
Temporally Coarse Representation of Behavior
for Model-based Troubleshooting of Digi tal Circuits

Walter Hamscher
Price Waterhouse Technology Centre

68 Willow Road, Menlo Park, CA 94025
pwtc !hamscher@labrea. Stanford.edu

Abstract

Model-based troubleshooting relies on having a
representation of devices that can provide pre­
dictions about their behavior based on the ob­
servations that the troubleshooter makes. For
complex devices such as digital circuit boards,
the cost of the prediction process is a ma­
jor obstacle to practical model-based trouble­
shooting. But increasing the efficiency of mak­
ing predictions usually means sacrificing pre­
cision — thereby sacrificing diagnostie resolu­
tion so it is important to have a represen­
tation that can provide predictions that are
derived from cheap observations and that are
yet precise enough so that device misbehaviors
will be detectable. This paper presents an im­
plemented representation of board-scale digital
circuits that emphasizes the importance of ap­
propriate temporal abstractions for coping with
behavioral complexity.

1 Mot ivat ion
Model-based troubleshooting is driven by the interac­
tion of predictions and observations. A device model
produces predictions about what ought to be observed;
comparison with observations of the actual device pro­
duce discrepancies; these discrepancies are then traced
to their possible underlying causes in the model and re­
pairs of the actual device proposed. Model-based trou­
bleshooting has been demonstrated in a variety of do­
mains using a variety of implementation technologies
Brown et ai, 1982] [Davis, 1984] [Genesereth, 1984]
Pan, 1984] [Hamscher and Davis, 1984] [Campbell and

Shapiro, 1986] [de Kleer and Williams, 1987] [Dague et
ai, 1987] [Hamscher and Davis, 1987]. It scales well to
deal with structural complexity as measured by sheer
component count [First at ai, 1982] [Scarl ct ai, 1985].
However, for troubleshooting devices with complex time-
dependent behavior, predicting the expected behavior of

*This paper describes research done at the Artificial In­
telligence Laboratory of the Massachusetts Institute of Tech­
nology. Support for the author's research on troubleshooting
was provided by DEC, Wang, Symbolics, and DARPA under
ONR contract N00014-85-K-0124.

the device in response to external stimuli is complex and
expensive, thus constituting a major drawback.

A model-based troubleshooting program that success­
fully diagnoses faults in behaviorally complex digital cir­
cuits is described in [Hamscher, 1988]. The troubleshoot­
ing element is XDE, a domain-independent diagnosis en­
gine based on GDE [de Kleer and Williams, 1987]. The
circuits used as examples are all from the Console Con­
troller Board of the Symbolics 3600. About 40% of the
board has been represented and several troubleshooting
examples run, the largest involving 100 visible circuit
nodes and 20 chips including two microprocessors. This
paper focuses on the representation of circuit behavior
that makes troubleshooting it possible.

There are several approaches to the problem of scal­
ing model-based troubleshooting to deal with complex
behavior. One approach that appears in some form in
nearly every model-based troubleshooting program is to
use a hierarchy of behavioral abstractions, using succes­
sively more detailed models as the diagnosis proceeds.
The problem is that a mere commitment to using lay­
ers of behavioral abstraction says nothing about what
abstractions will be appropriate.

To be appropriate for troubleshooting, abstractions
should retain enough predictive power to detect symp­
toms, but should allow predictions to be made efficiently.
Among the characteristics of digital circuit troubleshoot­
ing are (i) a gap of several orders of magnitude between
the temporal granularity at which events occur in the
machine and the temporal granularity at which obser­
vations can be easily made, and (ii) the fact that the
most commen physical failures are usually manifest at
coarse timescales. These characteristics mean that tem­
poral precision can often be sacrificed without losing too
much predictive force. Temporal abstractions, including
familiar concepts such as frequency, cycles, counting, se­
quence, duration, sampling, and change, make it possible
to reason about large numbers of events occurring in the
circuit without having to refer explicitly to each one.

This paper first presents the temporal constraint prop­
agator TINT. Next, some simple examples of digital
component behaviors as represented with TINT are pre­
sented. Next, several temporal abstractions are pre­
sented. Finally, these temporal abstractions are used
to describe the temporally coarse behavior of some com­
ponents.

Hamscher 887

2 T INT
The behavior of circuit components is represented using
a simple temporal reasoning system in which rules are
used to derive facts about the values of functions of t ime.
A funct ion of t ime is called a signal] for example, the
voltage at a circui t node is a signal because its value can
change over t ime. An event is a change in the value of a
signal.

