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Abstract 

Model-based troubleshooting relies on having a 
representation of devices that can provide pre­
dictions about their behavior based on the ob­
servations that the troubleshooter makes. For 
complex devices such as digital circuit boards, 
the cost of the prediction process is a ma­
jor obstacle to practical model-based trouble­
shooting. But increasing the efficiency of mak­
ing predictions usually means sacrificing pre­
cision — thereby sacrificing diagnostie resolu­
tion so it is important to have a represen­
tation that can provide predictions that are 
derived from cheap observations and that are 
yet precise enough so that device misbehaviors 
will be detectable. This paper presents an im­
plemented representation of board-scale digital 
circuits that emphasizes the importance of ap­
propriate temporal abstractions for coping with 
behavioral complexity. 

1 Mot ivat ion 
Model-based troubleshooting is driven by the interac­
tion of predictions and observations. A device model 
produces predictions about what ought to be observed; 
comparison with observations of the actual device pro­
duce discrepancies; these discrepancies are then traced 
to their possible underlying causes in the model and re­
pairs of the actual device proposed. Model-based trou­
bleshooting has been demonstrated in a variety of do­
mains using a variety of implementation technologies 
Brown et ai, 1982] [Davis, 1984] [Genesereth, 1984] 
Pan, 1984] [Hamscher and Davis, 1984] [Campbell and 

Shapiro, 1986] [de Kleer and Williams, 1987] [Dague et 
ai, 1987] [Hamscher and Davis, 1987]. It scales well to 
deal with structural complexity as measured by sheer 
component count [First at ai, 1982] [Scarl ct ai, 1985]. 
However, for troubleshooting devices with complex time-
dependent behavior, predicting the expected behavior of 

*This paper describes research done at the Artificial In­
telligence Laboratory of the Massachusetts Institute of Tech­
nology. Support for the author's research on troubleshooting 
was provided by DEC, Wang, Symbolics, and DARPA under 
ONR contract N00014-85-K-0124. 

the device in response to external stimuli is complex and 
expensive, thus constituting a major drawback. 

A model-based troubleshooting program that success­
fully diagnoses faults in behaviorally complex digital cir­
cuits is described in [Hamscher, 1988]. The troubleshoot­
ing element is XDE, a domain-independent diagnosis en­
gine based on GDE [de Kleer and Williams, 1987]. The 
circuits used as examples are all from the Console Con­
troller Board of the Symbolics 3600. About 40% of the 
board has been represented and several troubleshooting 
examples run, the largest involving 100 visible circuit 
nodes and 20 chips including two microprocessors. This 
paper focuses on the representation of circuit behavior 
that makes troubleshooting it possible. 

There are several approaches to the problem of scal­
ing model-based troubleshooting to deal with complex 
behavior. One approach that appears in some form in 
nearly every model-based troubleshooting program is to 
use a hierarchy of behavioral abstractions, using succes­
sively more detailed models as the diagnosis proceeds. 
The problem is that a mere commitment to using lay­
ers of behavioral abstraction says nothing about what 
abstractions will be appropriate. 

To be appropriate for troubleshooting, abstractions 
should retain enough predictive power to detect symp­
toms, but should allow predictions to be made efficiently. 
Among the characteristics of digital circuit troubleshoot­
ing are (i) a gap of several orders of magnitude between 
the temporal granularity at which events occur in the 
machine and the temporal granularity at which obser­
vations can be easily made, and (ii) the fact that the 
most commen physical failures are usually manifest at 
coarse timescales. These characteristics mean that tem­
poral precision can often be sacrificed without losing too 
much predictive force. Temporal abstractions, including 
familiar concepts such as frequency, cycles, counting, se­
quence, duration, sampling, and change, make it possible 
to reason about large numbers of events occurring in the 
circuit without having to refer explicitly to each one. 

