
Constraint Satisfaction wi th Delayed Evaluation 

Monte Zweben and Megan Eskey 
NASA Ames Research Center 

M.S. 244-17 
Moffett Field, California 94035 

zweben@pluto.arc.nasa.gov, eskey@pluto.arc.nasa.govr 

Abstract 
This paper describes the design and implemen­
tation of a constraint satisfaction system that 
uses delayed evaluation techniques to provide 
greater representational power and to avoid un­
necessary computation. The architecture used 
is a uniform model of computation, where each 
constraint contributes its local information to 
provide a global solution. We demonstrate the 
uti l i ty of the system by formulating a real-world 
scheduling problem as a constraint satisfaction 
problem (CSP). 

1 In t roduct ion 
A constraint satisfaction problem (CSP) is characterized 
by a set of variables. Each variable has a possibly infi­
nite domain of values and a set of domain constraints. 
A solution to a CSP assigns a value consistent with the 
domain constraints to each variable. A constraint is a re­
lated condition, (or predicate), that must hold among a 
set of variables. The algorithms used in most CSPs are 
those that find locally consistent assignments, that is, 
those that satisfy all constraints on a particular variable, 
in constraint networks by local propagation. The locally 
consistent assignments can be used to find a globally con­
sistent solution, i.e., one that satisfies all constraints on 
all variables. Many previous real-world problems have 
been characterized as CSPs: scheduling [Brown, 1987, 
Fox, 1983, Johnston, 1989, Rit, 1986, Zweben, 1987], 
understanding line drawings [Waltz, 1975], electrical cir­
cuit analysis [Steele, 1980], temporal reasoning [Dean, 
1985] and aspects of planning problems [Lansky, 1988, 
Stefik, 1980, Wilkins, 1984]. 

2 Constraint Satisfaction Problems 
In this section, we describe the general constraint satis­
faction algorithm (without delayed evaluation) and show 
how to improve the basic algorithm by using constraint 
propagation. 

2.1 Un in fo rmed Systematic Search 
The most common algorithm for solving CSPs is sys­
tematic backtracking search. In its simplest form, the 
system takes an arbitrary ordering of variables and pro­
visionally assigns values to them in a generate-and-test 

1. Order the var iab les from 1 to n. 
2 . S ta r t i ng w i th the f i r s t v a r i a b l e , p ick a 

value from i t s set of possib le values. 
3. Test the const ra in ts associated w i th the 

va r iab le to determine whether the value 
i s v a l i d . 

4 . I f i t i s not v a l i d , continue choosing 
values u n t i l the set is exhausted or 
u n t i l a v a l i d one is found. 

5. I f a l ega l value is generated, continue 
w i th the next var iab le at step two. 

6. Otherwise, backtrack to the previous 
v a r i a b l e , r e j e c t i t s current value and 
continue w i th i t s next value at step two. 

7. I f the system exhausts the f i r s t va r i ab le ' s 
p o s s i b i l i t i e s , then there are no consistent 
assignments. 

Figure 1: Systematic Backtracking Search 

manner, until the set of variables has a globally consis­
tent assignment. The basic algorithm is shown in Fig­
ure 1. 

Intelligent, or dependency-directed, backtracking 
schemes, based on knowledge of inter-variable dependen­
cies, and constraint propagation heuristics can be used 
to improve the basic algorithm's search performance 
[Stallman and Sussman, 1977]. Suggested schemes in­
clude "look-ahead", such as variable ordering or value 
ordering, or "look-back", such as constraint recording 
[Dechter and Pearl, 1987] or going back to the source of 
failure. 

2.2 Propagat ion 

Our system uses constraint propagation, that is, it fil­
ters values from a variable that are inconsistent with its 
constraints. For example, consider a binary constraint, 
C, over variables x and y, each having initial domains 
ranging over the integers. If C requires that all values 
of y be equal to 2x 4- 1, then all even integers would be 
filtered from the domain of y. 