T I N T is implemented using JOSHUA [Rowley et ai,
1987]; the syntax wi l l be shown as Cambridge prefix PC
w i t h denot ing predicate terms, () denot ing funct ion
terms, and the prefix ? denoting universally quanti f ied
variables. T I N T provides the four-place predicate t h r u
for making assertions about signal values, [t h r u ?1 ?u
?s igna l ?value] means that f rom the lower bound t ime
?1 to the upper bound t ime ?u inclusive, ?s igna l had
value ?value. Any token can appear as the ?value of a
signal.

In contrast to more sophisticated models of t ime (for
example, the interval model in [Al len, 1984]), for simplic­
i ty t ime is taken to be a sparse set, the integers divisible
by a temporal granular i ty constant Granular i ty can
be thought of as the smallest un i t of t ime that is mea­
surable by available instruments. Only integers, and

can appear as t ime arguments to the t h r u and tsame
predicates. Th is use of t imestamps in T I N T rather than
symbolic quanti t ies or expressions results in serious l im i ­
tat ions as compared to other temporal reasoning systems
[Wi l l iams, 1986] [Dean and McDermot t , 1987], but it is
adequate as a demonstrat ion vehicle.

The ?s igna l argument of the t h r u predicate is nor­
mal ly a funct ion term. For example, the te rm (vol tage
(i n a u32a)) denotes the voltage signal at node (i n a
u32a). The vo l tage funct ion maps a node to a real-
valued signal. Abstractions and behaviors are functions
f rom signals to signals. Abstract ions describe relat ion­
ships between signals at different levels of detai l . Behav­
iors describe the relationships that components enforce
between their input and ou tpu t signals. T I N T manipu­
lates assertions w i t h predicate ground terms containing
composite terms bui l t up f rom pr imi t ive signals and ab­
stractions, for ex­
ample, means that the logic-level at node (i n a u32a)
was always 1. [t h r u (change S) n i l] means
(l i teral ly) that the signal result ing f rom the application
of the change abstract ion to some signal S was always
n i l .

T I N T provides rules tha t are used in forward chain­
ing fashion to propagate the consequences of assertions
about signal values. The fol lowing (nonsense) rule says
that if ?x is of type t h i n g , signal ?s has some value ?v
f rom t ime ?1 to t ime ?u, and ?1 is s t r ic t ly less than
?u, then the signal result ing f rom the appl icat ion of
abs t rac t ion to ?s is the result of apply ing fun to ?v:

The set of all t h r u predications (predicate ground
terms) referring to the same signal is called the history of
the signal. T I N T combines overlapping intervals of the

888 Planning, Scheduling, Reasoning About Actions

same history having the same value in to maximal inter-
vals and records a contradict ion if a signal has more than
one value at a given t ime.

A hybr id t r u t h maintenance system maintains
Boolean constraints among predications along w i th min­
imal environments for each assertion [McAHester, 1980]
[de Kleer, 1986].

T I N T provides predicates, rules, and a framework of
signals and abstractions that together are used to de­
scribe circuit behavior. However, the main issue is the
vocabulary of signal types and abstractions and the spe­
cific rules tha t the program wi l l use to reason about
them. The next sections discuss these.

3 Behaviors
Circu i t components have intended behaviors that are
functions f rom signals to signals, and these behaviors
can be translated into rules. The intended behavior of
a component depends on some collection of background
conditions — for example, that the component in ques­
t ion is "work ing" (not physically damaged), that it is
connected to a power source, and so fo r th . By conven­
t ion, the background condit ions for a component are col­
lected and summarized as a mode signal whose value is
normal dur ing the intervals tha t all the conditions are
satisfied. For example, the fol lowing rule says that if a
two- input A N D gate ?a has the status working and is
get t ing power, then its mode is normal:

The pr incipal behavior rules for A N D gates depends
on the mode signal having the value normal. In the follow­
ing rule the signals (11 . . .) denote the digi tal signals
appearing at the input ports (i n 0 ?a), (i n 1 ?a) and
at the output por t (out 0 ?a). If any input of a binary
A N D gate is 0 then the ou tput is 0:

The funct ion over lap tests whether the mentioned in­
tervals have any point in common.

