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Abstract

Some fluents (for instance, time) change even
after events that are not assumed to affect them
(such as the action wait). We propose a formal-
ization of the "commonsense law of inertia” in
the situation calculus that allows us to describe
such fluents.

1 Introduction

The frame problem in Artificial Intelligence is the prob-
lem of specifying formally "what doesn't change when an
event occurs"” in such a way that the formal system "be
ready to accept descriptions of new kinds of events and
new kinds of fluents whose values are in general not af-
fected by events whose descriptions don't mention them"™
[McCarthy, 1987].p The assertion that the value of a flu-
ent / does not change when an action a is performed in
a situation s can be expressed by the equation

value (f, result(a, s)) = value (f,s). (1)

The question is how to express that this is true "in gen-
eral," with the exceptions corresponding to the cases
when other axioms postulate a new value for /. The
default principle according to which the values of fluents
are presumed to remain unchanged is sometimes called
the "commonsense law ofinertia." Formalizing this prin-
ciple is considered one of the central problems in formal
nonmonotonic reasoning.

The proposal of [McCarthy, 1986] was to restrict (1) to
the trip (f,a,s) at do not satisfy an "abnormality"
predicate ab:

'Wa.b(f, a, s)
D [value (f,result(a,s)) = value(f, s)). (2)

Circumscription is used to ensure that the extent of ab
IS minimal. Some difficulties were uncovered in [Hanks
and McDermott, 1986], Section 3, and [McCarthy, 1986],
Section 12. Several modifications that fix these problems
have been found; for references and a critical discussion,
see [Hanks and McDermott, 1987].

*This research was partially supported by DARPA under
Contract NOOO039-84-C-0211.

We use the terminology and notation of the situation
calculus [McCarthy and Hayes, 1969].
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One of the proposed solutions [Lifschitz, 1987] de-
scribes the effects of actions using the predicate causes.
For instance, the effect of moving a block b to a location
/| can be expressed by the axiom

causes (move (b, 1), at(b, 1), true).

The commonsense law of inertia can be postulated then
in the following form:

~Jv causes(a, f,v) 2
D value (f, result(a,s)) = value (f,s). (3)

The predicate causes is circumscribed; as a result, the
antecedent of (3) is "generally true," and (3) can serve
as the desired weakening of (1).

Axiom (3) asserts that the value of a fluent does not
change after an action is perfol unless hat action
causes the fluent to take on some wvalue.® In this pa-
per we argue that, in many domains, this interpreta-
tion of "commonsense interia" is inappropriate. There
are fluents that may change no matter what action is
performed. The simplest example is the integer-valued
fluent time, characterized by the equation

value (time, result(a, s)) = value (time, s) + 1.

The value of time in the situation result (wait, s) is dif-
ferent from its value in the situation s in spite of the fact
that wait is not assumed to cause any changes whatso-
ever. We call fluents that can change even after an action
like wait "dynamic."”

We discuss here an alternative, more flexible descrip-
tion of commonsense inertia, that allows us to formalize
reasoning about dynamic fluents. This description uses
a new binary predicate nonin{f,a)he  fluent /
is noninertial relative to the action a”). We will write
the commonsense law of inertia as follows:

—noninertial(f,a) 4)
5 value (f, result(a, s)) = value (f,s).

The predicate noninertial will be circumscribed, like ab

ey

It is clear that (4) is quite close to (2); the only dif-
ference (other than the more suggestive name of the
predicate) is that in (4) the antecedent loses its situa-

tion argument. By changing the original formulation of

The formulation proposed in [Haugh, 1987] is based es-
sentially on the same assumption.



the Hanks-McDermott counterexample in this way, with
few additional modifications, we get a particularly simple
theory that eliminates all unwanted models. (In fact, it
Is strange that this method was not proposed among the
first responses to the "Yale shooting" challenge.) The

original form (2) can be thought of as a formalization of

the assertion:

Normally, value (/, result(a, s)) = value(f,s).

Formula (4) says something slightly different:
Normally, Vs|value(f,result(a,s)) = value(f,s)].

In other words, the existence of a situation in which the
execution of a changes the value of / is considered ex-
ceptional.

It should be pointed out, however, that the new
method, like the causality-based formalisms, does not
address the problem of "ramifications," or indirect ef-
fects of an action.”

First we discuss the use of noninertial in the shooting
example (Sections 2, 3), and then apply the method to
some examples of dynamic fluents (Sections 4, 5).

2 The Hanks-McDermott Example

We assume that the reader is familiar with [Hanks and
McDermott, 1986] or with another exposition of that
counterexample. The language we use is essentially the
same as in the original formulation, except that the
ternary predicate ab is replaced by the binary predicate
noninertial. The fluent constants are Jloaded and alive;
the action constants are Jload, wait and shoof;, the only
situation constant is 50.

