
Cont ingency P lann ing for an A u t o n o m o u s L a n d Vehic le

Theodore A . L inden
Jay Gl ickaman

Advanced Decision Systems*
201 San Antonio Circle, Suite 286

Mountain View, CA 94040

A B S T R A C T : A route planner for an autonomous
land vehicle has been developed that deals explicitly
with the incompleteness and uncertainties that can be
expected in map data. In particular, the planner finds
a preferred route taking into account the potential
cost of the detours that may be needed if one or more
choke regions are found to be blocked. In addition, it
precomputes and saves the alternative or contingent
routes that will be used if any of the potential detour
areas are found to be blocked. The planner uses a
semantic network representation for terrain which
makes it practical for a hierarchical version of an
A search algorithm to identify low cost routes where
the cost of potential detours is factored into the cost
of the route selected. A dynamic programming algo­
r i thm is integrated to plan detailed paths for each
route segment, with this detailed planning exploiting
all of the variations in expected costs which can be
estimated based on whatever level of detail is avail­
able in the map.

1 . I N T R O D U C T I O N - R E A S O N I N G
W I T H U N C E R T A I N T Y

plan during real-time plan execution; how­
ever, in other cases the contingency plan
may require some actions before the poten­
tial problem is even encountered. For exam­
ple, additional vehicles may need to be
moved into position just on the possibility
that they will be needed.

3. Plans to ob ta in add i t i ona l i n f o r m a t i o n
that can be used to make better choices dur­
ing plan execution. This usually involves a
tradeoff, and the planner must decide
whether the added information is worth the
effort required to obtain i t .

This paper describes techniques we are using for
dealing with incomplete and uncertain map informa­
tion in robotic route planning applications. Thus far
the techniques have been applied to the first two
problems above, those of avoiding critical dependen­
cies arid of developing preplanned contingency plans;
however, a straightforward extension of the same
techniques can be used to evaluate the tradeoffs
involved in planning to obtain additional information.

A route planner for an autonomous land vehicle
(ALV), like many other applications of planning tech­
nology, must develop a plan using only incomplete
and uncertain knowledge about the terrain in which it
wil l operate. While reasoning with uncertain informa­
tion is a major theme in many AI applications, plan­
ning systems offer several additional challenges for
reasoning with uncertainty. In particular, planning
systems need to develop:

1. Plans that avo id dependencies on events
which are unknown or uncertain and are crit­
ical to the plan's success. In general, one will
prefer robust plans which can succeed even if
some of the beliefs on which the plan is
based turn out to be wrong.

2. Plans that contain cont ingency plans to
deal wi th alternative future possibilities.
Sometimes the contingency plan is used sim­
ply to avoid the cost of computing a new

* This work was supported by the Defense Advanced Research
Project. Xgency (DARPA) and the U.S. Army Engineer Topo­
graphic Laboratories (ETL) under subcontract #GH4-ll88l7
from Martin Marietta Denver Aerospard

2 . B A C K G R O U N D O N R O U T E P L A N N I N G
U S I N G M A P D A T A

In the eventual applications of the ALV, we can
anticipate that maps of some quality wil l be available.
Experience from previous vehicle traversals of the area
may also be reflected in a terrain knowledge base. It
is important to use this knowledge from maps and
from previous experience in generating plans; however,
it is also important to realize that:

1. Many obstacles are too small to show up in
the map. A map does not contain enough
information to determine whether the vehicle
can traverse a given path or not.

2. The map records past information and will
have some inaccuracies.

Despite these known limitations, most route planners
generate a route from the map data that is available
and leave it up to the execution time system to replan
as necessary. This paper describes some additional
things that the advance planning system can do to
work around these expected limitations in the map
data.