This paper first presents the temporal constraint prop­
agator TINT. Next, some simple examples of digital 
component behaviors as represented with TINT are pre­
sented. Next, several temporal abstractions are pre­
sented. Finally, these temporal abstractions are used 
to describe the temporally coarse behavior of some com­
ponents. 
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2 T INT 
The behavior of circuit components is represented using 
a simple temporal reasoning system in which rules are 
used to derive facts about the values of functions of t ime. 
A funct ion of t ime is called a signal] for example, the 
voltage at a circui t node is a signal because its value can 
change over t ime. An event is a change in the value of a 
signal. 

T I N T is implemented using JOSHUA [Rowley et ai, 
1987]; the syntax wi l l be shown as Cambridge prefix PC 
w i t h denot ing predicate terms, ( ) denot ing funct ion 
terms, and the prefix ? denoting universally quanti f ied 
variables. T I N T provides the four-place predicate t h r u 
for making assertions about signal values, [ t h r u ?1 ?u 
?s igna l ?value] means that f rom the lower bound t ime 
?1 to the upper bound t ime ?u inclusive, ?s igna l had 
value ?value. Any token can appear as the ?value of a 
signal. 

In contrast to more sophisticated models of t ime (for 
example, the interval model in [Al len, 1984]), for simplic­
i ty t ime is taken to be a sparse set, the integers divisible 
by a temporal granular i ty constant Granular i ty can 
be thought of as the smallest un i t of t ime that is mea­
surable by available instruments. Only integers, and 

can appear as t ime arguments to the t h r u and tsame 
predicates. Th is use of t imestamps in T I N T rather than 
symbolic quanti t ies or expressions results in serious l im i ­
tat ions as compared to other temporal reasoning systems 
[Wi l l iams, 1986] [Dean and McDermot t , 1987], but it is 
adequate as a demonstrat ion vehicle. 

The ?s igna l argument of the t h r u predicate is nor­
mal ly a funct ion term. For example, the te rm (vol tage 
( i n a u32a)) denotes the voltage signal at node ( i n a 
u32a). The vo l tage funct ion maps a node to a real-
valued signal. Abstractions and behaviors are functions 
f rom signals to signals. Abstract ions describe relat ion­
ships between signals at different levels of detai l . Behav­
iors describe the relationships that components enforce 
between their input and ou tpu t signals. T I N T manipu­
lates assertions w i t h predicate ground terms containing 
composite terms bui l t up f rom pr imi t ive signals and ab­
stractions, for ex­
ample, means that the logic-level at node ( i n a u32a) 
was always 1. [ t h r u (change S) n i l ] means 
( l i teral ly) that the signal result ing f rom the application 
of the change abstract ion to some signal S was always 
n i l . 

T I N T provides rules tha t are used in forward chain­
ing fashion to propagate the consequences of assertions 
about signal values. The fol lowing (nonsense) rule says 
that if ?x is of type t h i n g , signal ?s has some value ?v 
f rom t ime ?1 to t ime ?u, and ?1 is s t r ic t ly less than 
?u, then the signal result ing f rom the appl icat ion of 
abs t rac t ion to ?s is the result of apply ing fun to ?v: 

The set of all t h r u predications (predicate ground 
terms) referring to the same signal is called the history of 
the signal. T I N T combines overlapping intervals of the 
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same history having the same value in to maximal inter-
vals and records a contradict ion if a signal has more than 
one value at a given t ime. 

A hybr id t r u t h maintenance system maintains 
Boolean constraints among predications along w i th min­
imal environments for each assertion [McAHester, 1980] 
[de Kleer, 1986]. 

T I N T provides predicates, rules, and a framework of 
signals and abstractions that together are used to de­
scribe circuit behavior. However, the main issue is the 
vocabulary of signal types and abstractions and the spe­
cific rules tha t the program wi l l use to reason about 
them. The next sections discuss these. 