Since all fluents in this example are propositional, it
iIs convenient to use the predicate holds instead of the
function value. Accordingly, axiom (4) takes the form

—noninertial(f, a)

S holds (f, result(a, s)) = holds(f,s). ()

In addition to the law of inertia (5), the axiom set
includes the following formulas, describing the effects of
actions:

holds (loaded , result (load , s)), 6

~

(
noninertial (loaded | load ), (
—holds (loaded ,result(shoot, s)), (
noninertial (loaded , shoot ), (

holds (loaded , s) (1
D —holds (alve | result(shoot , s)),

o oo

*

-

)
)
)
)
)
)

nominertial (alive , shoot ), (11

—holds (loaded , s)
D holds (alive , result(shoot ,s)) = holds(alive , s).
(12)
The main axioms are (6), (8) and (10). FEach of
these axioms represents a case when the law of inertia 1s
cancelled—this is expressed by axioms (7), (9) and (11).
Since axiom (10) has a precondition, we need to explain

Important ideas related to the ramification problem are
proposed in the forthcoming paper [Baker, 1989].

separately what happens when the precondition is not
satisfied. This is done in axiom (12).
We also have the usual initial conditions:

holds (loaded , 50), (13)

holds (alive ,50). (14)

(Actually, adding these particular initial conditions
makes axiom (7) redundant: It follows from axioms (5),
(6) and (13).)

Formulas (5)-(14) are all the axioms we need, if we
restrict attention to term models, i.e., to the models In
which every element of the universe is represented by
exactly one ground term ofthe corresponding sort. Such
a model is determined, up to an isomorphism, by the set
of ground atoms that are true in it.

Let A\ be the axiom set (5)—(14). By a minimal
model we understand a model in which the predicate
noninertial is circumscribed, with holds varied.

Proposition 1.
term model.

The axiom set A\ has a unique minimal
This model satisfies the condition

noninertial (f,a) = [(f = loaded A a = load)
V(f = loaded AN a = shoot) (15)
V(f = alive Aa = shoot)].

Proof. Consider the structure M whose universe con-
sists of the ground terms of the language, in which holds
has its intended meaning, and noninertial is defined by
(15). It is clear that M is a model of Al. Axioms (7),
(9) and (11) show, first, that M is minimal, and, second,
that any minimal model satisfies (15) also. Furthermore,
it is easy to check by induction that formulas (5), (6),
(8), (10), (12)-(15) completely determine the extent of
holds in any term model. Consequently, no term model
other than M is minimal.

3 The Qualification Problem

The formalization given above does not address the qual-
ification problem—the problem ofleaving the lists of pre-
conditions "open," so that it would be possible to incor-
porate new preconditions by adding new axioms. Ac-
cording to axiom (6), for example, loading has no pre-
conditions; it always gives the desired effect. We may
wish to make the axiomatization slightly more realistic,
and formalize the fact that one cannot load the gun if it
Is locked in a safe, or if bullets are unavailable. It is im-
possible to do that by simply adding axioms; we would
have to replace (6) by a weaker axiom, with the precon-
ditions listed in the antecedent. Similarly, loaded is the
only precondition included in (10); should we decide to
incorporate other preconditions, it will be necessary to
change that axiom.

An action can be unsuccessful in two different ways:
It can be physically impossible, or it can merely fail to
produce a particular effect [Pednault, 1988], [Gelfond
et al., 1989]. In this paper, we assume for simplicity
that any action is physically possible in any situation,*

*Formalizing actions that can be physically impossible is
discussed in [Gelfond et a/., 1989].
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and restrict our attention to "weak" preconditions—
preconditions for particular effects. In Section 2, for in-
stance, loaded is treated as a precondition for the success
of shoot in the weak sense; if the gun is not loaded in
a situation s, then the expression result(shoot, s) repre-
sents a physically meaningful situation, but, according
to (12), the value of alive in that situation is the same
as its value in the situation s.

In this section we describe an enhancement of Al that
provides an improved treatment of weak preconditions.
The assumption that Jloaded should hold in order for
shoot to affect alive will be represented by the axiom

precond(loaded , shoot, alive ), (16)

where precond is a new predicate constant.® This pred-
icate will be circumscribed along with noninertial. Its
main property is expressed by the axiom:

precond (p, a, f) A —holds (p, s)
D value (f, result(a,s)) = value(f, s),

where p is a variable for propositional fluents. If / ranges
over propositional fluents also, then we can write instead:

precond(p,a, f) A —holds (p, s) 17
D holds (f, result(a,s)) = holds(f, s). (17)

Notice that when the shooting example is reformu-
lated in this way, axiom (12) will no longer be necessary,
because it follows from (16) and (17). Axiom (17) has
the same consequent as the commonsense law of inertia
(5). It can be viewed as the formalization of an aspect
of inertia not captured in (5).

An action a succeeds in affecting the value of / if all
preconditions for that are satisfied; accordingly, we in-
troduce the following abbreviation:

succeeds(a, f,s) = Vp[precond(p, a, f) D holds(p, s)).