The propagation of constraints, or the application of 
filters, can be done by a number of look-ahead schemes 
including full look-ahead, partial look-ahead, and for­
ward checking [Haralick and Elliot, 1980]. These heuris-

Zweben and Eskey 875 



tics are also referred to as maintaining arc-consistency 
or path-consistency in constraint networks [Mackworth, 
1977, Dechter and Pearl, 1987, Gusgen et a/., 1988]. Our 
system uses the weakest of these heuristic procedures, 
forward checking, because it has been shown to yield 
good performance on many problems [Dechter and Pearl, 
1987]. The forward-checking heuristic is an extension of 
the test phase in the algorithm shown in Figure 1 and is 
inserted as an elaboration of step 3. 

3a. Apply the constra int f i l t e r s associated 
wi th the var iable and determine whether 
the value is v a l i d . 

3b. For each of the var iables re la ted by 
constraints to the var iab le under 
considerat ion, f i l t e r a l l values that 
are not consistent wi th the const ra in ts . 

3c. For each of these associated var iab les , 
determine whether there exists at least 
one consistent assignment. 

3d. I f not , then re jec t the value under 
considerat ion; otherwise, accept i t . 

Any system that propagates constraints runs the risk of 
introducing a large amount of unnecessary computation 
into the testing process. The application of a constraint 
to a variable serves to reduce the number possible of val­
ues, although, in general, there will still be more values 
remaining than will ever be needed. To avoid unneces­
sary enumeration of values, we have built a constraint 
satisfaction system that incorporates delayed evaluation 
techniques. 

3 Delayed Evaluation 

Delayed evaluation is a demand-driven evaluation 
scheme - parts of data structures are not generated 
until needed. There are many ways to implement de­
layed evaluation (see [Filman and Friedman, 1984]) 
but we have adapted streams [Abelson et a/., 1985, 
Filman and Friedman, 1984]. 

Streams are an abstraction of lists. As a data ab­
straction, streams and lists are identical, but they differ 
in that streams delay the evaluation of their cdr 's while 
lists evaluate all elements at once. The operations on 
streams (head, tail, and cons-stream) are similar to list 
operations (car, cdr, and cons) . Cons-stream is used to 
recursively define streams. It only partially constructs a 
a stream, however, and then passes the partial construc­
tion to the program that accesses the stream. If the part 
of the stream that is not yet constructed is accessed by 
the tail operation, the stream will automatically con­
struct only that part of itself that the program requires. 
This permits representations of infinite data. In addition 
to the delay of the original construction of the stream, 
the filtering of a stream can be delayed. Both aspects 
of streams are crucial to our system in that they allow 
us to represent infinite data structures and they reduce 
unnecessary application of filters. 

876 Planning, Scheduling, Reasoning About Actions 

4 System Architecture 
Our system is implemented in CommonLISP using the 
CommonLISP Object Standard (CLOS) prototyped by 
Xerox PARC [Bobrow et a/., 1987]. The basic elements 
of our system are a collection of interrelated objects hav­
ing a built-in hierarchy of attribute (slot) values. The 
constraint network consists of variable objects, generator 
objects (the domain of possible values on a variable), and 
constraint objects. We have defined our own constraint 
language, allowing the user to add new constraints of 
any arity (number of related variables). 

Our system assigns values to variables and applies each 
variable's constraints as they are assigned. These con­
straints not only test whether a commitment is legal, but 
also propagate information from assigned (fixed) vari­
ables to unassigned (constrained) variables through fil­
ter application. The filters that are created during the 
application of a constraint can either disallow certain 
values on a variable's domain or change the variable's 
domain of values in some way. 

When a commitment is made to a variable, forward 
checking is executed by posting filters on the related 
constrained variables and provisionally assigning a set 
of values to them. If the related variable has at least one 
acceptable value on its generator, then the next variable 
can be assigned. However, if the related variable's gen­
erator is exhausted, any added filters must be removed, 
and the generator must be returned to the state it was in 
before the attempted commitment. New values for the 
current variable are tried (with forward checking) until 
the variable runs out of possibilities (causing the system 
to backtrack), or until a legal value is found. Thus, in 
our system, constraint satisfaction is simply a process 
of assigning values, posting filters, removing filters, and 
reinstating generators until a solution is found, or until 
the first variable exhausts its possible assignments (indi­
cating that there is no solution). 

