missing 
knowledge and can never be completely eliminated It can take 
place at the very high level, such as searching for a kernel idea for 
an algorithm or at the very low level, such as deciding how to 
instantiate an operator argument. Although at any level 
knowledge limits search when possible and gives clues about how 
to explore the problem spaces in a reasonable way, the ability to 
search is, in itself a source of power. 

In design, for example, search permits the creation of algorithms 
by trial and error in the absence of complete knowledge 
Algorithm components can simply be hypothesized and then the 
algorithm as a whole tested to see it it satisfies its specifications. If 
only the objects and operators that formally specify and 
manipulate algorithm descriptions are available (i.e., there is no 
other model of the problem domain), then designing an algorithm 
requires the use of formal definitions of the concepts used in the 
problem specification and, recursively, of its subcomponents. 
However, more power than this is available to human designers 
and can be made available for automated design through the use 
of multiple problem spaces. 

B. The Power of Multiple Problem Spaces 
From our observations we conclude that each designer works in 
several different problem spaces during design (similar 
observations are described for other tasks in [20]). The details of 
the problem spaces differ from designer to designer, but there is a 
remarkable consistency in the types of problem spaces used. 

We observed our designers working in four spaces, two of which 
are extensions of another space. The two main spaces were (1) 
an algorithm design space that carries the knowledge of what is 
achievable in standard computer systems and of domain 
independent algorithm design principles, and (2) an application 
domain space, such as one for geometric and visual reasoning 
(The algorithm design space is also a domain space relative to 
design as a whole ) The two extension spaces have the same 
obiects as the first two spaces plus additional objects and/or 
different sets of operators. (3) An algorithm execution space is an 
extension of the algorithm design space that has as new objects 
data items that carry information in the form of assertions about 
their execution history and has new operators that execute 
components in the design. (4) An example generation space is an 
augmentation of a task domain space in which figures are marked 
as standard examples, degenerate cases, counter examples and 
the like, and in which there are new operators to produce the 
examples. 
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The necessity for different problem spaces is a result of the 
requirements of different types of knowledge. For example, what 
is possible or efficient in the domain (problem space) of algorithms 
for conventional digital computers is sometimes quite different 
from the way people reason visually or from what can be done with 
analog devices. (Consider solving the convex hull problem by 
pounding nails into a board to represent the input points and then 
stretching a rubber band over the nails and letting go.) The 
problem spaces that express such knowledge differ in the objects 
and operators included, the properties of objects or relationships 
between objects, and heuristics for how to control the applications 
of operators. 

Having knowledge represented in a domain space as well as in an 
algorithm space gives the designer the power to create algorithms 
even in the absence of formal axioms about specification 
concepts such as polygon containment, The problem can be 
solved by generating constructs in the algorithm space and testing 
the proposed algorithms on examples to see if they work. This 
technique relies on the ability to generate examples to use as test 
cases. Example generation depends on knowledge of the domain 
space as well as knowledge of the goals in the algorithm space 
(say to determine whether a typical or degenerate example is 
desired) If a domain concept is not formally axiomatized, the 
designer cannot do any formal symbolic reasoning such as full 
verification or correctness-preserving derivation. However, by 
making some conjectures about the domain and validating them 
with test case execution, the designer can reason formally about 
the rest of the algorithm 
[D2.8] Having knowledge from the domain space of what line 

segments were on the merged hull allowed D2 the hope of 
finding an operation that would test where proposed 
segments were correct. 

For each of the problem spaces relevant to design, we can ask 
what knowledge is available for recognizing when context 
elements should change: how does a system recognize when 
goals are satisfied or when new goals should be attempted, when 
the problem space should be changed to work on the different 
type of goals, what state to expand within a problem space, and 
what operator to apply and how to instantiate the operator. 
Examples of the different types of knowledge contained in 
problem spaces will be given in Sections III.F through III.I 

First, some aspects of problem-solving power that cut across 
problem spaces are discussed. This power can be cast as 
knowledge that allows the designer to avoid search. 

C. Knowledge in Recognition 
The ability to recognize objects and to recognize the applicability 
of operators is a major source of power in problem solving. The 
search process is not driven by an algorithm that selects context 
elements in a fixed order but rather by recognition rules that 
observe when some context element should change: for example, 
when a goal has been satisfied or when an operator would help 
change state in a desired way. The conditions for recognition can 
be symbols in the algorithm design space or visual images from 
the domain space. These dues can involve goals, points of view 
or other objects in the problem-solving context whose inclusion as 
a clue was only accidental to the formation of the recognition rule 
A very large number of recognition rules may be present 
However, the conditions that are monitored must be 
computationally simple, involving only straightforward matching. 