3 Behaviors 
Circu i t components have intended behaviors that are 
functions f rom signals to signals, and these behaviors 
can be translated into rules. The intended behavior of 
a component depends on some collection of background 
conditions — for example, that the component in ques­
t ion is "work ing" (not physically damaged), that it is 
connected to a power source, and so fo r th . By conven­
t ion, the background condit ions for a component are col­
lected and summarized as a mode signal whose value is 
normal dur ing the intervals tha t all the conditions are 
satisfied. For example, the fol lowing rule says that if a 
two- input A N D gate ?a has the status working and is 
get t ing power, then its mode is normal: 

The pr incipal behavior rules for A N D gates depends 
on the mode signal having the value normal. In the follow­
ing rule the signals (11 . . . ) denote the digi tal signals 
appearing at the input ports ( i n 0 ?a), ( i n 1 ?a) and 
at the output por t (out 0 ?a). If any input of a binary 
A N D gate is 0 then the ou tput is 0: 

The funct ion over lap tests whether the mentioned in­
tervals have any point in common. 

Another rule for the A N D gate says tha t w i th all but 
one of its inputs held to 1, it acts as a buffer. In the 
two- input case, this means that as long as input ?n is l 
the ou tput is the same as input (- 1 ?n) mod 2. [tsame 
?1 ?u ? s i g n a l l ?s ignal2] means tha t at every t ime be­
tween the lower bound ?1 and the upper bound ?u inclu­
sive, ?s i gna l l has the same value as ?signal2: 

Other forward-chaining rules for describing the be­
havior of components do not correspond to their in ­
p u t / o u t p u t direct ional i ty. For example, there is a rule 



that i f the ou tpu t of an an A N D gate is 1 then all of the 
inputs must be 1. 

The previous examples of behavior rules involved only 
combinat ional behaviors. Sequential behaviors require 
int roducing signals to expl ic i t ly represent the internal 
states of components. 

As w i t h any program for reasoning about change, 
T I N T encounters the frame problem [McCarthy and 
Hayes, 1969] [Shoham, 1986] [Lifschitz, 1987]. The ap­
proach used in T I N T is not general, since it requires that 
each component interacts w i th few enough other compo­
nents and in few enough ways that they can all be listed 
expl ici t ly. The result is a rule — a frame axiom — for 
every state signal that mentions every k ind of event that 
could change that state. 

A falling-edge triggered register provides the simplest 
example of sequential behavior, involv ing only three 
rules. The first rule says that (a) the number appear­
ing at the ou tpu t of the register is identical to its state, 
and that (b) changes f rom 1 to 0 on the clock input are 
" interest ing:" 

The value of the abstract signal (event ? from ?to ?s) 
is t whenever there has been a change f rom the value 
?from to ?to. The value of this abstract signal is recorded 
expl ic i t ly only when that event type is marked as "inter­
esting." 

The second rule is a state-transit ion rule. Any change 
f rom 1 to 0 on the clock input causes the register to 
enter the state selected by its data input signal (num 
( input 0 ? r ) ) . The previous state of the register is irrel­
evant. The rule below concludes that dur ing (at least) 
the single moment succeeding the t ransi t ion, s ta te had 
the value ? input : 

The th i rd rule is a persistence rule. The register stays 
in whatever state it is in so long as there has been no 
change of the clock f rom 1 to 0: 

In general, t ransi t ion rules deduce that a component 
must have been in a state for just one moment, and 
the persistence rules subsequently deduce how long that 
state must have lasted. 

4 Temporal Abstractions 
The not ion of an "abstract ion" takes on a specific mean­
ing in T I N T as a funct ion f rom signals to signals. For 
example, suppose the funct ion s ign maps real numbers 

in to An example of an abstraction would be 
a function t s i g n that maps a real-valued signal in to a 

valued signal for each point in t ime. Tempo­
ral abstractions are abstractions whose pointwise defi­
nit ions require reference to signal values over mul t ip le 
times. The impor tant temporal abstractions presented 
below include change, counting, duration, sequences, cy­
cles, frequency, and sampling. 