Linden and Glicksman 1047

In typical route planners, the map is divided
into regions, and for each region there is some meas­
ure of desirability, ut i l i ty, or cost associated with
traversing that region. The regions may be chosen to
be uniform square or hexagonal cells; or the regions
may be of varying shapes and sizes that conform to
the natural features in the map. The cost of traveling
through a region can reflect travel time, danger, risk,
or other factors that can be derived from the map
information. The costs may depend on the robots
goals; for example, the cost of traveling on a road
would normally be relatively low, but if the robot is
trying to avoid being seen, then the cost of areas on
or near roads may be high. The effects of weather,
lighting conditions, and other factors can also be
reflected in the cost calculations. When the map does
not have enough information to predict the cost accu­
rately, expected values for the cost are used.

There are a varietj of route phinning algorithms
available for finding routes through regions weighted
by cost [Keirsey & Mitchell 84, Parodi 86]. For a sur­
vey covering many of the related approaches, see
[Mitchell & Papadimitriou 85]. We have found that a
simple variable sweep dynamic programming algo­
rithm is effective for ALV applications (Linden et al.
86] and can be easily adapted for parallel processing
with performance improvements that are nearly linear
m the number of processors available.

A limitation of these algorithms is that they do
not reason about the uncertainty of the map informa­
tion except by using expected value computations.
Deeper reasoning about the impact of uncertain data
can lead to route selections that are more robust and
not as dependent on the planner's expectations being
fulfilled. For example:

T h e r i ve r crossing p rob lem. Figure 1 illus­
trates a simple planning problem where there is a
barrier such as a river that can probably be
crossed at either of two locations. The estimated
costs of following the route that crosses the river
at B are slightly better than the costs of the
route that crosses the river at A. In this example
we assume that both crossing points involve the
same risk that the crossing point wil l not be

Figure 1: Route Across Bridge B Appears Better,
but Detour Costs Make A Better.

viable. Most route planning algorithms choose to
cross the river at B; however, it is probably
better to try to cross the river at A because if the
vehicle goes to B first, the cost of the possible
detour will be much greater.

T h e po ten t ia l dead end . A more serious ver­
sion of the same problem occurs when a route fol­
lows a long valley with only one exit available.
An alternative route may be better than the risk
of discovering that the entire valley is actually a
dead end.

We wanted to develop a practical approach to
route planning that would find the better routes in
situations such as these. The requirement that the
approach be practical for planning routes for typical
ALV applications seê ms to rule out algorithmic
approaches that involve calculating the costs of all
potential routes and detours. We also considered
heuristic approaches that involve examining the map
data for all situations similar to the river crossing and
potential dead end problems. The difficulty with such
approaches is that while heuristics are effective for
reasoning about discrete situations, they have a hard
time handling problems where all the relationships
among the start, goal, and the intermediate blockable
points can vary continuously. Furthermore, we were
looking for a route planning technique that would
apply across a variety of eventual ALV applications.
Heuristics for route planning depend on the mission
t\pe and on the nature of the terrain involved. For
example, it is hard to identify route planning heuris­
tics that apply both to reconnaissance missions where
roads are to be avoided and to other tasks where
roads are generally to be used as much as possible.
Different heuristics also are needed for planning routi
m areas where there are a lot of dead ends as opposed
to areas with a dense, well-connected road network.

3 . O V E R V I E W O F T H E C O N T I N G E N C Y
P L A N N I N G S Y S T E M

The goal of our work was to find a practical
approach toward planning routes for ALV applications
which avoids unnecessary dependencies like the one
illustrated in Figure 1, which preplans contingent
routes that deal with the unavoidable uncertainties,
and which can be extended to evaluate tradeoffs
involved in gathering additional information.

Our approach is a modified version of a
hierarchical A* search (see (Mero 84| for another
example) that selects routes first at an abstract level,
then in full detail, and then investigates those con­
tingency plans that need to be evaluated to make the
full tradeoff between alternative route plans. A pre­
ferred route is selected based on the expected cost of
following that route where the potential cost of hav­
ing to execute contingency plans is factored into the
cost computations. Contingent routes are saved as
part of the selected plan.