Another rule for the A N D gate says tha t w i th all but
one of its inputs held to 1, it acts as a buffer. In the
two- input case, this means that as long as input ?n is l
the ou tput is the same as input (- 1 ?n) mod 2. [tsame
?1 ?u ? s i g n a l l ?s ignal2] means tha t at every t ime be­
tween the lower bound ?1 and the upper bound ?u inclu­
sive, ?s i gna l l has the same value as ?signal2:

Other forward-chaining rules for describing the be­
havior of components do not correspond to their in ­
p u t / o u t p u t direct ional i ty. For example, there is a rule

that i f the ou tpu t of an an A N D gate is 1 then all of the
inputs must be 1.

The previous examples of behavior rules involved only
combinat ional behaviors. Sequential behaviors require
int roducing signals to expl ic i t ly represent the internal
states of components.

As w i t h any program for reasoning about change,
T I N T encounters the frame problem [McCarthy and
Hayes, 1969] [Shoham, 1986] [Lifschitz, 1987]. The ap­
proach used in T I N T is not general, since it requires that
each component interacts w i th few enough other compo­
nents and in few enough ways that they can all be listed
expl ici t ly. The result is a rule — a frame axiom — for
every state signal that mentions every k ind of event that
could change that state.

A falling-edge triggered register provides the simplest
example of sequential behavior, involv ing only three
rules. The first rule says that (a) the number appear­
ing at the ou tpu t of the register is identical to its state,
and that (b) changes f rom 1 to 0 on the clock input are
" interest ing:"

The value of the abstract signal (event ? from ?to ?s)
is t whenever there has been a change f rom the value
?from to ?to. The value of this abstract signal is recorded
expl ic i t ly only when that event type is marked as "inter­
esting."

The second rule is a state-transit ion rule. Any change
f rom 1 to 0 on the clock input causes the register to
enter the state selected by its data input signal (num
(input 0 ? r)) . The previous state of the register is irrel­
evant. The rule below concludes that dur ing (at least)
the single moment succeeding the t ransi t ion, s ta te had
the value ? input :

The th i rd rule is a persistence rule. The register stays
in whatever state it is in so long as there has been no
change of the clock f rom 1 to 0:

In general, t ransi t ion rules deduce that a component
must have been in a state for just one moment, and
the persistence rules subsequently deduce how long that
state must have lasted.

4 Temporal Abstractions
The not ion of an "abstract ion" takes on a specific mean­
ing in T I N T as a funct ion f rom signals to signals. For
example, suppose the funct ion s ign maps real numbers

in to An example of an abstraction would be
a function t s i g n that maps a real-valued signal in to a

valued signal for each point in t ime. Tempo­
ral abstractions are abstractions whose pointwise defi­
nit ions require reference to signal values over mul t ip le
times. The impor tant temporal abstractions presented
below include change, counting, duration, sequences, cy­
cles, frequency, and sampling.

C h a n g e The funct ion change is t only at moments
when the underly ing signal has just changed its value,
otherwise it is n i l . Stay is the obvious negation. An
example showing the values of these signals over t ime is
shown below (this and subsequent examples follow the
convention that and that the more abstract the
signal the closer it appears to the top l ine):

(change X)
(stay X)

X
time

?
•

?

3
0

t
nil
4
1

nil
t
4
2

nil
t.
4
3

t
nil
5
4

Similarly, the abstract signal (event ?from ?to ?S) is
t whenever the underlying signal ?S has just changed
f rom ? from to ?to. For example, (event 500 700 S) is t
where S has just changed f rom 50 to 70:

(event :any 50 S)
(event 50 70 S)

S
time

?
•

•

?
•

0

?
?
•

50
1

nil
nil
50
2

nil
t
70
3

nil
nil
30
4

nil
nil
70
5

t
nil
50
6

A ? from argument of :any denotes the special case of
any transit ion to ?to, which is useful for mark ing the
known beginning of an interval , (event :any 50 S) is t
at t ime 6. However, it is not known to be t at t ime 1
since the value of S could have been 50 at 0.

In the domain of troubleshooting circuit boards, it is
much easier to observe whether a given single-bit signal
changed or not dur ing an interval of several seconds than
it is to observe each ind iv idual change. The abstraction
changing with-rcspect-to is specifically tai lored to mak­
ing statements about whether a given logic level signal
ever changed, statements that typical ly arise f rom obser­
vations of the circuit , (changing-wrt ?1 ?u ?S) is t only
at the upper bound t ime ?u and only when ?S changed
at least once dur ing the interval f rom ?1 to ?u inclusive:

(changing-wrt 1 6 S)
(changing-wrt 1 3 S)

(change S)
S

time

nil
nil
?

