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A B S T R A C T : A route planner for an autonomous 
land vehicle has been developed that deals explicitly 
with the incompleteness and uncertainties that can be 
expected in map data. In particular, the planner finds 
a preferred route taking into account the potential 
cost of the detours that may be needed if one or more 
choke regions are found to be blocked. In addition, it 
precomputes and saves the alternative or contingent 
routes that will be used if any of the potential detour 
areas are found to be blocked. The planner uses a 
semantic network representation for terrain which 
makes it practical for a hierarchical version of an 
A search algorithm to identify low cost routes where 
the cost of potential detours is factored into the cost 
of the route selected. A dynamic programming algo­
r i thm is integrated to plan detailed paths for each 
route segment, with this detailed planning exploiting 
all of the variations in expected costs which can be 
estimated based on whatever level of detail is avail­
able in the map. 

1 . I N T R O D U C T I O N - R E A S O N I N G 
W I T H U N C E R T A I N T Y 

plan during real-time plan execution; how­
ever, in other cases the contingency plan 
may require some actions before the poten­
tial problem is even encountered. For exam­
ple, additional vehicles may need to be 
moved into position just on the possibility 
that they will be needed. 

3. Plans to ob ta in add i t i ona l i n f o r m a t i o n 
that can be used to make better choices dur­
ing plan execution. This usually involves a 
tradeoff, and the planner must decide 
whether the added information is worth the 
effort required to obtain i t . 

This paper describes techniques we are using for 
dealing with incomplete and uncertain map informa­
tion in robotic route planning applications. Thus far 
the techniques have been applied to the first two 
problems above, those of avoiding critical dependen­
cies arid of developing preplanned contingency plans; 
however, a straightforward extension of the same 
techniques can be used to evaluate the tradeoffs 
involved in planning to obtain additional information. 

A route planner for an autonomous land vehicle 
(ALV), like many other applications of planning tech­
nology, must develop a plan using only incomplete 
and uncertain knowledge about the terrain in which it 
wil l operate. While reasoning with uncertain informa­
tion is a major theme in many AI applications, plan­
ning systems offer several additional challenges for 
reasoning with uncertainty. In particular, planning 
systems need to develop: 

1. Plans that avo id dependencies on events 
which are unknown or uncertain and are crit­
ical to the plan's success. In general, one will 
prefer robust plans which can succeed even if 
some of the beliefs on which the plan is 
based turn out to be wrong. 

2. Plans that contain cont ingency plans to 
deal wi th alternative future possibilities. 
Sometimes the contingency plan is used sim­
ply to avoid the cost of computing a new 

* This work was supported by the Defense Advanced Research 
Project. Xgency (DARPA) and the U.S. Army Engineer Topo­
graphic Laboratories (ETL) under subcontract #GH4-ll88l7 
from Martin Marietta Denver Aerospard 

2 . B A C K G R O U N D O N R O U T E P L A N N I N G 
U S I N G M A P D A T A 

In the eventual applications of the ALV, we can 
anticipate that maps of some quality wil l be available. 
Experience from previous vehicle traversals of the area 
may also be reflected in a terrain knowledge base. It 
is important to use this knowledge from maps and 
from previous experience in generating plans; however, 
it is also important to realize that: 

1. Many obstacles are too small to show up in 
the map. A map does not contain enough 
information to determine whether the vehicle 
can traverse a given path or not. 

2. The map records past information and will 
have some inaccuracies. 

Despite these known limitations, most route planners 
generate a route from the map data that is available 
and leave it up to the execution time system to replan 
as necessary. This paper describes some additional 
things that the advance planning system can do to 
work around these expected limitations in the map 
data. 
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In typical route planners, the map is divided 
into regions, and for each region there is some meas­
ure of desirability, ut i l i ty, or cost associated with 
traversing that region. The regions may be chosen to 
be uniform square or hexagonal cells; or the regions 
may be of varying shapes and sizes that conform to 
the natural features in the map. The cost of traveling 
through a region can reflect travel time, danger, risk, 
or other factors that can be derived from the map 
information. The costs may depend on the robots 
goals; for example, the cost of traveling on a road 
would normally be relatively low, but if the robot is 
trying to avoid being seen, then the cost of areas on 
or near roads may be high. The effects of weather, 
lighting conditions, and other factors can also be 
reflected in the cost calculations. When the map does 
not have enough information to predict the cost accu­
rately, expected values for the cost are used. 