An example of the role of recognition is its use in discovery, a key 
process in algorithm design. Discovery depends on generating 
examples to work with and then noticing properties about them or 
reasoning about them. The recognition processes usually take 
place in the domain space, but what is noticed depends on the 
goals of the problem solving (and the content of the recognition 
knowledge). 
Recognition is also important in example generation, which is 
constrained by the goals of the problem solving (is it to be an 
average case, degenerate case, initial or base value, counter 
example, used by efficiency analysis, etc.), but depends on 
knowledge of the domain and recognition of successful 
construction of the example in terms of domain properties. 
[D1.11] D1 first generated points A. C, D, and E in Figure 2 as an 

initial test-case example but then noticed that the 
example was degenerate since all points were on the hull 
and added a fifth point (B) in the center to remedy the 
difficulty. The points were not labeled at that time. 

Non-symbolic recognition and processing (such as visual 
reasoning) is clearly important in designing computational 
geometry algorithms, but is it really important in all domains, such 
as that of algebraic problem solving? At least for some people, it 
is. Built in visual operators are better at some types of processing 
and provide another perspective on a problem. They may suggest 
approximations or fortuitously counterpose objects that would not 
be related by a general symbolic reasoning process. 

D. Knowledge in Execution 
Trial execution in algorithm design serves the purpose of 
controlling the order of the refinement process (see Section II.C) 
and limiting the inferences made as well as its more common 
functions of debugging and verification (see Section II.E and [6]). 

The nature of creative algorithm design requires some mechanism 
for inference, whether it is a full theorem prover small set of 
simplification rules, or something in between. Making all possible 
inferences during algorithm design would be very expensive 
computationally. Execution is a way to focus attention on certain 
assertions in the algorithm description space and certain parts of 
pictures in the domain space so that inference and recognition 
only have to take place over a smaller set. The execution 
techniques limit the inferences and constraint propagations to 
those most likely to be useful for the current stage of the design. 
Avoiding the extensive search of theorem proving or uncontrolled 
inferencing through execution is a form of knowledge about 
design. This topic is discussed more thoroughly in other papers 
[26], [7], 

E. Knowledge in Efficiency Information 
Efficiency knowledge serves as an evaluation function throughout 
the algorithm design process, not just as an evaluation of 
complete designs. Information about potential run time or space 
use serves as a rough guideline in the selection of a kernel idea 
and during refinement (D2 knew that the merge step had to be 
linear to get the desired overall performance [D2.6]*) as well as 
after an algorithm sketch is complete (D1 decided that cubic 
performance was probably not the best possible [D1.10]). 

*ln the remainder of this paper, labels following descriptions of bits of 
knowledge refer back to parts of the design story where they are used 
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Efficiency knowledge can take many forms, including assertions 
about the run time of specific operations or algorithms, assertions 
about the intrinsic complexity of problems, rules for how to 
analyze algorithms, and rules for setting constraints on what 
performance must be reached on a subpart of an algorithm to 
guarantee overall performance. 
Efficiency knowledge is generally contained in the algorithm 
design space In fact, some heuristics in the algorithmic problem 
space depend on the cost model for the target architecture, 
efficiency knowledge can be applied in selecting a plan [D1.1], in 
evaluating refinements for steps of the algorithm [02 7], or in 
evaluating the algorithm as a whole [D1.10]. 

F. The Algorithm Design Space 
In algorithm design, it is sometimes difficult to come up with any 
reasonably effective solution,* although some problems have 
simple brute force solutions (Consider the problem of finding the 
closest pair of points in a point set You can probably see a simple 
algorithm for solving the problem immediately ) Since algorithm 
design involves searching in a space not dense in solutions, dead 
ends are a serious problem, and knowledge of what design 
principles and domain facts are relevant is almost a necessity (as 
is the ability to reason and recognize in other spaces). Such 
knowledge can help decompose the problem or select and 
instantiate operators in the problem space. 