■

0
0

nil
nil
nil
0
1

nil
nil
nil
0
2

nil nil
n i l nil
nil t
0 1
3 4

nil
nil
nil
1
5

t
nil
nil
1
6

nil
nil
nil
1
7

For example, if [t h r u 6 6 (changing-wrt 1 6 S) t] is
true it means that S changed at least once between times
1 and 6 inclusive.

C o u n t i n g The funct ion count-ww counts the number
of events that have occurred wi th respect to a window
of fixed w id th . It takes an argument n that is the w id th
of the window in units of 6, and a signal argument S:

(count-ww 3 S)
S

time

«

t
0

? 1 1
nil nil t
1 2 3

2
t
4

2 1
nil nil
5 6

Hamscher 889

Sequences The abstract ion sequence indicates when
a part icular s t r ing of (possibly repeated) values has ap­
peared contiguously on a signal. Given a sequence like
(0 1) it can be thought of as a f ini te s t r ing recognizer
for occurrences of the regular expression 0+ 1"+".

C y c l e s The funct ion cycles-ww is the composit ion of
the count and sequence abstractions. It is used to count
the number of endings of a part icular sequence of values:

Typical ly , the larger the window, the less relative fluc­
tuat ion of the cycle count over t ime. For example, sup­
pose A and B are signals that are just sl ight ly out of phase,
(cycles-ww n . . . A) and (cycles-ww n . . . B) w i l l have
the same value most of the t ime, and w i l l never differ by
more than l .

The larger the window, the less the relative difference,
and conversely, the easier to detect significant deviations
(as for example the difference between a signal occasion­
ally asserted and one that is runn ing at about 20 Khz) .
By convention, the window size is usually taken to be
1000 times the expected period of the signal, so that the
cycles-ww of a pair of signals can be judged as equal if
they differ by no more than that is, by no more
than one cycle in a thousand.

F r e q u e n c y Frequency is the number of cycles that oc­
curred dur ing a window, divided by the durat ion of that
window. The abstract ion funct ion fww yields the fre­
quency of a signal w i t h respect to a window size and a
part icular sequence of values. W i t h a sufficiently large
window relative to the cycle t ime (for example, 1000
times as large), the result is an adequate approximat ion
to the normal not ion of "frequency."

S a m p l i n g The not ion of sampl ing is essential to un­
derstanding behavior of synchronous systems; here, the
sampling of a signal refers to the values that the signal
takes on at certain (usually regularly spaced) moments.
The abstraction funct ion sample-and-hold (abbreviated
samp) takes two argument signals V and S; V is t where
the signal S is to sampled. The value of samp is the value
of S where V was last t:

890 Planning, Scheduling, Reasoning About Actions

U s i n g T e m p o r a l A b s t r a c t i o n s Abstract ions define
how a signal such as (11 n48) (the logic level at node 48)
relates to signals "below" it such as (vo l tage n48), and
signals "above" it such as (fww 106 ' (0 1) (11 n48))
(the frequency at node 48, measured at cycles star t ing
w i th 0 and w i t h a window of 106 S t ime uni ts) . Abstrac­
tions thus yield rules tha t f i re "upward, " "downward,"
or even "sideways" between different abstractions of the
same base signal.

The impor tan t property of temporal abstractions is
tha t they sacrifice precision w i thou t sacrificing the abil­
i t y to detect faul ty behavior. In troubleshooting the idea
is to detect discrepancies between the observed behav­
ior of the real device and an idealized model of i t ; thus
the predictions of interest are those that can be made
efficiently f rom what we have observed and that could
be signif icantly violated if the device were broken. The
change abstract ion is useful because it is easy to observe
whether signals in a device are changing or not , and easy
to predict what the consequences of change (or lack of i t)
would be. Simi lar ly, the frequency abstraction is useful
even if frequencies are hard to observe accurately: the
dist inct ion between zero and nonzero frequencies is easy
to observe and is l ikely to result in signif icantly different
behavioral consequences. By summariz ing (possibly very
long) sequences of events, temporal abstractions make
complex behaviors look simple enough for troubleshoot­
ing to be tractable.