An important part of the problem involves
finding an abstract, high-level representation of the
terrain which is suitable for use in identifying the

1048 REASONING

most feasible routes. We want this high-level
representation to be stable so it will still be useful for
any replanning that has to occur while the vehicle is
carrying out the plan. For a given vehicle, there is a
reasonably stable distinction between terrain areas
where the vehicle probably cannot pass (under any
weather conditions) and the other normally passable
areas of terrain. The cost of moving through a given
kind of terrain (which changes with the weather and
other factors) is used in the final calculations of the
preferred route but is not used in the higher level
heuristics.

In addition to passable and impassable regions,
we identify a third kind of region that is called a
choke region. Choke regions are regions where the
vehicle can probably travel; however, if it can't, then
a relatively large detour around some impassable
region will be necessary. Choke regions are relatively
narrow traversable regions between two relatively
Inrge impassable regions. These regions have the pro-
party that, a few obstacles that are too small to
appear in the map could make the region untravers-
able and require not just a minor detour around the
small obstacles but a major detour to go around one
of the neighboring impassable regions as well. Roads
through dense forests, bridges across rivers, and passes
through mountains are examples of choke regions.

The three types of regions are calculated from
the map data based on both the size of the regions
and the features found within them. This process is
described in a companion paper (Glicksman & Linden
87|. The results for a region in tne Fulda Gap area of
Germany are shown in Figure 2. In this Figure, pass­
able regions are white, impassable regions gray, and
choke regions are solid black. The black dots that
represent bridges across rivers do not show up well
without a color map. Many of the choke regions are
long and have complex shapes; for example, some of
them are roads within a forest that intersect with
other roads.

Figure 2: Categorizing Terrain
in the Fulda Gap Region

Once these regions are extracted, we generate
their adjacency relationships and compute the size
and locations of the boundaries between them. This
produces a semantic network where the regions are
nodes in the network.

Since choke regions are always narrow, their
boundaries with passable regions are short. This is
important since the problem of deciding where to
cross the boundary between two adjacent regions is
one of the harder problems when planning shortest
paths through region-oriented representations of ter­
rain. The decision about where to cross one boundary
depends on where the preceding and following boun­
daries are crossed, and there is no good way to get an
admissible estimate of the path cost until these inter­
dependent decisions about boundary crossings are
made. By using the concept of choke regions, all
boundaries are guaranteed to be short enough so the
midpoints of the boundaries can be used with only
minimal loss of accuracy.

The first stage in the hierarchical A* search uses
the semantic network representation of the terrain
and an admissible estimate for the cost of traversing
the individual route segments within each region.
Once a route through this high level representation is
found, a detailed calculation is done, using a grid-
based representation of weighed traversal costs, to
find actual paths for each route segment and a real
cost for that segment. This detailed calculation is
only done for those route segments which are part of
candidate routes.

Once t lie leading candidate route has been cal­
culated with full detail on all of its route segments,
then the exploration is continued in order to find the
contingent paths that would be followed if any of the
choke regions used in the primary path are found to
be blocked. The cost of following these detour paths
is then weighted by the probability that the detour
will be necessary, and this additional cost is factored
into the estimated cost of traveling this route. Note
that the estimated cost of following a route increases
as the contingencies are explored. As this happens,
the A* algorithm that is guiding the search will focus
its attention on alternative routes which will be
explored until their estimated costs rise to be higher
than the cost of some other route.

4 . A B S T R A C T P L A N R E P R E S E N T A T I O N

At the highest level of abstraction, route plans
are represented in terms of the sequence of choke
regions that wil l be traversed. We use lists to
represent these abstract plans. For example,

(ST A B C GL)

represents a plan to travel from the start (ST)
through choke regions A, Bf and C in that order and
then on to the goal (GL) without passing through any
other choke regions. Each of the variables is really a
pointer to a region data structure. The start and goal
are artificially generated "regions" that consist of a
point in a passable region. Al l the other variables

Linden and Glicksman 1049

represent pointers to choke regions. This representa­
tion omits the passable regions that must be traversed
between every pair of choke regions in the list because
they can be unambiguously determined from the
regions in the plan.