There are a varietj of route phinning algorithms 
available for finding routes through regions weighted 
by cost [Keirsey & Mitchell 84, Parodi 86]. For a sur­
vey covering many of the related approaches, see 
[Mitchell & Papadimitriou 85]. We have found that a 
simple variable sweep dynamic programming algo­
rithm is effective for ALV applications (Linden et al. 
86] and can be easily adapted for parallel processing 
with performance improvements that are nearly linear 
m the number of processors available. 

A limitation of these algorithms is that they do 
not reason about the uncertainty of the map informa­
tion except by using expected value computations. 
Deeper reasoning about the impact of uncertain data 
can lead to route selections that are more robust and 
not as dependent on the planner's expectations being 
fulfilled. For example: 

T h e r i ve r crossing p rob lem. Figure 1 illus­
trates a simple planning problem where there is a 
barrier such as a river that can probably be 
crossed at either of two locations. The estimated 
costs of following the route that crosses the river 
at B are slightly better than the costs of the 
route that crosses the river at A. In this example 
we assume that both crossing points involve the 
same risk that the crossing point wil l not be 

Figure 1: Route Across Bridge B Appears Better, 
but Detour Costs Make A Better. 

viable. Most route planning algorithms choose to 
cross the river at B; however, it is probably 
better to try to cross the river at A because if the 
vehicle goes to B first, the cost of the possible 
detour will be much greater. 

T h e po ten t ia l dead end . A more serious ver­
sion of the same problem occurs when a route fol­
lows a long valley with only one exit available. 
An alternative route may be better than the risk 
of discovering that the entire valley is actually a 
dead end. 

We wanted to develop a practical approach to 
route planning that would find the better routes in 
situations such as these. The requirement that the 
approach be practical for planning routes for typical 
ALV applications seê ms to rule out algorithmic 
approaches that involve calculating the costs of all 
potential routes and detours. We also considered 
heuristic approaches that involve examining the map 
data for all situations similar to the river crossing and 
potential dead end problems. The difficulty with such 
approaches is that while heuristics are effective for 
reasoning about discrete situations, they have a hard 
time handling problems where all the relationships 
among the start, goal, and the intermediate blockable 
points can vary continuously. Furthermore, we were 
looking for a route planning technique that would 
apply across a variety of eventual ALV applications. 
Heuristics for route planning depend on the mission 
t\pe and on the nature of the terrain involved. For 
example, it is hard to identify route planning heuris­
tics that apply both to reconnaissance missions where 
roads are to be avoided and to other tasks where 
roads are generally to be used as much as possible. 
Different heuristics also are needed for planning routi 
m areas where there are a lot of dead ends as opposed 
to areas with a dense, well-connected road network. 

3 . O V E R V I E W O F T H E C O N T I N G E N C Y 
P L A N N I N G S Y S T E M 

The goal of our work was to find a practical 
approach toward planning routes for ALV applications 
which avoids unnecessary dependencies like the one 
illustrated in Figure 1, which preplans contingent 
routes that deal with the unavoidable uncertainties, 
and which can be extended to evaluate tradeoffs 
involved in gathering additional information. 

Our approach is a modified version of a 
hierarchical A* search (see (Mero 84| for another 
example) that selects routes first at an abstract level, 
then in full detail, and then investigates those con­
tingency plans that need to be evaluated to make the 
full tradeoff between alternative route plans. A pre­
ferred route is selected based on the expected cost of 
following that route where the potential cost of hav­
ing to execute contingency plans is factored into the 
cost computations. Contingent routes are saved as 
part of the selected plan. 

An important part of the problem involves 
finding an abstract, high-level representation of the 
terrain which is suitable for use in identifying the 
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most feasible routes. We want this high-level 
representation to be stable so it will still be useful for 
any replanning that has to occur while the vehicle is 
carrying out the plan. For a given vehicle, there is a 
reasonably stable distinction between terrain areas 
where the vehicle probably cannot pass (under any 
weather conditions) and the other normally passable 
areas of terrain. The cost of moving through a given 
kind of terrain (which changes with the weather and 
other factors) is used in the final calculations of the 
preferred route but is not used in the higher level 
heuristics. 

In addition to passable and impassable regions, 
we identify a third kind of region that is called a 
choke region. Choke regions are regions where the 
vehicle can probably travel; however, if it can't, then 
a relatively large detour around some impassable 
region will be necessary. Choke regions are relatively 
narrow traversable regions between two relatively 
Inrge impassable regions. These regions have the pro-
party that, a few obstacles that are too small to 
appear in the map could make the region untravers-
able and require not just a minor detour around the 
small obstacles but a major detour to go around one 
of the neighboring impassable regions as well. Roads 
through dense forests, bridges across rivers, and passes 
through mountains are examples of choke regions. 