Designers have variants of the algorithm design space that 
depend on their assumptions about the target architecture as well 
as on their overall knowledge of design principles. If the 
algorithms were to be programmed on an architecture with 
pipelined or distributed processing or associative retrieval, the 
representations for algorithms and heuristics for how to design 
might be greatly different. Some designers make (at least implicit) 
assumptions about the target architecture from the beginning of 
algorithm design, although it is preferable to stay independent of 
the target as long as possible. 

The knowledge in the algorithm description space includes facts 
about mathematics, logic, arithmetic, or algorithm design 
principles. The knowledge can be in the form of both object 
descriptions and operators on those objects. Other knowledge 
can be represented by rules about when to change the problem 
solving context. 

1. Objects and operators 
The basic objects for describing algorithms in the algorithm 
design space are components that specify basic types of 
processing. These components may test whether a property 
holds, generate the elements of a set one at a time, achieve an 
input/output relationship, apply a domain operator, select a 
subpart of a compound object, or modify a memory of objects 

The algorithm components are connected by links that allow flows 
of data and/or control and may be augmented with assertions 
about their properties or about their relationship to other objects 
or operators in any of the problem spaces. For example, a 
selection criterion might be to pick the bottom left point from a set 
of points New components can be defined in terms of old ones by 
adding additional standard inputs or outputs or by adding 
assertions, or a component can be defined as configuration of 
other components. 

*See Section IV.E or [2] for a comparison with the search problem in program 
synthesis 

The assertions associated with components may include 
information about the types of data obiects expected as inputs or 
outputs or other preconditions or postconditions of processing, 
the ordering constraints on a generator, the criteria tor selection, 
the initialization of a memory, expectations or conclusions about 
the time complexity of the algorithm (component), constraints on 
the order of execution of the algorithm components, notes about 
the algorithm (such as it has not yet been tested for the initial point 
lying inside the hull). 

Since algorithms usually manipulate some sort of data, there are 
also representations of the common mathematical concepts such 
as numbers or symbols and of sequences or sets of other obiects 
Assertions about these objects can be attached to descriptions of 
the obiect type or to item-, that represent specific data 

/7/e number ot cuintnnat'ons of pan:, from ,-J set o/ elements n; 
{)rof)ortion;ii to N -.injured (D4 1 | 
Divide rind conau<-T .■//?;.■ >.'-/f7/m.s an often have run tune of 
N/ogN. [D2./\ Ol . l l | 

The operators, m the algorithm description space are simple 
(syntactic) editing operations that add or modify components. 
links between components, and assertions I he knowledge is all 
located in the rules that suggest instantiations of the type of 
components to create, the specific components to link, and the 
details of the assertions to be added. 
2 Operator selection 
Selecting an operator (and instantiating it by selecting values tor 
its arguments) can be made more effective through the use of 
knowledge about general algorithm design principles and about 
algorithms in a particular domain of application. This knowledge 
will be expressed here as rules. Other such knowledge, such as 
how to handle specific problems raised during execution (the 
equivalent of a difference table for means ends analysis) also 
limits the amount of search necessary for operator selection. 

The following set of rules about operator selection and 
instantiation is merely a representative sample of the knowledge 
that an algorithm designer (human or otherwise) might have (not 
every designer has the same knowledge, of course) Many other 
rules would add their suggestions and vetoes about what to do. If 
there is no consensus about what operator to apply, the fall back 
is search through the suggested possibilities. 

If a component needs to be refined and its output is a subset ot 
its input, refine the component to an element generate and test 
algorithm. [D1 1] 
If a component needs to be refined and its output is a structure 
that must satisfy certain constraints, refine it to an algorithm 
that builds a minimal structure and then adds units of structure 
until the constraints are satisfied. [D1.6] (An instance of this rule 
is suggested in [3].) 
If an algorithm looks at part of the input many times to do the 
same kinds of tests, try saving information rather than 
recomputing, say with dynamic programming. [D1.10] 

If the characteristics of subproblems produced by the divide 
step of a divide and conquer algorithm are unknown, then add 
the assertion that they are two equal sized subproblems 
If the characteristics of subproblems produced by the divide 
step ot a divide and conquer algorithm are unknown, and if the 
set being divided is a set of points in two dimensions, then 
refine the divide step to be a sort of the points and a division 
into the points on ettrier side of the median a line through the 
median. [D2.3| This has a bit ot domain specific knowledge 
although it is in the algorithm space 
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/f a component is missing a link to a required input, look for a 
component that has an output with the same type (or having 
that type as a subpart or superpart) and connect the two 
components. 