To represent the contingency plans that would
be executed if a choke region is blocked, we embed a
sublist immediately after the choke region in question.
For example,

(ST A (X Y GL) B (Z W R GL) C (B Z W R GL) GL)

describes a plan that contains contingent routes that
wi l l be followed if region A, B, or C is unavailable. In
this example, if choke region C is discovered to be
blocked, the path taken will be

(ST A B C B Z W R GL)

In other words, upon reaching region C and discover­
ing that it is blocked, the plan is to backtrack
through B and then take the alternate route through
Z, W, and R (and the passable regions between them)
to the goal. Deeper nestings of plans can be used to
represent routes that deal with multiple blockages of
choke regions.

It is possible that at some level there will be no
more alternates available. This is signified in the plan
representation by the word BLCK (for blocked). For
example,

(ST A (BLCK) B (I (U V GL) J (W Z GL) GL) GL)

indicates that if A is unavailable then one cannot
reach the goal.

The planning algorithm is parameterized so that
one can specify the number of levels of contingencies
to explore.

5 . T H E C O N T I N G E N C Y
P L A N N I N G A L G O R I T H M

The implementation of the contingency planning
algorithm is described in this section. The algorithm
is an extension of a hierarchical A* . The cost func­
tion is described in the next section. A flow chart of
the control flow for the algorithm is shown in Figure
3.

The start and goal positions are inputs; and an
additional parameter, max-level, determines the
number of simultaneous blockages of choke regions
that the algorithm wil l consider while evaluating the
cost of detours. When max-level is 0, no contingency
planning is done, and the algorithm reduces to a
hierarchical A*.

As a first step, a bi-connectedness algorithm (a
modification of (Sedgewick 83| p. 392) is run on the
graph of linked choke regions to determine if there is
a path from the start to the goal and whether there
are any articulation points which must be used in
every path from start to goal. This algorithm is O(n)
in the number of links between choke regions, and its

Figure 3: The Contingency Planning Algorithm

use here forestalls more expensive searching for con­
tingent routes when that search is doomed to fail.

Potential plans are placed on an open list along
with their cost. The least cost plan on the list is the
current "best" candidate in the hierarchical A* algo­
rithm. When a complete plan wi th u rea l " costs
reaches the top of the list, then it is returned as the
result. Otherwise, it is expanded one step closer to
the goal. The cost of each newly generated plan is
determined so it can be placed in the appropriate spot
on the open list. For partial plans, cost estimates are
used. When a path is "complete"1 (i.e. represents an
abstract plan through a sequence of choke regions all
the way to the goal), then a path for each route seg­
ment between choke regions is computed using a
dynamic programming algorithm running over a cost
matrix that records the traversal cost for each small
area of terrain. The cost of traveling through each of
the choke regions involved in this route is also com­
puted. While these detailed traversal cost.*are them­
selves estimates based on the map and other collate™I

1050 REASONING

(lata that is available, in this paper we refer to them
as the " real" cost because they are the most accurate
cost data available to the algorithm and are more
accurate than estimates based on straight line dis­
tances.

In the following, ... designates an unexplored
portion of the partial plan to be expanded. A subplan
can occur at any level in the complete plan. The
expansion of the plans considers two different cases:

Case i: There is a subplan is of the form (W A D ...
GL).

In this case, all the nodes that can be reached from D
and are not already in the subplan at this level are
added to the subplan and the results are added to the
open list. Furthermore, if the subplan is not already
at max-level in nesting depth, then contingent paths
are added after D. For example, the above path
becomes:

If the goal can be reached directly from D then

is also added to the open list. Removing the three
dots to form a complete path at a given level also
causes a switch in the way the costs are determined:
from estimates to "real" costs as calculated by
dynamic programming.