5 T e m p o r a l l y Coarse Behav io rs

Component behaviors can be described w i th respect to
more than one level or k ind of abstract ion. Given any
abstraction A and behavior B we can define a funct ion AB
that describes the abstracted behavior (Figure 1). For
example, let A be the s ign abstract ion, and let B be real
addi t ion. The abstracted behavior AB is the qual i tat ive
addi t ion funct ion qplus (Figure 2).

An example involv ing temporal abstractions is pro­
vided by the abstracted behavior of a counter that in­
crements on fal l ing edges of its input (Figure 3). By
temporal ly abstract ing its input and carry-out output
w i t h respect to the count of fal l ing edges on each signal,
a 4-bit counter can be viewed as d iv id ing the abstracted
input by 16. The output frequency would thus also be
1/16 that of the input . V iewing counters as frequency
dividers in this way is useful because sometimes their
inputs have known frequencies that are stable over long
intervals of t ime. For example, one way that the fre­
quency of the input signal could be known over a long
interval is if it the ou tput of a 9.8 Mhz oscillator. This
is approximated as a frequency of 107 cycles per sec­
ond, w i th a window size of a thousand periods, that is,
1000 seconds:

The frequency divider behavior allows the program to
predict what the ou tpu t frequency wi l l be over simi lar ly

Figure 1: Abstract ions and Behaviors

Figure 2: Example of Abstract ions and Behaviors

Figure 3: Counter Behavior w i th Respect to the Count­
ing Abstract ion

long intervals. Frequency dividers can have mult ip le out­
puts, which by convention are numbered from 0 upwards.
The frequency at the n th ou tput is that of the in­
put :

Signals at lower frequencies have longer periods and
hence require a longer duration to go through 1000 cycles;
the effect is that the window size at the nth output of a
frequency divider scales by

Any behavior can be abstracted using any abstraction.
Moreover, there is no reason that the same abstraction A
need be applied to all the signals x, y, and z. Ideally, any
predict ion made by (A (B . . .)) w i l l also be made by AB.
However, AB wi l l rarely be able to do so for an arbi t rary
combinat ion of behavior and abstractions, even when A
and B are to ta l functions. Abstract ing real addit ion w i th
respect to s ign, for example, yields the part ia l function
qp lus (Figure 2). The strengthofkh can be characterized
by the degree to which it is a to ta l funct ion. One way to
strengthen a weak funct ion is to make assumptions about
the relationship between x and y such that AB is stronger
over the result ing restricted domains. In the case of sign
addi t ion, one might assume that (s ign x) and (s ign y)
are never -, so that the result ing restr ict ion of quali tat ive
addit ion became a tota l funct ion.

Given a part icular abstraction funct ion A, one should
ask: for what class of behaviors B it is possible to for­
mulate easily computable and strong abstract behaviors
AB, or, fai l ing that , what reasonable assumptions can be
made to strengthen AB. In the case of temporal abstrac­
tions the answer is that they are appropriate for event-
preserving behaviors. Behaviors are even-preserving to
the extent that changes on their input signals are re­
flected as changes on their outputs (event-preserving be­
haviors include all one-to-one functions). This is such
a small class that is tempt ing to conclude that the cor­
responding class of d ig i ta l components is so small as to
be worthless. This is not so, because it is possible to
structural ly compose groups of digi tal components and
define abstract signals in such a way that the behaviors of
the result ing aggregate components are event-preserving.
Given that freedom, the relevant class of digital circuit
structures is so diverse as to defy def in i t ion; it is only
possible to present examples w i th in that space.

Faced wi th a specific digi tal circuit and the above col­
lection of temporal abstractions, principles are needed by
which a person can decide how to describe its behavior.
This model-bui lding process is not automated, but can
be metaphorical ly understood as "parsing" the circuit
schematic: grouping components in to composite struc­
tures and abstract ing signals. The three basic principles
by which behaviors are temporal ly abstracted are reduc­
tion, synchronization, and encapsulation, each discussed
briefly below.

R e d u c t i o n Any funct ion of n inputs w i th one of its
inputs held constant yields a new funct ion of n — 1 in­
puts, and this fact can be used to form a temporal ly
abstracted behavior for a mul t ip le input behavior under
the special case of its having one or more constant in­
puts. The result ing behavior is incomplete, of course, in
the sense that it does not cover cases in which the inputs
are not constant. It is nevertheless worthwhi le because it
provides an alternative to the undesirable opt ion of pre­
dict ing all behavior at a temporal ly detailed level. Weak
temporal ly abstract predictions are better than none.