Because of the local/global consistency relationship in 
constraint networks, our system permits users to work 
on partially solved problems, to change previously made 
choices, and to add new information as it becomes avail­
able. 

We have applied these ideas to scheduling. The sec­
tion below describes the implementation of the schedul­
ing system. 

5 Scheduling 
Our implementation views a resource allocation and 
scheduling problem as a set of task objects, each con­
taining information (slots) about an event's start time, 
end time, duration, and resource requirements. Resource 
requirements of a task include information about what 
type (class) and how much of some resource is needed. 
In addition to task objects, the system defines resource 
objects that contain information about the availability 
of resources. 

5.1 Temporal Variables 
In our formulation, a task's start time, end time, and du­
ration are represented as distinct variables. The domain 



of each variable is represented by a set of intervals; only 
those intervals contained in the set are legal possibilit ies. 
We also include special values :pos-inf and :neg-inf that 
allow us to represent open intervals when the temporal 
variables are unconstrained. 

We represent intervals as dot ted pairs whose first value 
is the start of the interval and whose second value is its 
end. For example, 

5.2 T e m p o r a l C o n s t r a i n t s 

In general, temporal constraints create f i l ters that 
change the values of the temporal intervals on a t ime 
variable's generator. The rules of a constraint are de­
fined using interval algebra and James Al len's formal ism 
of the relations between two intervals [Al len, 1984], 

P L U S - I N T E R V A L is a 3-place constraint that adds 
two intervals. In the scheduling appl icat ion, i t main­
tains the fo l lowing funct ional relat ionship among the 
start t ime, end t ime and durat ion variables of a task: 

A f i l ter is appl ied to the variable on the left when it is 
constrained and the variables to the r ight of the arrow 
are f ixed. 

E Q U A L is a binary constraint that relates two t ime 
variables and creates a f i l ter that ensures that the gen­
erators of the two variables contain the same values. 

A F T E R is a binary constraint relat ing start t ime or 
end t ime variables, ensuring that some t ime interval fol­
lows another. 

We have also defined a special instance of a con­
stra int , N O T - D U R I N G . N O T - D U R I N G encodes infor­
mat ion disal lowing certain t ime intervals as possible gen­
erator values. For instance, if it is known that tasks can 
only be scheduled on weekdays, we can define a NOT-
D U R I N G - W E E K E N D S constraint that f i l ters any t ime 
intervals fa l l ing on weekends. Thus, if we assume that 
some part icular start and end t ime variables have in i t ia l 
values, in days, of 

(1 . : p o s - i n f ) 

representing an interval f rom relative day 1, (Monday) 
w i th no f ixed end, the appl icat ion of the N O T - D U R I N G -
W E E K E N D S fi l ter would create a new inf ini te possibil­
i t y set of intervals 

Constraints l ike these can signif icantly increase the 
number of possible values of a variable. It is in this 
part icular case, and cases l ike i t , tha t the power of the 

stream representation is realized. If the possible t ime in ­
tervals were represented as a l ist , the computat ion (ap­
pl icat ion of f i l ters to list elements) would continue end­
lessly. * 

5.3 R e s o u r c e V a r i a b l e s 

A task's resource requirements and the available re­
sources are represented by resource class and resource 
pool variables. A resource pool is an instance of a re­
source class. For example, if there exists a resource class, 
technicians, we can th ink of each resource pool as an 
equivalence class of ind iv idua l technicians. We may want 
to dist inguish between two pools of technicians for rea­
sons such as different costs associated w i t h each pool , 
or different locations in which the pools reside. For our 
purposes, if a resource pool contains more than one of 
some resource, each resource is interchangeable w i th in a 
single pool , but not across mul t ip le pools. Thus, differ­
ent resource pools represent distinguishable resources. 