The three types of regions are calculated from 
the map data based on both the size of the regions 
and the features found within them. This process is 
described in a companion paper (Glicksman & Linden 
87|. The results for a region in tne Fulda Gap area of 
Germany are shown in Figure 2. In this Figure, pass­
able regions are white, impassable regions gray, and 
choke regions are solid black. The black dots that 
represent bridges across rivers do not show up well 
without a color map. Many of the choke regions are 
long and have complex shapes; for example, some of 
them are roads within a forest that intersect with 
other roads. 

Figure 2: Categorizing Terrain 
in the Fulda Gap Region 

Once these regions are extracted, we generate 
their adjacency relationships and compute the size 
and locations of the boundaries between them. This 
produces a semantic network where the regions are 
nodes in the network. 

Since choke regions are always narrow, their 
boundaries with passable regions are short. This is 
important since the problem of deciding where to 
cross the boundary between two adjacent regions is 
one of the harder problems when planning shortest 
paths through region-oriented representations of ter­
rain. The decision about where to cross one boundary 
depends on where the preceding and following boun­
daries are crossed, and there is no good way to get an 
admissible estimate of the path cost until these inter­
dependent decisions about boundary crossings are 
made. By using the concept of choke regions, all 
boundaries are guaranteed to be short enough so the 
midpoints of the boundaries can be used with only 
minimal loss of accuracy. 

The first stage in the hierarchical A* search uses 
the semantic network representation of the terrain 
and an admissible estimate for the cost of traversing 
the individual route segments within each region. 
Once a route through this high level representation is 
found, a detailed calculation is done, using a grid-
based representation of weighed traversal costs, to 
find actual paths for each route segment and a real 
cost for that segment. This detailed calculation is 
only done for those route segments which are part of 
candidate routes. 

Once t lie leading candidate route has been cal­
culated with full detail on all of its route segments, 
then the exploration is continued in order to find the 
contingent paths that would be followed if any of the 
choke regions used in the primary path are found to 
be blocked. The cost of following these detour paths 
is then weighted by the probability that the detour 
will be necessary, and this additional cost is factored 
into the estimated cost of traveling this route. Note 
that the estimated cost of following a route increases 
as the contingencies are explored. As this happens, 
the A* algorithm that is guiding the search will focus 
its attention on alternative routes which will be 
explored until their estimated costs rise to be higher 
than the cost of some other route. 

4 . A B S T R A C T P L A N R E P R E S E N T A T I O N 

At the highest level of abstraction, route plans 
are represented in terms of the sequence of choke 
regions that wil l be traversed. We use lists to 
represent these abstract plans. For example, 

(ST A B C GL) 

represents a plan to travel from the start (ST) 
through choke regions A, Bf and C in that order and 
then on to the goal (GL) without passing through any 
other choke regions. Each of the variables is really a 
pointer to a region data structure. The start and goal 
are artificially generated "regions" that consist of a 
point in a passable region. Al l the other variables 
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represent pointers to choke regions. This representa­
tion omits the passable regions that must be traversed 
between every pair of choke regions in the list because 
they can be unambiguously determined from the 
regions in the plan. 

To represent the contingency plans that would 
be executed if a choke region is blocked, we embed a 
sublist immediately after the choke region in question. 
For example, 

(ST A (X Y GL) B (Z W R GL) C (B Z W R GL) GL) 

describes a plan that contains contingent routes that 
wi l l be followed if region A, B, or C is unavailable. In 
this example, if choke region C is discovered to be 
blocked, the path taken will be 

(ST A B C B Z W R GL) 

In other words, upon reaching region C and discover­
ing that it is blocked, the plan is to backtrack 
through B and then take the alternate route through 
Z, W, and R (and the passable regions between them) 
to the goal. Deeper nestings of plans can be used to 
represent routes that deal with multiple blockages of 
choke regions. 

It is possible that at some level there will be no 
more alternates available. This is signified in the plan 
representation by the word BLCK (for blocked). For 
example, 

(ST A (BLCK) B (I (U V GL) J (W Z GL) GL) GL) 

indicates that if A is unavailable then one cannot 
reach the goal. 

The planning algorithm is parameterized so that 
one can specify the number of levels of contingencies 
to explore. 