3. Changing state 
The state in the context of a problem space changes primarily as a 
direct result of the successful application of an operator that 
modifies the algorithm description. If the operator application 
fails, and if there were competing suggestions about what 
operator to apply, then alternative operators still apply and 
another will be tried In addition to either failing or succeeding, an 
operator may return a difficulty or opportunity. This becomes 
another goal to be worked on, perhaps in a different problem 
space. After processing of the new goal is complete (which may 
change the state in the algorithm description problem space), the 
rules that caused the original operator to be selected may or may 
not be retriggered. If they are, the operator application can be 
retried. 

4. Changing problem spaces 
One of the benefits of having multiple problem spaces is the ability 
to reduce search by working on the same goal in a different space. 
Some examples of rules that can cause space changes are: 

If a component needs to be refined, and its output is a construct 
in space X, create examples of it and notice their properties. If 
this rule is applied, it will cause a transfer first to the example 
generation space and then to the domain space X. [D1.2] 
It a configuration of components has not been shown to 
achieve the specifications of the component of which it is a 
refinement, then symbolically execute it. [D1.9] 
if a configuration of components has not been shown to 
achieve the specifications of the component it is a refinement 
of, and if symbolic execution has already been tried or is known 
in advance to be too complex to be informative, then execute 
the configuration on a concrete example. [D1.2] 

5. Goal satisfaction and creation 
Recognition of when goals have been achieved, or nearly 
achieved, of when to give up on a goal and declare failure, of 
when to create new goals, and so on is crucial to enabling 
discoveries. Strict enforcement of hierarchical subgoaling would 
not allow the same flexibility and creativity. Goal change 
knowledge can also serve as design heuristics. Some rules that 
express this knowledge are: 

// an exponential algorithm is created, try to improve it or find an 
alternative unless it can be shown that the problem is itself 
exponential. [D2.6] 
/f all obiects added to a set have a common assertion, 
hypothesize that that property holds for all elements in the set 
and try to substantiate the hypothesis, 
If a component is defined by assertions that are appropriate for 
the level of detail currently desired (however that is 
determined1), then consider the component acceptable. 
If a component is not considered to be refined to an acceptable 
level of detail, then create a goal to refine it. 

G. The Application Domain Space 
Algorithm designers need knowledge about their task domain as 
well as about algorithm design in general. As an example of a 
problem space describing a task domain, consider the knowledge 
about geometry that can be used in solving the convex hull 
problems. 

Obiects that are manipulatable in the geometric domain include 
points, lines, segments, angles, and polygons. Special properties 
of object types or of specific objects may also be recorded. For 
example, the degenerate case of the object type polygon could be 
a point or line-segment, and a triangle would be the boundary 
case. For a specific geometric object, properties would include 
being convex or being above or below a line. 

The operators in the geometric domain include accomplishing 
such functions as drawing a line segment between two points and 
recognizing that a polygon is convex. 

Any symbolic descriptions of the objects in a figure and assertions 
about the objects or their relationships are available to the other 
spaces. For example, in the algorithm space, assertions may 
serve as test predicates, comparison or ordering relationships, or 
criteria for extraction from compound object. Operators are 
available for execution, say to build a polygon in the example 
generation space or as an operator applied by a component in the 
algorithm space that can be run during test-case execution, but 
their internal workings are not available. 

The domain space also includes recognition knowledge, 
expressed here in the form of rules, that if applied to a figure in the 
current focus of attention may cause recognition and/or the 
construction of a new object just as an operator application might. 
For example, 

If two line segments share a common endpoint. perceive the 
figure defined by that pair of segments as an angle. [D2.6] 

H. The Execution Space 
The problem space in which execution occurs is an augmentation 
of the algorithm description space. It uses the object type item to 
represent the data processed by the algorithm that flow over the 
links between components. The items can represent either 
specific objects from the domain space (point A) or symbolic 
objects ("a point"). Items can be augmented by properties that 
are known to be true of them at a given point in the algorithm 
execution history — that a point is known to be on or off the hull or 
that it is the one most recently added to a memory. 

The operators in this space control the sequencing of component 
execution and carry out component execution. If assertions 
needed to carry out the operators are missing, a difficulty is 
returned and a new goal to handle the difficulty is created. 