Any variables whose values change over t ime are rep­
resented as histories. Histories are lists of changes to a 
variable's value indexed by t ime. The most impor tant 
time-based variables in a scheduling system are those 
that track in format ion about resource availabil i ty. In 
our system, resource avai labi l i ty histories are represented 
as lists (or streams) of t ime in terva l /quant i ty available 
pairs. For instance, 

is interpreted as: 

5.4 R e s o u r c e C o n s t r a i n t s 

Resource variables are used to evaluate the t ru th of the 
R E S O U R C E - A V A I L A B L E constraint and to propagate 
its effects. The R E S O U R C E - A V A I L A B L E constraint 
is a 4-place constraint relat ing a task's start t ime, end 
t ime, quantity-of-resource-needed, and resource pool . I t 
is used to determine if a part icular amount of some re­
source is available dur ing the given interval of t ime. If 
the resource pool and required amount of the resource is 
known, the constraint restricts (fi l ters) the values of the 
start and end times to intervals that begin when the re­
quired quant i ty of that pool is available. If the t ime and 
quant i ty variables are fixed, then those resource pools 
that do not meet the requirements are fi ltered f rom the 
resource pool variable. 

The E Q U A L and N O T - D U R I N G constraints can be 
used in much the same way as they are used in temporal 
reasoning. Instead of fi ltering possible values of t ime 
intervals, the possible resource pools are filtered. 

however, infinite streams must be handled carefully as 
they do not avoid infinite computation, but rather delay i t . 
In practice, this means that filter application must be ordered 
so that more constraining filters are applied first. 

Zvveben and Eskey 877 



5.5 Schedul ing 
The scheduling process begins by placing all tasks on a 
priority queue of unscheduled tasks. This priority queue 
generally prefers tasks that are closer to the anchors of 
the schedule (the tasks fixed in time due to external 
forces). As tasks are removed from the queue, a variable 
commitment strategy is chosen that guides the search 
for appropriate times and resource pools for the task.2 

An example of a commitment strategy is to schedule a 
task's variables in the following order: end-time, start-
time, resource-pooll, resource-pool2 ...3 

When all of the variables (i.e., start time, end time, 
quantity-of-resource-needed, and resource pool) for a re­
source allocation are committed, the effects of this usage 
are recorded in the resource pool. When a task has been 
completely scheduled, it is placed on a list of scheduled 
tasks. We use the systematic backtracking procedure 
discussed above to instantiate the variables of a task 
(using the commitment strategy as the variable order­
ing). When a task can not be scheduled (i.e., there is no 
instantiation of its variables consistent with constraints) 
the procedure removes the previous task from the list of 
scheduled tasks and tries new values for its variables (in 
backwards chronological order). 

5.6 Schedul ing Example 
To illustrate the use of streams for a scheduling applica­
tion, we present a simple example. Consider two tasks, 
receiving and installation, whose start and end times are 
fixed to the same value (i.e., the tasks are performed in 
parallel) and each of which need one technician. The 
resource pool utilization variable of receiving is fixed to: 
(Sid) 
Installation's resource pool utilization is constrained to: 
(Pete, Roger, K e i t h , S i d , A l b e r t , E r i c , Mick) 
The system evaluates the constraints on the installation's 
usage that propagates information from the receiving us­
age. When lists arc used to represent the pools of techni­
cians, this propagation manifests itself as a filter on the 
generator of installation, resulting in the following new 
list (reflecting that Roger and Albert were being used by 
some other task at this time): 
(Pete, K e i t h , E r i c , Mick) 
In this case, the entire list was checked. Compare this 
to the stream representation. The new stream (after 
filtering) is: 
(Pete . <delayed closure>) 
Since Pete meets the constraints imposed upon the in­
stallation task, he remains on this list and the filtering 
of the rest of the list is delayed. If Pete were judged 
to be unacceptable, he would be rejected and the next 
available technician would be chosen. 

2In general, the duration of tasks as well as the type and 
quantity of resources they require are known a priori. How­
ever, if these variables were not known, they would be added 
to the commitment strategy (and constrained) like the other 
variables. 

3This is the commitment strategy chosen for the results 
reported in the next section. 