5 . T H E C O N T I N G E N C Y 
P L A N N I N G A L G O R I T H M 

The implementation of the contingency planning 
algorithm is described in this section. The algorithm 
is an extension of a hierarchical A* . The cost func­
tion is described in the next section. A flow chart of 
the control flow for the algorithm is shown in Figure 
3. 

The start and goal positions are inputs; and an 
additional parameter, max-level, determines the 
number of simultaneous blockages of choke regions 
that the algorithm wil l consider while evaluating the 
cost of detours. When max-level is 0, no contingency 
planning is done, and the algorithm reduces to a 
hierarchical A*. 

As a first step, a bi-connectedness algorithm (a 
modification of (Sedgewick 83| p. 392) is run on the 
graph of linked choke regions to determine if there is 
a path from the start to the goal and whether there 
are any articulation points which must be used in 
every path from start to goal. This algorithm is O(n) 
in the number of links between choke regions, and its 

Figure 3: The Contingency Planning Algorithm 

use here forestalls more expensive searching for con­
tingent routes when that search is doomed to fail. 

Potential plans are placed on an open list along 
with their cost. The least cost plan on the list is the 
current "best" candidate in the hierarchical A* algo­
rithm. When a complete plan wi th u rea l " costs 
reaches the top of the list, then it is returned as the 
result. Otherwise, it is expanded one step closer to 
the goal. The cost of each newly generated plan is 
determined so it can be placed in the appropriate spot 
on the open list. For partial plans, cost estimates are 
used. When a path is "complete"1 (i.e. represents an 
abstract plan through a sequence of choke regions all 
the way to the goal), then a path for each route seg­
ment between choke regions is computed using a 
dynamic programming algorithm running over a cost 
matrix that records the traversal cost for each small 
area of terrain. The cost of traveling through each of 
the choke regions involved in this route is also com­
puted. While these detailed traversal cost.*are them­
selves estimates based on the map and other collate™I 
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(lata that is available, in this paper we refer to them 
as the " real" cost because they are the most accurate 
cost data available to the algorithm and are more 
accurate than estimates based on straight line dis­
tances. 

In the following, ... designates an unexplored 
portion of the partial plan to be expanded. A subplan 
can occur at any level in the complete plan. The 
expansion of the plans considers two different cases: 

Case i: There is a subplan is of the form (W A D ... 
GL). 

In this case, all the nodes that can be reached from D 
and are not already in the subplan at this level are 
added to the subplan and the results are added to the 
open list. Furthermore, if the subplan is not already 
at max-level in nesting depth, then contingent paths 
are added after D. For example, the above path 
becomes: 

If the goal can be reached directly from D then 

is also added to the open list. Removing the three 
dots to form a complete path at a given level also 
causes a switch in the way the costs are determined: 
from estimates to "real" costs as calculated by 
dynamic programming. 

If there were no new nodes that could be reached from 
D then this branch of the search tree might represent 
a dead end. In that case, the sublist is replaced with 
(BLCK) as in 

(X (BLCK) GL) 

This would arise in the case where X was not an arti­
culation point but some combination of blocked nodes 
prevented a path from being found from the start to 
the goal along that alternative. 

Case i i . The subplan is of the form (W A (... GL) B 
GL) 

This case arises when moving down one level in the 
contingency hierarchy; that is, when it is the first 
exploration of the contingent path to be followed if A 
is unavailable. Call A the current choke region. 

If A is an articulation point, the subplan (... GL) 
is replaced by (BLCK). 

If the route is not known to be blocked, then the 
following procedure is followed: back up past all the 
unavailable regions to the first available region (W in 
the example). Then find all the nodes that can be 
reached by both the current choke region (A) and the 
available region (W) but that are not otherwise una­
vailable and those are the regions that should be 
added to the open list. For example: 

When a new choke region is added to the plan 
while it is being expanded, if the nesting level of that 
element is lower than max-level, then an incomplete 
alternative path is also added; thus, the expansions of 
the plans listed above may actually have the form: 

8. COST FUNCTION 

The calculation of estimated and real costs for 
any partial plan uses the following inputs (some of 
which are computed on demand): 

1. For each choke region A, the probability PA 
that the region will be traversable. 

2. For pairs of choke regions A and B that are 
connected by a single traversable region, 
both the estimated cost EAB and the real cost 
CAB of traveling from one choke region to 
the other. 