If there were no new nodes that could be reached from
D then this branch of the search tree might represent
a dead end. In that case, the sublist is replaced with
(BLCK) as in

(X (BLCK) GL)

This would arise in the case where X was not an arti­
culation point but some combination of blocked nodes
prevented a path from being found from the start to
the goal along that alternative.

Case i i . The subplan is of the form (W A (... GL) B
GL)

This case arises when moving down one level in the
contingency hierarchy; that is, when it is the first
exploration of the contingent path to be followed if A
is unavailable. Call A the current choke region.

If A is an articulation point, the subplan (... GL)
is replaced by (BLCK).

If the route is not known to be blocked, then the
following procedure is followed: back up past all the
unavailable regions to the first available region (W in
the example). Then find all the nodes that can be
reached by both the current choke region (A) and the
available region (W) but that are not otherwise una­
vailable and those are the regions that should be
added to the open list. For example:

When a new choke region is added to the plan
while it is being expanded, if the nesting level of that
element is lower than max-level, then an incomplete
alternative path is also added; thus, the expansions of
the plans listed above may actually have the form:

8. COST FUNCTION

The calculation of estimated and real costs for
any partial plan uses the following inputs (some of
which are computed on demand):

1. For each choke region A, the probability PA
that the region will be traversable.

2. For pairs of choke regions A and B that are
connected by a single traversable region,
both the estimated cost EAB and the real cost
CAB of traveling from one choke region to
the other.

3. For each choke region A, an estimate of the
cost of traveling from that choke region to
the goal EAC.

4. For each choke region A, an estimated cost
EA and a real cost CA of traveling through
it.

While most of these values are not calculated until
they are needed, once a value is determined, it is
stored in a table because it is likely that it will be
required repeatedly in both the current plan (as it is
expanded) as well as others.

For the result to be admissible, the estimated
costs must be less than or equal to the real costs. In
the implementation of this algorithm, the estimated
cost is the minimum cost of traversing any particular
grid cell in the region multiplied by the straight-line
distance between choke regions (for EAB) or by the
straight-line distance between the two ends of a choke
region (for EA). In the case of the cost between a
choke region and the goal where the choke region is
not adjacent to the region containing the goal (EAC),
the minimum cost for all cells is used. The real cost
(plus the real path) for each segment is determined by
using a dynamic programming algorithm which com­
putes the best path for that segment. The estimated
cost will always be smaller than the real cost.

When the alternative paths are factored in, the
is effectively split in two: the cost of the path

that would be taken if the choke region is traversable
is multiplied by PA. Similarly, the cost of the path
that would be taken when a detour is necessary is
multiplied by , the probability that a detour is
required.

Linden and Gllcksman 1051

Given that the estimated and real costs for each
route segment can be calculated when needed, the
cost of a plan can be defined by induction following
the process by which the plan was generated as
described in Section 5. The key steps of this induc­
tion are:

1. If the previous plan was (W A D ... GL) and
the current plan is
then replace the cost EDG with

2. If the new subplan has the form (W A D GL)
with the three dots removed, then recalculate
the cost of this subplan using real costs
rather than estimates for every segment
along this path.

3. If the new subplan has the form (W A (X ...
GL) B GL) and the previous plan had the
form (W A (... GL) B GL) then replace EAC
with

4. If the new plan has the form (W A (BLCK)
B GL) then don't change the previous cost
estimate. Note that any change in cost in
this situation would eventually affect all open
plans equally, and thus the assignment of a
cost for this case ultimately will not matter.
If there is no alternative path when A (and
possibly other nodes) is blocked, then every
path expansion will eventually try A under
the same set of blockage assumptions and
will end up encountering the same cost when
it also assumes that A may be blocked.

7 . R E S U L T S

The algorithm for contingency planning has
been implemented on a Symbolics Lisp machine and
run using map data for the Fulda Gap area in Ger­
many as well as map data for the Mart in Marietta
ALV test site near Denver, Colorado.