878 Planning, Scheduling, Reasoning About Actions 

(Ke i th . <delayed closure>) 
Only at this point is Roger filtered and Keith chosen, 
avoiding the unneccessary processing employed by a tra­
ditional constraint propagator. 

6 Results 
We have formulated and solved two problems as CSPs 
using our system: the n-queens problem (i.e., place n 
queens on an n x n chess board so that no two queens 
share the same row, column, or diagonal) and a real 
world scheduling problem based on NASA's Space Shut­
tle payload processing domain (EMPRESS-A) [Hankins 
et a/., 1985] . 

Payloads that fly on the shuttle rest upon modular 
containers called carriers. Kennedy Space Center per­
sonnel have generated a partially ordered hierarchy of 
tasks necessary to process the payloads and carriers be­
fore and after a shuttle flight. In addition, resource types 
and quantities required to accomplish these tasks have 
been determined. The anchor of a schedule in this do­
main is the launch date of the shuttle. The task queue 
is ordered so that post-launch tasks are scheduled first 
in chronological order (with respect to the partial or­
der) and pre-launch tasks are scheduled backwards from 
launch in reverse chronological order. 

6.1 Efficiency Gain 

The most significant advantage of delayed evaluation is 
its efficiency. If one were to propagate constraints in 
a straightforward manner, without delayed evaluation, 
many more filter checks would be performed. We have 
demonstrated this efficiency gain by applying our sys­
tem to the n-queens problem and to the EMPRESS-A 
scheduling problem with and without using delayed eval­
uation. To test without delayed evaluation, we simply 
redefined the head, tail and cons-stream operations so 
that they were car, cdr and cons, respectively. Then we 
compiled statistics on the total number of consistency 
checks made for finding the first acceptable solution. A 
consistency check occurs each time the program verifies 
that a variable's value is consistent with its constraints. 
In the n-queens problem, as the size of the problem in­
creases, so does the efficiency gain (see Figure 2). The 
improvement was on the order of 20 percent. 4 Figures 
3 and 4 describe the problem size and illustrate the ben­
efit of using streams in the EMPRESS-A application. In 
general, representing possibilities as streams is most use­
ful when the average number of candidate values for a 
variable is large. In EMPRESS-A, this is realized when 
resource pool variables have many possible pools and 
temporal variables have many possible interval values. 

6.2 Representat ional Advantages 

Our system is highly extensible, can be used to represent 
infinite data structures and can be used to find adequate 
or optimal solutions to a problem. 

4 The fluctuations in the results are due to the fact that 
some problems had initial streams that were serendipitously 
close to solutions. 



of 
Queens 

8 
9 

10 
11 
12 
13 
14 
15 

Consistency Checks 
Streams Lists 

1336 
805 

1841 
11280 
4487 

75867 
35880 

101872 

1687 
996 

2254 
14423 
5873 

96863 
47357 

139483 

% Improvement 

20.81 
19.18 
18.32 
21.80 
23.60 
21.68 
24.24 
26.96 

Figure 2: N-Queens Efficiency Gain. 

EMPRESS-A 
Missions 
Flight-56 
Flight-57 
Flight-58 
Flight-62 

Total 

Tasks 
33 
83 
64 
66 

246 

Variables 
428 
411 
598 
486 

1923 

Constraints 
488 
1240 
1305 
1301 
4334 

Figure 3: EMPRESS-A Problem Size 

EMPRESS-A 
Missions 
Flight-56 
Flight-57 
Flight-58 
Flight-62 

Total 

Consistency Checks 
Streams 

1844 
2696 
3962 
3568 

12070 

Lists 
2746 
4010 
6566 
5883 

19205 

% 

Improvement 
32.85 
32.77 
39.66 
39.35 
37.15 

Figure 4: EMPRESS-A Efficiency Gain 

Problems are specified in our system by defining con­
straints and at taching instances of the constraints to 
variables. Because the f i l ter ing mechanisms coordinate 
constraint behavior dur ing propagat ion, the def ini t ion of 
each ind iv idual constraint is made independently of o th­
ers. When a vocabulary of constraints has been declared 
in a part icular problem domain, users can extend and 
modi fy problems wi thout programming, by using the 
constraint language to add and delete constraints. Fur­
thermore, the system can dynamical ly adapt to changes 
in a problem domain w i thou t modi fy ing its search algo­
r i t h m by adding and retract ing constraints. These char­
acteristics contr ibute to the modular i ty and extensibi l i ty 
of the system. 