C h a n g e The funct ion change is t only at moments 
when the underly ing signal has just changed its value, 
otherwise it is n i l . Stay is the obvious negation. An 
example showing the values of these signals over t ime is 
shown below (this and subsequent examples follow the 
convention that and that the more abstract the 
signal the closer it appears to the top l ine): 

(change X) 
(stay X) 

X 
time 

? 
• 

? 

3 
0 

t 
nil 
4 
1 

nil 
t 
4 
2 

nil 
t. 
4 
3 

t 
nil 
5 
4 

Similarly, the abstract signal (event ?from ?to ?S) is 
t whenever the underlying signal ?S has just changed 
f rom ? from to ?to. For example, (event 500 700 S) is t 
where S has just changed f rom 50 to 70: 

(event :any 50 S) 
(event 50 70 S) 

S 
time 

? 
• 

• 

? 
• 

0 

? 
? 
• 

50 
1 

nil 
nil 
50 
2 

nil 
t 
70 
3 

nil 
nil 
30 
4 

nil 
nil 
70 
5 

t 
nil 
50 
6 

A ? from argument of :any denotes the special case of 
any transit ion to ?to, which is useful for mark ing the 
known beginning of an interval , (event :any 50 S) is t 
at t ime 6. However, it is not known to be t at t ime 1 
since the value of S could have been 50 at 0. 

In the domain of troubleshooting circuit boards, it is 
much easier to observe whether a given single-bit signal 
changed or not dur ing an interval of several seconds than 
it is to observe each ind iv idual change. The abstraction 
changing with-rcspect-to is specifically tai lored to mak­
ing statements about whether a given logic level signal 
ever changed, statements that typical ly arise f rom obser­
vations of the circuit , (changing-wrt ?1 ?u ?S) is t only 
at the upper bound t ime ?u and only when ?S changed 
at least once dur ing the interval f rom ?1 to ?u inclusive: 

(changing-wrt 1 6 S) 
(changing-wrt 1 3 S) 

(change S) 
S 

time 

nil 
nil 
? 

■ 

0 
0 

nil 
nil 
nil 
0 
1 

nil 
nil 
nil 
0 
2 

nil nil 
n i l nil 
nil t 
0 1 
3 4 

nil 
nil 
nil 
1 
5 

t 
nil 
nil 
1 
6 

nil 
nil 
nil 
1 
7 

For example, if [ t h r u 6 6 (changing-wrt 1 6 S) t] is 
true it means that S changed at least once between times 
1 and 6 inclusive. 

C o u n t i n g The funct ion count-ww counts the number 
of events that have occurred wi th respect to a window 
of fixed w id th . It takes an argument n that is the w id th 
of the window in units of 6, and a signal argument S: 

(count-ww 3 S) 
S 

time 

« 

t 
0 

? 1 1 
nil nil t 
1 2 3 

2 
t 
4 

2 1 
nil nil 
5 6 
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Sequences The abstract ion sequence indicates when 
a part icular s t r ing of (possibly repeated) values has ap­
peared contiguously on a signal. Given a sequence like 
(0 1) it can be thought of as a f ini te s t r ing recognizer 
for occurrences of the regular expression 0+ 1"+". 

C y c l e s The funct ion cycles-ww is the composit ion of 
the count and sequence abstractions. It is used to count 
the number of endings of a part icular sequence of values: 

Typical ly , the larger the window, the less relative fluc­
tuat ion of the cycle count over t ime. For example, sup­
pose A and B are signals that are just sl ight ly out of phase, 
(cycles-ww n . . . A) and (cycles-ww n . . . B) w i l l have 
the same value most of the t ime, and w i l l never differ by 
more than l . 

The larger the window, the less the relative difference, 
and conversely, the easier to detect significant deviations 
(as for example the difference between a signal occasion­
ally asserted and one that is runn ing at about 20 Khz) . 
By convention, the window size is usually taken to be 
1000 times the expected period of the signal, so that the 
cycles-ww of a pair of signals can be judged as equal if 
they differ by no more than that is, by no more 
than one cycle in a thousand. 