Some instances of rules that suggest new goals to work on are: 
If the input for test-case execution is uninstantiated, set up a 
goal to get an example input. This will cause a transfer to the 
example generation space. A particular point set would be an 
example for the convex hull problem. [D1.3] 
If test-case execution shows that applying some operation will 
make progress toward a solution of the problem but not solve it 
completely, try modifying the description in the algorithm 
design space to apply the operation repeatedly (inside a loop). 

I. The Example Generation Space 
The example generation space is also an augmentation of another 
space, the domain space. Objects must be augmented by 
properties that describe their typical instances, degenerate 
instances, boundary cases, and so on, if such information is not 
already present in the domain space. For instance, sequences 
consisting of repeated copies of the same element are not typical 
Some sample operators are those that add and remove elements 
from examples. Some sample rules are 

If creating an input to a generate-and-test algorithm ana all 
elements in the input satisfy the test, then add another element 
[D1.10] 
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// creating an example for test case execution of an algorithm 
that has not yet been checked for correctness, pick non 
degenerate objects and constructors 

IV. D e s i g n A u t o m a t i o n S t r a t e g i e s 
This section summarizes the model of human design and 
compares it to some of the other approaches suggested for fully or 
partially automating algorithm design and for automatic 
programming. It also discusses how the methods might be 
extended to handle the problems in other contexts, such as 
interactive design. 

A. Summary of Human Design 
Several of our designers succeeded in creating convex hull 
algorithms The algorithms and key discoveries of designers D1 
and D? have already been described. DVs generate and test 
algorithm had a disappointing worst case run time proportional to 
the cube of the number of input points But D1 would never have 
been able to design the anticipated linear algorithm it can be 
shown that the problem of finding a convex hull is related to the 
problem of sorting, so under conventional assumptions it must be 
an Nlog/V problem Eventually 01 went on to try a divide and 
conquer approach that, with a little help from the experimenters 
became a successful Nlog/V algorithm similar to D2's. Some other 
designers successfully recreated some convex hull algorithms 
that they had heard or read about but did not remember very 
clearly (Many interesting convex hull algorithms have been 
described in the literature [ 19] ) Still other designers failed to find 
any algorithm at all. We also gave our designers some other 
problems. They were asked for algorithms to find the closed pair 
of points from a given set or the intersection points of a set of 
vertical and horizontal lines. Most designers quickly suggested 
brute force algorithms (which have a worst case run time that is 
the square of the size of the input) but were unable to find any of 
the taster algorithms. 

The methods observed in human design are quite varied. 
Selecting and sticking with a kernel idea provides a necessary 
focusing of attention, and using execution as an assertion 
propagation mechanism continues that focus and avoids the 
extensive search process that unlimited inference or search 
through the network of all refinements would entail. Of course if 
specific knowledge about the domain or algorithm design is 
available, it can be used to limit search by suggesting refinements 
directly. A powerful source of creativity is the use of visual 
reasoning about specific examples, which paves the way for 
discoveries about key concepts in algorithms. Although our 
current set of studies of human designers has provided many 
good ideas for a model of design, we would like to do more studies 
on other types of algorithms and on even more expert algorithm 
designers 

In general, the designers' success was highly correlated with their 
interest in and background in algorithm design Some problems 
that they had stemmed from an incomplete (or totally absent) 
understanding of design principles such as divide and conquer 
(which is very relevant to the examples we gave). Other problems 
seemed to be due to impatience with methodically following a 
design strategy In some cases, the designers tried to mix aspects 
of the design from two different approaches. This typically failed 
when they tried to mix subparts of different types of principles but 
succeeded when they tried to reuse facts or theories from the 
geometric domain that were learned in an earlier design 

B. Automatic Programming 
Automatic programming is that ever receding goal of automating 
the programming of everything the user wants with a minimal 
amount of specification. Automatic programming encompasses 
(1) algorithm design, (2) program synthesis, and (3) the problem of 
managing complexity in programming in the large. Algorithm 
design has been defined in Section I.A as the process of 
producing a computationally feasible program sketch (that is 
relatively complete and consistent) from a specification of what is 
to be accomplished. We refer here to the hour level form of 
algorithm design, not research design. This routine design often 
precedes program synthesis. Program synthesis is the process of 
choosing data structures and access functions to transform a 
given algorithm specification into concrete code in a conventional 
programming language. Like algorithm design, program synthesis 
requires intelligence, especially to produce extremely efficient 
code, but it probably can be achieved with more straightforward 
techniques 

As has been pointed out by others |2 10]. full fledged automatic 
programming requires the incorporation of domain knowledge as 
well as detailed coding knowledge Furthermore, programming in 
the large must be supported by effective bookkeeping. There are 
tew concrete results in this area, however 1 he notion of working 
in multiple spaces, and in a domain space in particular, may prove 
valuable in automating the entire programming process. 