3. For each choke region A, an estimate of the 
cost of traveling from that choke region to 
the goal EAC. 

4. For each choke region A, an estimated cost 
EA and a real cost CA of traveling through 
it. 

While most of these values are not calculated until 
they are needed, once a value is determined, it is 
stored in a table because it is likely that it will be 
required repeatedly in both the current plan (as it is 
expanded) as well as others. 

For the result to be admissible, the estimated 
costs must be less than or equal to the real costs. In 
the implementation of this algorithm, the estimated 
cost is the minimum cost of traversing any particular 
grid cell in the region multiplied by the straight-line 
distance between choke regions (for EAB) or by the 
straight-line distance between the two ends of a choke 
region (for EA ). In the case of the cost between a 
choke region and the goal where the choke region is 
not adjacent to the region containing the goal (EAC), 
the minimum cost for all cells is used. The real cost 
(plus the real path) for each segment is determined by 
using a dynamic programming algorithm which com­
putes the best path for that segment. The estimated 
cost will always be smaller than the real cost. 

When the alternative paths are factored in, the 
is effectively split in two: the cost of the path 

that would be taken if the choke region is traversable 
is multiplied by PA. Similarly, the cost of the path 
that would be taken when a detour is necessary is 
multiplied by , the probability that a detour is 
required. 
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Given that the estimated and real costs for each 
route segment can be calculated when needed, the 
cost of a plan can be defined by induction following 
the process by which the plan was generated as 
described in Section 5. The key steps of this induc­
tion are: 

1. If the previous plan was (W A D ... GL) and 
the current plan is 
then replace the cost EDG with 

2. If the new subplan has the form ( W A D GL) 
with the three dots removed, then recalculate 
the cost of this subplan using real costs 
rather than estimates for every segment 
along this path. 

3. If the new subplan has the form (W A (X ... 
GL) B GL) and the previous plan had the 
form (W A (... GL) B GL) then replace EAC 
with 

4. If the new plan has the form (W A (BLCK) 
B GL) then don't change the previous cost 
estimate. Note that any change in cost in 
this situation would eventually affect all open 
plans equally, and thus the assignment of a 
cost for this case ultimately will not matter. 
If there is no alternative path when A (and 
possibly other nodes) is blocked, then every 
path expansion will eventually try A under 
the same set of blockage assumptions and 
will end up encountering the same cost when 
it also assumes that A may be blocked. 

7 . R E S U L T S 

The algorithm for contingency planning has 
been implemented on a Symbolics Lisp machine and 
run using map data for the Fulda Gap area in Ger­
many as well as map data for the Mart in Marietta 
ALV test site near Denver, Colorado. 

Figure 4 shows an example of the output gen­
erated during the execution of the contingency 
planner. The final route (on a black and white dev­
ice) is displayed with the "pr imary" path as a solid 
line (with solid arrowheads added to make it more 
visible) and all the contingent paths as dotted lines 
(with hollow arrowheads added). The plan generated 
in this example is 

where the numbered choke regions are actually the 
print names of internal objects. This route is interest­
ing because if the first detour region (218) is unavail­
able, one has to backup past the original starting 
point and move away from the goal for some time 
before making progress towards the goal. 

Figures 5 and 6 show examples where the con­
tingency planning makes a difference in the choice of 
routes. In both cases the main route found when no 
contingencies are determined (in Figures 5a and 6a) is 
not considered the "best" route when a level of con­
tingency planning is used. 

The actual implementation does not save the 
separate components of the plan's cost, but rather 
recalculates the cost using an algorithm equivalent to 
this inductive definition. 
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8. EXECUTION T I M E 

Table 1 shows some timing results for the con­
tingency planning algorithm as read from the real-
time clock on a Symbolic 3670 Lisp machine with all 
intermediate output turned off. The ephemeral gar­
bage collector was turned on. Two parameters were 
manipulated during the timing experiments: the 
amount of dynamic programming to generate detailed 
plans with "rear" costs was varied as well as the 
number of levels of contingency planning. No DP 
means that the dynamic programming was turned off 
and "Choke only" means that dynamic programming 
was only used within choke regions. The timing 
results show that the vast majority of the computa­
tion time goes into the dynamic programming compu­
tation to develop correct detailed routes. We are 
using a special form of dynamic programming which 
can exploit parallel processing effectively (nearly linear 
speedup for up to a few hundred processors) [Linden 
et al. 85). Unfortunately, the current timings are on a 
serial processor that is not even designed for numeric 
computation. We have evidence that running the 
dynamic programming on an appropriate parallel pro­
cessor would speed up that part of these computations 
by at least two orders of magnitude. 