F r e q u e n c y Frequency is the number of cycles that oc­
curred dur ing a window, divided by the durat ion of that 
window. The abstract ion funct ion fww yields the fre­
quency of a signal w i t h respect to a window size and a 
part icular sequence of values. W i t h a sufficiently large 
window relative to the cycle t ime (for example, 1000 
times as large), the result is an adequate approximat ion 
to the normal not ion of "frequency." 

S a m p l i n g The not ion of sampl ing is essential to un­
derstanding behavior of synchronous systems; here, the 
sampling of a signal refers to the values that the signal 
takes on at certain (usually regularly spaced) moments. 
The abstraction funct ion sample-and-hold (abbreviated 
samp) takes two argument signals V and S; V is t where 
the signal S is to sampled. The value of samp is the value 
of S where V was last t: 
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U s i n g T e m p o r a l A b s t r a c t i o n s Abstract ions define 
how a signal such as (11 n48) (the logic level at node 48) 
relates to signals "below" it such as (vo l tage n48), and 
signals "above" it such as (fww 106 ' (0 1) (11 n48)) 
(the frequency at node 48, measured at cycles star t ing 
w i th 0 and w i t h a window of 106 S t ime uni ts) . Abstrac­
tions thus yield rules tha t f i re "upward, " "downward," 
or even "sideways" between different abstractions of the 
same base signal. 

The impor tan t property of temporal abstractions is 
tha t they sacrifice precision w i thou t sacrificing the abil­
i t y to detect faul ty behavior. In troubleshooting the idea 
is to detect discrepancies between the observed behav­
ior of the real device and an idealized model of i t ; thus 
the predictions of interest are those that can be made 
efficiently f rom what we have observed and that could 
be signif icantly violated if the device were broken. The 
change abstract ion is useful because it is easy to observe 
whether signals in a device are changing or not , and easy 
to predict what the consequences of change (or lack of i t ) 
would be. Simi lar ly, the frequency abstraction is useful 
even if frequencies are hard to observe accurately: the 
dist inct ion between zero and nonzero frequencies is easy 
to observe and is l ikely to result in signif icantly different 
behavioral consequences. By summariz ing (possibly very 
long) sequences of events, temporal abstractions make 
complex behaviors look simple enough for troubleshoot­
ing to be tractable. 

5 T e m p o r a l l y Coarse Behav io rs 

Component behaviors can be described w i th respect to 
more than one level or k ind of abstract ion. Given any 
abstraction A and behavior B we can define a funct ion AB 
that describes the abstracted behavior (Figure 1). For 
example, let A be the s ign abstract ion, and let B be real 
addi t ion. The abstracted behavior AB is the qual i tat ive 
addi t ion funct ion qplus (Figure 2). 

An example involv ing temporal abstractions is pro­
vided by the abstracted behavior of a counter that in­
crements on fal l ing edges of its input (Figure 3). By 
temporal ly abstract ing its input and carry-out output 
w i t h respect to the count of fal l ing edges on each signal, 
a 4-bit counter can be viewed as d iv id ing the abstracted 
input by 16. The output frequency would thus also be 
1/16 that of the input . V iewing counters as frequency 
dividers in this way is useful because sometimes their 
inputs have known frequencies that are stable over long 
intervals of t ime. For example, one way that the fre­
quency of the input signal could be known over a long 
interval is if it the ou tput of a 9.8 Mhz oscillator. This 
is approximated as a frequency of 107 cycles per sec­
ond, w i th a window size of a thousand periods, that is, 
1000 seconds: 

The frequency divider behavior allows the program to 
predict what the ou tpu t frequency wi l l be over simi lar ly 



Figure 1: Abstract ions and Behaviors 

Figure 2: Example of Abstract ions and Behaviors 

Figure 3: Counter Behavior w i th Respect to the Count­
ing Abstract ion 

long intervals. Frequency dividers can have mult ip le out­
puts, which by convention are numbered from 0 upwards. 
The frequency at the n th ou tput is that of the in­
put : 