C. Formal Derivation 
1 he formal derivation approach has been proposed for both 
algorithm design and program synthesis [25. 5. 21I. Formal 
derivation methods share with the design methods described here 
a refinement strategy based on a few. largely syntactic, 
transformations, but differ in that the transformations preserve 
correctness. It is assumed that the specifications are correct and 
complete, and since the transformations require and guarantee 
correctness, then the intermediate states and the result are also 
correct and internally consistent. The operations of the 
transformations — defining new constructs, expanding definitions 
("unfolding"), noticing instances of definitions that have arisen 
after rearrangement and simplification of the algorithm 
constituents ("folding") — are similar to the processes that we 
have noted in human design, 

One way that the formal approach differs from the model of design 
described here is that it requires that terms be defined by axioms 
or equations and does not allow the use of terms defined only in a 
domain space. Also, in the formal approach, transformations are 
instantiated via axioms about the domain or algorithmic 
constructs, in the model of design described here, they can be 
instantiated by similar knowledge based on formal definitions, by 
arbitrary selection, or by guesses based on observations of the 
domain As discussed earlier, people can sometimes derive 
algorithms even if they do not have formal definitions of all the 
concepts. They need only have operators in the domain space that 
recognize the concepts, more primitive operators in the domain 
space that can construct the structures they want to recognize 
and techniques for implementing the constructive operators m the 
algorithm space. In contrast, the formal derivation approaches 
often have problems with controlling the search process and with 
creating useful auxiliary definitions — the "aha" or "eureka" steps 
are often definitions inserted by human interaction. These 
problems result from there being no clues in the formal approach 
about how to introduce the right interesting knowledge 

Another way the formal approach, with its requirement for 
consistency and completeness, differs from human design is in 
the handling of boundary conditions and base cases The formal 
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approach requires that these be defined early on, almost the 
opposite of the human approach Getting the details of the 
boundary conditions right is one cause of the search problem in 
formal systems — there are many ways to define these conditions, 
and selecting the precise specifications or introducing 
conditionals and filling out the details adds complexity. 

For some people, the discipline of taking care of details with a 
standard methodology releases their creativity. On the other 
hand, many people find it difficult to state invariants precisely if 
they must be absolutely correct. Getting the main idea of the 
invariant is crucial to solving the problem, but stating it formally to 
avoid such problems as fencepost errors makes it tedious and not 
obviously productive. For these people, getting the details right 
immediately is extremely difficult; the overhead of internalizing this 
methodology is prohibitively high. 

Formal derivation systems are being augmented with more 
detailed knowledge about design techniques so that the search 
control can be more goal oriented [9] and also with knowledge 
about example generation [4]. However, this still doesn't 
postpone settling all the details (having a domain space lets you 
finesse formalizing them) or say where the creative definitions 
come from (cross fertilization from domain spaces and other 
algorithms). 

D Inductive Inference 
Inductive inference from examples is another technique that has 
been explored, but more for the construction of small programs 
than for the design of algorithms or large systems. 
Unambiguously specifying the input/output behavior of algorithms 
with examples is easier than so specifying the behavior of large 
programs. However, the inductive approaches usually rely on 
problem solving using a small set of schema, with little ability to 
improvise if none of the schema match If the target language is 
logical equation based language with a search mechanism built 
into the interpreter, then this approach may work [24], But it is 
unlikely to produce clever algorithms in conventional languages. 

E. Program Synthesis by Refinement 
The program synthesis problem is complementary to that of 
algorithm design, although we would expect that many of the 
same problem solving techniques are used The stage at which 
the algorithm design process stops — when an algorithm is 
"understood" — should provide an appropriate specification or 
starting place for program synthesis 
The standard refinement paradigm in program synthesis [13. 23J is 
to apply knowledge-based rules and search over that knowledge; 
no creativity is introduced The search problem is a bit different 
since once an algorithm is well defined, the program synthesis 
problem is usually to find a more detailed program in a standard 
programming language selecting concrete data structures and 
accessing operations. Usually the search space is dense in 
correct solutions that vary in efficiency, reliability, modifiability. 
and so on [2). Past research has investigated the control of the 
search by efficiency (for example, [14]). Such control is not a 
definitive solution, but many approaches have been prototyped 
fairly successfully. 