These timings were taken while planning the 
first two-thirds of the plan illustrated in Figure 4. 
The first set or timings did not use contingency plan­
ning at all and the final plan was 

(ST 218 296 GL) 

Figure 5: Where Contingency 
a. No Contingencies; 

Figure 6: Where Contingency 
a. No Contingencies; 

The second set of timings generated one level of con­
tingencies and the final plan was 

(ST 218 (117 140 248 GL) 296 (288 GL) GL) 

Table 1: Timing Results 

DP Use Contingency Level Time (seconds) 
None 0 7.6 
Choke only 0 31.2 
Al l 0 1801.0 
None 1 7.7 
Choke only 1 193.2 
Al l 1 2855.6 

g. L IMITATIONS AND FUTURE W O R K 

The major bottleneck in the execution time of 
this algorithm is the calculation of detailed route seg­
ments and their costs. Some effort was spent in mak­
ing the dynamic programming for this run efficiently; 
but, in addition to parallelism in the hardware, there 
are other steps that might be taken. When it is 
known that many routes are going to be planned 
through the same terrain, the calculation of the indi­
vidual path segments can be done once for all the 
combinations of adjacent choke regions and saved for 
future use. Even if some of the path segments have 
to be recalculated because the weather or other fac­
tors have changed, these precomputed costs can be 
constructed to be admissible and they are likely to be 
much better estimates than an estimate based on 
straight line distances. 

Planning Makes a Difference 
b. One Level of Contingencies 

Planning again Makes a Difference 
b. One Level of Contingencies 
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Choke regions frequently connect three or more 
passable regions or they connect to the same passable 
region in two or more places. The current implemen­
tation does not always generate the right route in the 
vicinity of such choke regions. One solution (that has 
not been implemented) would divide choke regions 
that have multiple exits into separate choke regions 
which have two exits each and are connected to each 
other by "passable regions" that are just a single 
point. 

While expanding paths towards the goal, it is 
possible for the same contingent paths to be generated 
several times. Moreover, alternate " losing" paths wil l 
be regenerated and re-evaluated while the paths are 
again explored. If branches of the search tree are 
stored as they are completed, then they can often be 
re-used in almost "equivalent" situations and thus 
reduce the amount of search. This becomes more 
important with longer paths and more levels of con­
tingencies because the combinatorics of the problem 
increase dramatically. 

With a couple of minor enhancements, the 
present algorithm could be used to evaluate the use of 
potential shortcuts. Shortcuts go through areas which 
are probably not traversable, but might be. Thus 
."shortcut regions" are the same as choke regions 
except that the probability of successfully traversing 
them is less than one half. The current algorithm 
makes no assumptions about the probability of suc­
cessfully traversing a choke region—except that the 
cut-off in terms of the depth of searching for con­
tingency plans should then be handled in terms of the 
probability of actually executing a path rather than in 
terms of a fixed number of contingency levels. This 
option is implemented but has not been well tested. 

The present algorithm could be used to evaluate 
the tradeoffs involved in planning to obtain additional 
information as opposed to forging ahead without i t . 
For example, a future robot with good long distance 
vision might need to decide whether it is worth the 
effort to climb a hill to see whether a bridge is still 
usable-as opposed to traveling directly to the bridge. 

The current implementation uses a linear 
evaluation function and considers the effect of detours 
on the expected value of the cost. By extending it to 
use a non-linear evaluation function, we could deal 
with more complex goals; for example, where it is 
important to arrive before some fixed time. The need 
to consider the effect of potential detours becomes 
even more significant in such cases. 

10. CONCLUSIONS 

We have developed a route planning algorithm 
that generates good routes despite unknowns and 
uncertainties in the map data being used; in particu­

lar, the algorithm identifies choke points and takes 
the cost of potential detours into account while it is 
selecting the preferred route. It also generates con­
tingent routes that wil l be used if choke points turn 
out to be impassable, and it can be extended to gen­
erate plans that obtain additional information that is 
then used to extend the plan. 

We believe that this algorithm is practical for 
use in mobile robots. When generating complete 
routes with one level of contingencies, the 10 to 60 
minute execution times for the algorithm are slow 
enough to make debugging and testing a painful pro­
cess, but execution times of that order of magnitude 
are reasonable for pre-mission planning for many 
mobile robot applications. Furthermore, most of the 
time is spent calculating detailed routes, and that cal­
culation can be improved by a couple orders of magni­
tude either by using parallel hardware or by precom-
puting the detailed route segments and re-using them 
in subsequent route planning sessions. 
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