Signals at lower frequencies have longer periods and 
hence require a longer duration to go through 1000 cycles; 
the effect is that the window size at the nth output of a 
frequency divider scales by 

Any behavior can be abstracted using any abstraction. 
Moreover, there is no reason that the same abstraction A 
need be applied to all the signals x, y, and z. Ideally, any 
predict ion made by (A ( B . . . ) ) w i l l also be made by AB. 
However, AB wi l l rarely be able to do so for an arbi t rary 
combinat ion of behavior and abstractions, even when A 
and B are to ta l functions. Abstract ing real addit ion w i th 
respect to s ign, for example, yields the part ia l function 
qp lus (Figure 2). The strengthofkh can be characterized 
by the degree to which it is a to ta l funct ion. One way to 
strengthen a weak funct ion is to make assumptions about 
the relationship between x and y such that AB is stronger 
over the result ing restricted domains. In the case of sign 
addi t ion, one might assume that (s ign x) and (s ign y) 
are never -, so that the result ing restr ict ion of quali tat ive 
addit ion became a tota l funct ion. 

Given a part icular abstraction funct ion A, one should 
ask: for what class of behaviors B it is possible to for­
mulate easily computable and strong abstract behaviors 
AB, or, fai l ing that , what reasonable assumptions can be 
made to strengthen AB. In the case of temporal abstrac­
tions the answer is that they are appropriate for event-
preserving behaviors. Behaviors are even-preserving to 
the extent that changes on their input signals are re­
flected as changes on their outputs (event-preserving be­
haviors include all one-to-one functions). This is such 
a small class that is tempt ing to conclude that the cor­
responding class of d ig i ta l components is so small as to 
be worthless. This is not so, because it is possible to 
structural ly compose groups of digi tal components and 
define abstract signals in such a way that the behaviors of 
the result ing aggregate components are event-preserving. 
Given that freedom, the relevant class of digital circuit 
structures is so diverse as to defy def in i t ion; it is only 
possible to present examples w i th in that space. 

Faced wi th a specific digi tal circuit and the above col­
lection of temporal abstractions, principles are needed by 
which a person can decide how to describe its behavior. 
This model-bui lding process is not automated, but can 
be metaphorical ly understood as "parsing" the circuit 
schematic: grouping components in to composite struc­
tures and abstract ing signals. The three basic principles 
by which behaviors are temporal ly abstracted are reduc­
tion, synchronization, and encapsulation, each discussed 
briefly below. 

R e d u c t i o n Any funct ion of n inputs w i th one of its 
inputs held constant yields a new funct ion of n — 1 in­
puts, and this fact can be used to form a temporal ly 
abstracted behavior for a mul t ip le input behavior under 
the special case of its having one or more constant in­
puts. The result ing behavior is incomplete, of course, in 
the sense that it does not cover cases in which the inputs 
are not constant. It is nevertheless worthwhi le because it 
provides an alternative to the undesirable opt ion of pre­
dict ing all behavior at a temporal ly detailed level. Weak 
temporal ly abstract predictions are better than none. 

The simplest example is the behavior of a two- input 
A N D gate dur ing an interval when one of its inputs is 
a constant 1. By a rule shown earlier, this results in an 
assertion that the ou tpu t and free input are the same 
at each moment dur ing that interval. Th is assertion wi l l 

Hamscher 891 



have consequences for any temporal abstract ion of either 
signal. For example, if the frequency of the free input is 
known then rules w i l l f i re to deduce the ou tput frequency 
as wel l . There are similar rules for the behavior of any 
Boolean gate w i t h all but one of its inputs held constant. 

S y n c h r o n i z a t i o n Many dig i ta l circuits have signals 
that provide t im ing in format ion, and the sampling ab­
stract ion can simpl i fy the behavior of components to 
which they are connected. By representing the behavior 
of a component in terms of its inputs and outputs sam­
pled w i t h respect to a common clock, it may lend itself 
to temporal abstract ion. In part icular i t may tu rn out 
to be nearly event-preserving. 