As in most expert systems, it is assumed that all the knowledge 
about how to refine programming constructs is present in the 
refinement rules. In contrast, the hypothesize and test technique 
in the design model presented here allows the discovery of new 
programming techniques. The price paid, of course, is that more 
search at the lower levels is required, and this search is not as 
easily controlled by efficiency rules. 

F. Program Synthesis by Design 
We hope that algorithm design research will result in aids for 
program synthesis that avoid hand coding of all the refinement 
rules. The initial knowledge base requirements should be 
simplified considerably as a result of the more generic problem-
solving abilities such as trial execution, with its low-level means 
ends analysis and search, and domain space reasoning. Putting in 
more of this creativity should make the automatic programming 
process more flexible and robust and may even produce better 
programs 

G. Interactive Tools 
An interesting question to ask is. does this knowledge suggest any 
other tools to aid in the design process9 Are there some 
interactive tools that might help people in the design process7 Or 
is there some novel mix of human and machine power that could 
lead to even better design9 

The conventional wisdom is that people have better insight and 
machines are better at the details. Following this wisdom, the 
machine could suggest the full range of possible approaches at 
any one step and the person could decide which to follow, 
providing the search control 

We could augment this plan by observing that execution is a 
powerful technique in design. Programs are good at methodically 
following algorithms for execution, but people frequently see what 
they expect and miss some of the problems. This would suggest 
machine support for execution of designs. The execution would 
expose problems and inconsistencies that people might skip over 
and the people could suggest some solutions to the problem or 
suggest new directions to follow. 

In addition, the machine support could include a set of rules that 
continuously monitor simple features of the design, providing a 
check that preserves almost-correctness but does not guarantee a 
complete validation. In effect, this makes the machine a sounding 
board for human design, just as colleagues act as sounding 
boards. People explain their ideas to colleagues so that they are 
forced to look at their design from other perspectives (with 
different assumptions) and go through the design one more time 
in explaining it. A machine might serve the role of a colleague 

Building the human/machine communication interface is the hard 
part of following through with these plans. The two agents must 
speak the same language and each must be able to track what the 
other is doing. This may turn out to be even harder than full 
automation. 

H. Other Design Tasks 
There are a variety of other design tasks, such as engineering 
design or VLSI design. Although each of these tasks has its own 
unique characteristics, we may hope that some of the concepts 
discussed in this paper may be relevant to these tasks. 

V . C o n c l u s i o n s 
The essence of the model of design presented here lies in its 
informality and its use of multiple problem spaces, including 
example generation and trial execution based on both the domain 
space and an algorithm design space. These techniques provide 
a focus of attention to limit search and enable the discovery of key 
concepts. The model shares problem-solving techniques with 
many of the other approaches, but rather than having a single 
monolithic plan of attack, it shifts techniques depending on the 
knowledge available. 
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Several areas need further formalizing and testing The models of 
the processes of discovery and visual reasoning must be 
extended Learning and database issues should be explored 
further For example, what are the appropriate organization and 
retrieval techniques for large amounts of information so that key 
ideas in algorithms and derivations are accessible when relevant7 

Being able to learn automatically depends on appropriate 
accessing and on general problem solving techniques, 

The interactions between search, domain knowledge, and 
programming knowledge seem important in tasks of any 
appreciable difficulty, including automatic programming and the 
next generation of expert systems, but several questions about 
these interactions are still unresolved. For example, it is not well 
understood how to determine when to stop refining at a given 
level, how problem spaces are created from problems 
descriptions, and so on 

Understanding the design process impacts other branches of Al 
I hose that include design tasks, discovery, visual reasoning, the 
use of examples, and interaction between different types of 
knowledge could be compared to algorithm design in their 
organization of knowledge and use of problem solving 
techniques. Answering the questions posed for design should 
shed some light on the general issues in other domains. A side 
effect of automation, the formalization of algorithm design, 
analysis, and optimization principles, could also be useful in 
teaching. Our observations of human design show that examples 
are useful in the absence of knowledge and therefore probably 
necessary to teach the knowledge, but having explicit principles is 
more efficient for the designer 

In summary, the model of design presented here is a good start on 
understanding algorithm design. The attempt to formalize the 
model lays a substantial part of the foundation for automation. 
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