Figure 4 shows an example of the output gen­
erated during the execution of the contingency
planner. The final route (on a black and white dev­
ice) is displayed with the "pr imary" path as a solid
line (with solid arrowheads added to make it more
visible) and all the contingent paths as dotted lines
(with hollow arrowheads added). The plan generated
in this example is

where the numbered choke regions are actually the
print names of internal objects. This route is interest­
ing because if the first detour region (218) is unavail­
able, one has to backup past the original starting
point and move away from the goal for some time
before making progress towards the goal.

Figures 5 and 6 show examples where the con­
tingency planning makes a difference in the choice of
routes. In both cases the main route found when no
contingencies are determined (in Figures 5a and 6a) is
not considered the "best" route when a level of con­
tingency planning is used.

The actual implementation does not save the
separate components of the plan's cost, but rather
recalculates the cost using an algorithm equivalent to
this inductive definition.

1052 REASONING

8. EXECUTION T I M E

Table 1 shows some timing results for the con­
tingency planning algorithm as read from the real-
time clock on a Symbolic 3670 Lisp machine with all
intermediate output turned off. The ephemeral gar­
bage collector was turned on. Two parameters were
manipulated during the timing experiments: the
amount of dynamic programming to generate detailed
plans with "rear" costs was varied as well as the
number of levels of contingency planning. No DP
means that the dynamic programming was turned off
and "Choke only" means that dynamic programming
was only used within choke regions. The timing
results show that the vast majority of the computa­
tion time goes into the dynamic programming compu­
tation to develop correct detailed routes. We are
using a special form of dynamic programming which
can exploit parallel processing effectively (nearly linear
speedup for up to a few hundred processors) [Linden
et al. 85). Unfortunately, the current timings are on a
serial processor that is not even designed for numeric
computation. We have evidence that running the
dynamic programming on an appropriate parallel pro­
cessor would speed up that part of these computations
by at least two orders of magnitude.

These timings were taken while planning the
first two-thirds of the plan illustrated in Figure 4.
The first set or timings did not use contingency plan­
ning at all and the final plan was

(ST 218 296 GL)

Figure 5: Where Contingency
a. No Contingencies;

Figure 6: Where Contingency
a. No Contingencies;

The second set of timings generated one level of con­
tingencies and the final plan was

(ST 218 (117 140 248 GL) 296 (288 GL) GL)

Table 1: Timing Results

DP Use Contingency Level Time (seconds)
None 0 7.6
Choke only 0 31.2
Al l 0 1801.0
None 1 7.7
Choke only 1 193.2
Al l 1 2855.6

g. L IMITATIONS AND FUTURE W O R K

The major bottleneck in the execution time of
this algorithm is the calculation of detailed route seg­
ments and their costs. Some effort was spent in mak­
ing the dynamic programming for this run efficiently;
but, in addition to parallelism in the hardware, there
are other steps that might be taken. When it is
known that many routes are going to be planned
through the same terrain, the calculation of the indi­
vidual path segments can be done once for all the
combinations of adjacent choke regions and saved for
future use. Even if some of the path segments have
to be recalculated because the weather or other fac­
tors have changed, these precomputed costs can be
constructed to be admissible and they are likely to be
much better estimates than an estimate based on
straight line distances.

Planning Makes a Difference
b. One Level of Contingencies

Planning again Makes a Difference
b. One Level of Contingencies

Linden and Gllcksman 1053

Choke regions frequently connect three or more
passable regions or they connect to the same passable
region in two or more places. The current implemen­
tation does not always generate the right route in the
vicinity of such choke regions. One solution (that has
not been implemented) would divide choke regions
that have multiple exits into separate choke regions
which have two exits each and are connected to each
other by "passable regions" that are just a single
point.