The simplest example is a falling-edge triggered regis­
ter. I ts basic behavior is not event preserving, because 
events on its data input w i l l not change the register state 
unless the latching input falls too. From another point 
of view, however, the register is jus t a delay element; i ts 
behavior is a one-to-one funct ion, except for the delay 
of one clock cycle. In terms of the temporal abstrac­
tions given above, sampl ing the input and output w i t h 
respect to fal l ing edges on its clock reveals that an event 
on the (abstracted) inpu t must be followed one clock cy­
cle later by the same event on the (abstracted) output . 
A rule that takes advantage of this says that if the input 
is known to be changing (w i th respect to a clock) then 
the ou tpu t is changing (w i t h respect to the same clock), 
provided that the clock frequency was nonzero dur ing a 
window fal l ing w i th in the t ime that the data signal was 
changing: 

Th is can be extended to describe the behavior of a 
shift register, which can be viewed as a cascade of these 
delay elements. If enough changes are observed at the 
shift register inpu t , a lower bound can be derived on the 
number of changes tha t should be observed at its output . 

E n c a p s u l a t i o n Af ter grouping components together, 
their combined behavior may lend itself to temporal ab­
stract ion using reduct ion or synchronizat ion. Figure 4 
shows a circui t tha t is par t of a serial-to-parallel con­
verter; it detects fa l l ing edges on the S ta r t signal and 
asserts its Msb eighteen cycles of the Clock later. A n y 
subsequent fa l l ing edges on the S ta r t signal that occur 
before Msb has been asserted are ignored. 

Encapsulat ion alone does not usually s impl i fy reason­
ing about the behavior of the loop. In this example, the 
behavior of this group of components has jus t as many 
states as the ind iv idua l components. However, the whole 
circui t acts much like a counter (and hence much like a 

frequency divider) w i t h respect to the S tar t l ine. The 
number of fal l ing edges on Msb sampled w i th respect to 
fal l ing edges of the Clock input is bounded f rom below by 

where n is the number of fal l ing edges on the Star t 
signal. The fol lowing rule says tha t if the frequency of 
the S tar t signal is high enough over a long enough in­
terval , then the Msb ou tpu t must have changed at least 
once: 

Th is rule is useful because it can use in format ion about 
temporal ly coarse signals to make predictions about 
other, easily observed signals. Suppose that the only in­
format ion about the input is that it is a stream of 1200 
bytes per second. T h a t is enough in format ion for this 
rule to fire and predict that the Msb ou tpu t ought to be 

2 [ t h r u ?a ?z GR t] means that diagnostic observations 
are made with respect to the time interval ?a to ?z inclusive. 
The interval ?a to ?z is referred to as the "observation inter­
val. " The pattern [ t h r u ?a ?z GR t] appears in a rule to 
ensure that it makes its deductions only during the current 
observation interval. 
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changing, without having to reason about the step-by-
step counter behavior. 

6 Conclusion 
Model-based troubleshooting has not previously scaled 
up to deal with complex devices such as digital circuit 
boards. This is because traditional analytic models of 
complex devices do not explicitly represent aspects of 
the device that are important for troubleshooting. This 
paper has presented an overview of a digital circuit rep­
resentation that was constructed with troubleshooting 
explicitly in mind, a representation that enables a gen­
eral model-based troubleshooting engine to successfully 
diagnose failures in circuits that are more complex than 
any previously attempted. The circuit representation 
that makes this possible is currently embodied in the 
temporal constraint propagation system TINT. 

Much remains to be done. First, on an engineering 
level, TINT is merely a demonstration vehicle; it is too 
slow and its timestamp-oriented ontology is not suffi­
ciently expressive. Second, the fact that the behavior 
rules are ail hand-crafted is a cause for concern; the 
temporally coarse models ought to be derived from more 
basic (temporally detailed) models. Third, the approach 
needs to be generalized. Some preliminary work has been 
done in extending it to the domains of computer net 
works, automobile engines, and physiology. 
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