We have discussed the advantages of having the abi l i ty 
to represent inf ini te lists as streams. The transparency 
between list and stream operations also extends the rep­
resentational capabil i t ies of our system by provid ing the 
abi l i ty to f ind op t ima l solutions to problems. 

A l though most problem spaces are so large that opt i ­
mizat ion is unrealist ic, our system can f ind opt imal so­
lut ions based on some metr ic. To opt imize an assign­
ment, al l of a variable's values must be considered and 
compared. In this case, delayed evaluation offers no sav­
ings. Many domains, however, require some variables 
to be opt imal ly assigned while others can be assigned 
any acceptable value. We allow bo th options by defining 
different kinds of generators, stream-generators and l ist-
generators. The stream generators are used for sat isfy­
ing and operate through the appl icat ion of f i l ters (using 
delayed evaluation). The list generators opt imize and 
operate through the appl icat ion of f i l ters and compara­
tors - predicates that determine if one value is more de­
sirable than another. W i t h o u t any significant change in 
the system's operations or representations, we are able 
to integrate the benefits of delayed evaluation in to a CSP 
when satisficing. 

7 Prev ious W o r k 

Our implementat ion extends previous work in constraint 
satisfaction, p lanning and scheduling. The seminal work 
of Vere [Vere, 1983] represents actions by mainta in ing 
constraints between the start , f inish, and durat ion of 
tasks. In our system, we can mainta in arb i t rary con­
straints between variables (e.g., resource constraints). 
We extend the constraint management mechanisms of 
non-linear planners l ike NonL in [Tate, 1977] and SIPE 
[Wi lk ins, 1984] by offering a un i fo rm mechanism for 
constraint propagation over al l variables. Like Dean's 
T M M [Dean, 1985], our system maintains in format ion 
over t ime. However, the representation we use takes the 
resource perspective, that is, variables range over values 
that are not necessarily Boolean. 

8 Conc lus ions and F u t u r e W o r k 

We have implemented a system using a formulat ion of 
constraint satisfaction problems that is modular and 
takes advantage of delayed evaluation techniques. 

The performance of the system improves signif icantly 
when i t is applied to bo th EMPRESS-A scheduling and 

Zweben and Eskey 879 



to n-queens with streams instead of lists representing the 
variables' domain of possible values. 

Future goals of this project are to use explanation-
based learning techniques to learn heuristics that rec­
ognize resource bottlenecks and adjust the search pro­
cess accordingly, to build an efficient scheduling system, 
and to test the system against other NASA domains. 
This will provide a better analysis of the system since 
every scheduling problem has different constraints, dif­
ferent unknowns, different required optimality, and dif­
ferent levels of resource availability. 

Acknowledgements 
We thank Richard H. Brown for his invaluable ideas con­
cerning constraint satisfaction that have made this work 
possible. We also thank Melissa P. Chase for introduc­
ing us to delayed evaluation, Wil l Taylor for designing 
the user interface, James Allen, Walter Hamscher, Paul 
Morris, and Amy Lansky for their comments and sug­
gestions, and Mark Drummond, Phil Laird, and Peter 
E. Friedland for careful review of this paper. 

References 
[Abelson et al., 1985] Abelson, H., Sussman, G.J., Suss-

man, J. Structure and Interpretation of Computer 
Programs. MIT Press, Cambridge, MA, 1985. 

[Allen, 1984] Allen, James F. Toward a General Theory 
of Action and Time. Artificial Intelligence, 23, 1984. 

[Bobrow et al, 1987] Bobrow, D.G., DeMichiel, L.G., 
Gabriel, R.P., Keene, S., Kiczales, G., Moon, D. Com­
mon LISP Object System Specification. Unpublished 
Draft, 1987. 