While expanding paths towards the goal, it is
possible for the same contingent paths to be generated
several times. Moreover, alternate " losing" paths wil l
be regenerated and re-evaluated while the paths are
again explored. If branches of the search tree are
stored as they are completed, then they can often be
re-used in almost "equivalent" situations and thus
reduce the amount of search. This becomes more
important with longer paths and more levels of con­
tingencies because the combinatorics of the problem
increase dramatically.

With a couple of minor enhancements, the
present algorithm could be used to evaluate the use of
potential shortcuts. Shortcuts go through areas which
are probably not traversable, but might be. Thus
."shortcut regions" are the same as choke regions
except that the probability of successfully traversing
them is less than one half. The current algorithm
makes no assumptions about the probability of suc­
cessfully traversing a choke region—except that the
cut-off in terms of the depth of searching for con­
tingency plans should then be handled in terms of the
probability of actually executing a path rather than in
terms of a fixed number of contingency levels. This
option is implemented but has not been well tested.

The present algorithm could be used to evaluate
the tradeoffs involved in planning to obtain additional
information as opposed to forging ahead without i t .
For example, a future robot with good long distance
vision might need to decide whether it is worth the
effort to climb a hill to see whether a bridge is still
usable-as opposed to traveling directly to the bridge.

The current implementation uses a linear
evaluation function and considers the effect of detours
on the expected value of the cost. By extending it to
use a non-linear evaluation function, we could deal
with more complex goals; for example, where it is
important to arrive before some fixed time. The need
to consider the effect of potential detours becomes
even more significant in such cases.

10. CONCLUSIONS

We have developed a route planning algorithm
that generates good routes despite unknowns and
uncertainties in the map data being used; in particu­

lar, the algorithm identifies choke points and takes
the cost of potential detours into account while it is
selecting the preferred route. It also generates con­
tingent routes that wil l be used if choke points turn
out to be impassable, and it can be extended to gen­
erate plans that obtain additional information that is
then used to extend the plan.

We believe that this algorithm is practical for
use in mobile robots. When generating complete
routes with one level of contingencies, the 10 to 60
minute execution times for the algorithm are slow
enough to make debugging and testing a painful pro­
cess, but execution times of that order of magnitude
are reasonable for pre-mission planning for many
mobile robot applications. Furthermore, most of the
time is spent calculating detailed routes, and that cal­
culation can be improved by a couple orders of magni­
tude either by using parallel hardware or by precom-
puting the detailed route segments and re-using them
in subsequent route planning sessions.

11. REFERENCES

[Glicksman & Linden 87 Jay Glicksman and Theo­
dore A. Linden, "Terrain Reasoning to Support
Contingent Path Planning," forthcoming.

[Keirsey & Mitchell 84] D. M. Keirsey and J. S. B.
Mitchell, "Planning Strategic Paths through Vari­
able Terrain Data," Proc. SPIE Applications of
Artificial Intelligence, 1984.

[Linden et al. 86] Theodore A. Linden, James P.
Marsh, and Doreen L. Dove, "Architecture and
Early Experience with Planning for the ALV , "
Proc. 1986 IEEE International Conf. on Robotics
and Automation, Apr i l , 1986, pp. 2035-2042.

[Mero 84) L. Mero, "A Heuristic Search Algorithm
with Modifiable Estimate," A r t i f i c i a l I n te l l i ­
gence 23, 1984, pp. 13-27.

[Mitchell & Papadimitriou 85] Joseph S. B. Mitchell
and Christos H. Papadimitriou, "Planning Shor­
test Paths," Proc. SIAM Conf. on Geometric
Modeling and Robotics, Albany, NT, July, 1985.

[Parodi 84] A. M. Parodi, "A Route Planning System
for an Autonomous Vehicle," Proc. 1st. IEEE
Conf. on AI Applications, Denver, Dec. 1984, pp.
79-84.

[Sedgewick 83] R. Sedgewick, A l g o r i t h m s , Addison-
Wesley, Reading, Mass., 1983.

1054 REASONING