The qualification problem can be solved by including
a succeeds assumption in the antecedent of each axiom
describing the effect of an action. For instance, axioms
(6), (8) and (10) will be replaced by:

succeeds (load , loaded , s)

D holds (loaded , resuli(load ,s)),  ''°)

succeeds (shoot, loaded , s)

2 —holds (loaded , result (shoot, s)), (19)

succeeds (shoot, alive , s)

2 —holds (alive , result(shoot ,5)). (20)

Axiom (17) can be rewritten as

Jp|precond(p, a, f) A —~holds(p, s)]
D holds(f, result(a,s)) = holds(f, s)

or
~succeeds(a, f, s)

D holds(f, result(a,s)) = holds(f, s).

This is similar to the treatment of preconditions in [Lif-
schitz, 1987], except that precond had only two arguments
there. The idea of enhancing precond in this way was sug-
gested to us by Michael Gelfond and Michael Georgeff.
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This observation shows that (17) is complementary to
such axioms as (18)-(20): It shows how to determine
the new value of a fluent when the succeeds condition is
violated.

The new formulation of the shooting example includes
the following postulates. General axioms: (5), (17). Ef-
fects of actions: (18)-(20), (7), (9), (11). Preconditions:
(16). Initial conditions: (13), (14). We denote this ax-
iom set by A2. By a minimal model we understand now
a model in which noninertial and precond are circum-
scribed in parallel, with holds varied.

Proposition 2. Tiie axiom set A2 has a unique minimal
term model This model satisfies (15) and

precond(p,a, f) = (p = loaded Aa = shoot A f = alive).

The proof is completely analogous to the proof of
Proposition 1.

4 Dynamic Fluents

Recall that a "dynamic" fluent is, intuitively, a fluent
that may change its value even after an action that is
not assumed to have any causal effects, like wait The
example given in the introduction is time.

Here is a more interesting example. Consider the pro-
cess of filling a pool with water, regulated by opening
and closing a valve [Hendrix, 1973]. The state of the
system can be described by two numeric (for simplicity,
integer-valued) fluents: volume (the volume of water in
the pool, in cubic meters) and inflow (the current inflow
of water, in cubic meters per minute). The following
actions are available:

1. setvolume n: Bring the volume of water in the pool
to n, and close the valve.

2. setinfow n: Turn the valve to bring the inflow of
water to n.

3. wait: Do nothing.

We assume that every action other than setvolume is
practically instantaneous and is followed by a 1 minute
wait period. In particular, wait means "wait for 1
minute." Then the relation between volume and inflow
can be expressed by the axiom

—dn(a = setvolume n)
D value (volume , result(a,s))
= value (volume, s) + value (inflow, result(a, s)).
(21)
The fluent volume is dynamic: Its value may change
even if the action being performed is walil.
The effects of sefinflow and setvolume can be de-
scribed by the axioms:

succeeds (setinflow n, inflow, )

O value (inflow, result (setinfow n, s)) = n,
succeeds (setvolume n, volume, S)

2 value (volume , result (setvolume n,s)) = n,

succeeds (setvolume n, inflow, s)
D value (inflow, result (setvolume n,s)) — O.



Consider now a situation s such that
value (inflow, s) # 0.

What can we say about the values of inflow and volume
in the situation result(wait, s)? Axiom (21) implies that
at least one of these fluents will have a value different
from its value in the situation s. It follows that there
IS tension between minimizing nonineriial(inflow, wait)
on the one hand, and nonineriial(volume, wait) on the
other. The axioms given above have unintended minimal
models.

We can eliminate these models by adding an axiom
which says that the fluent volume is dynamic. The gen-
eral concept of a dynamic fluent is defined as follows:

dynamic f = Va nonineriial(f,a).

Then the additional axiom needed in the flowing water
example can be written as

dynamic volume.

5 Momentary Fluents

In this section we discuss a special case of dynamic

fluents—the propositional fluents that have the tendency

to become false. Consider the following example.
Striking one object against another produces noise:

succeeds (strike , noise, s)
2 holds (noise , result(strike , s)).

In the absence of preconditions for strike , the antecedent
of this axiom is identically true, and we get:

holds (noise , result (strike ,5)).

But the law of inertia implies then that the noise will
continue for a long time:

holds (noise , result(wait, result(strike , 5))), (22)

holds (noise , result (wait, (23)
result (wait, result (strike , s)))),
etc. We need to postulate that the noise is momentary,
rather than continuous, that it comes to an end by itself.
The basic property of "momentary" propositional flu-

ents is that, by default, they take on the value false:
momentary f A -ab(f,s) D -*holds(f,s).
Moreover, momentary fluents are dynamic:
momentary f O dynamic f.

Both momentary and the abnormality predicate ab are
circumscribed.®

The additional postulate needed in the noise example
can be written as

momentary noise.

These axioms allow us to prove the negations of (22) and
(23).
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The predicate ab should be circumscribed at a lower pri-
ority than the predicates that have no situation arguments
(nonineriial, precond, momentary).
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