[Brown, 1987] B rown, Richard H. Knowledge-based 
Scheduling and Resource Allocation in the CAMPS 
Architecture. In Proceedings from the IEEE Interna­
tional Conference on Expert Systems and the Leading 
Edge in Planning and Control, Benjamin/Cummings, 
1987. 

[Dean, 1985] Dean, Thomas. Temporal Imagery: An 
Approach to Reasoning about Time for Planning and 
Problem Solving. PhD thesis, Yale University, Octo­
ber 1985. 

[Dechterand Pearl, 1987] Dechtcr, R., Pearl, J. Net­
work based Heuristics for Constraint Satisfaction 
Problems. Artificial Intelligence, 34(1), December 
1987. 

[Filman and Friedman, 1984] Filman, R.E., Friedman, 
D.P. Coordinated Computing: Tools and Techniques 
for Distributed Software. McGraw-Hill Book Com­
pany, New York, NY, 1984. 

[Fox, 1983] Fox, Mark S. Constraint-Directed Search: 
A Case Study of Job Shop Scheduling. PhD thesis, 
Carnegie-Mellon University, 1983. 

[Gusgen et a/., 1988] Gusgen, Hans-Werner, Hertzberg, 
Joachim. Some Fundamental Properties of Local Con­
straint Propagation. Artificial Intelligence, 36, 1988. 

880 Planning, Scheduling, Reasoning About Actions 

[Hankins et al., 1985] Hankins, G.B., Jordan, J.W., 
Katz, J.L., Mulvehill, A.M., Dumoulin, J.N., Ra-
gusa, J. EMPRESS: Expert Mission Planning and 
Re-planning Scheduling System. In Expert Systems 
in Government Symposium, 1985. 

[Haralick and Elliot, 1980] Haralick, R.M., Elliot, G.L. 
Increasing Tree Efficiency for Constraint Satisfaction 
Problems. Artificial Intelligence, 14, 1980. 

[Johnston, 1989] Johnston, Mark D.. Reasoning with 
Scheduling Constraints and Preferences. Technical 
Report, Space Telescope Science Institute, 1989. 

[Lansky, 1988] Lansky, Amy. Localized Event-based 
Reasoning for Multiagent Domains. Research Note, 
SRI International, 1988. 

[Mack worth, 1977] Mack worth, Alan. Consistency in 
Network Relations. Artificial Intelligence, 8, 1977. 

[Rit, 1986] Rit, Jean-Francois. Propagating temporal 
constraints for scheduling. In AAAI-86 Proceedings, 
1986. 

[Stallman and Sussman, 1977] Stallman, R.M., DUS8-

man, G.J. Forward Reasoning and Dependency-
Directed Backtracking in a System for Computer-
Aided Circuit Analysis. Artificial Intelligence, 9, 
1977. 

[Steele, 1980] Steele, Guy. The Definition and Im­
plementation of a Computer Programming Language 
Based on Constraints. PhD thesis, Massachusetts In­
stitute of Technology, 1980. 

[Stefik, 1980] Stefik, Mark. Planning With Constraints. 
PhD thesis, Stanford University, January 1980. 

[Tate, 1977] Tate, Austin. Generating Project Net­
works. In IJCA I-77 Proceedings, 1977. 

[Vere, 1983] Vere, S. A. Planning in Time: Windows 
and Durations for Activities and Goals. IEEE Trans­
actions, PAMI-5(3), May 1983. 

[Waltz, 1975] Waltz, David. Understanding Line Draw­
ings of Scenes with Shadows. In P. Winston, editor, 
The Psychology of Computer Vision, McGraw-Hill, 
1975. 

[Wilkins, 1984] Wilkins, D.E. Domain Independent 
Planning: Representation and Plan Generation. Ar­
tificial hitelligence, 22, 1984. 

[Zweben, 1987] Zweben, Monte. CAMPS: A Dynamic 
Re-planning System. Technical Report, MITRE Cor­
poration, 1987. 