The simplest example is the behavior of a two- input
A N D gate dur ing an interval when one of its inputs is
a constant 1. By a rule shown earlier, this results in an
assertion that the ou tpu t and free input are the same
at each moment dur ing that interval. Th is assertion wi l l

Hamscher 891

have consequences for any temporal abstract ion of either
signal. For example, if the frequency of the free input is
known then rules w i l l f i re to deduce the ou tput frequency
as wel l . There are similar rules for the behavior of any
Boolean gate w i t h all but one of its inputs held constant.

S y n c h r o n i z a t i o n Many dig i ta l circuits have signals
that provide t im ing in format ion, and the sampling ab­
stract ion can simpl i fy the behavior of components to
which they are connected. By representing the behavior
of a component in terms of its inputs and outputs sam­
pled w i t h respect to a common clock, it may lend itself
to temporal abstract ion. In part icular i t may tu rn out
to be nearly event-preserving.

The simplest example is a falling-edge triggered regis­
ter. I ts basic behavior is not event preserving, because
events on its data input w i l l not change the register state
unless the latching input falls too. From another point
of view, however, the register is jus t a delay element; i ts
behavior is a one-to-one funct ion, except for the delay
of one clock cycle. In terms of the temporal abstrac­
tions given above, sampl ing the input and output w i t h
respect to fal l ing edges on its clock reveals that an event
on the (abstracted) inpu t must be followed one clock cy­
cle later by the same event on the (abstracted) output .
A rule that takes advantage of this says that if the input
is known to be changing (w i th respect to a clock) then
the ou tpu t is changing (w i t h respect to the same clock),
provided that the clock frequency was nonzero dur ing a
window fal l ing w i th in the t ime that the data signal was
changing:

Th is can be extended to describe the behavior of a
shift register, which can be viewed as a cascade of these
delay elements. If enough changes are observed at the
shift register inpu t , a lower bound can be derived on the
number of changes tha t should be observed at its output .

E n c a p s u l a t i o n Af ter grouping components together,
their combined behavior may lend itself to temporal ab­
stract ion using reduct ion or synchronizat ion. Figure 4
shows a circui t tha t is par t of a serial-to-parallel con­
verter; it detects fa l l ing edges on the S ta r t signal and
asserts its Msb eighteen cycles of the Clock later. A n y
subsequent fa l l ing edges on the S ta r t signal that occur
before Msb has been asserted are ignored.

Encapsulat ion alone does not usually s impl i fy reason­
ing about the behavior of the loop. In this example, the
behavior of this group of components has jus t as many
states as the ind iv idua l components. However, the whole
circui t acts much like a counter (and hence much like a

frequency divider) w i t h respect to the S tar t l ine. The
number of fal l ing edges on Msb sampled w i th respect to
fal l ing edges of the Clock input is bounded f rom below by

where n is the number of fal l ing edges on the Star t
signal. The fol lowing rule says tha t if the frequency of
the S tar t signal is high enough over a long enough in­
terval , then the Msb ou tpu t must have changed at least
once:

Th is rule is useful because it can use in format ion about
temporal ly coarse signals to make predictions about
other, easily observed signals. Suppose that the only in­
format ion about the input is that it is a stream of 1200
bytes per second. T h a t is enough in format ion for this
rule to fire and predict that the Msb ou tpu t ought to be

2 [t h r u ?a ?z GR t] means that diagnostic observations
are made with respect to the time interval ?a to ?z inclusive.
The interval ?a to ?z is referred to as the "observation inter­
val. " The pattern [t h r u ?a ?z GR t] appears in a rule to
ensure that it makes its deductions only during the current
observation interval.

892 Planning, Scheduling, Reasoning About Actions

changing, without having to reason about the step-by-
step counter behavior.

6 Conclusion
Model-based troubleshooting has not previously scaled
up to deal with complex devices such as digital circuit
boards. This is because traditional analytic models of
complex devices do not explicitly represent aspects of
the device that are important for troubleshooting. This
paper has presented an overview of a digital circuit rep­
resentation that was constructed with troubleshooting
explicitly in mind, a representation that enables a gen­
eral model-based troubleshooting engine to successfully
diagnose failures in circuits that are more complex than
any previously attempted. The circuit representation
that makes this possible is currently embodied in the
temporal constraint propagation system TINT.

Much remains to be done. First, on an engineering
level, TINT is merely a demonstration vehicle; it is too
slow and its timestamp-oriented ontology is not suffi­
ciently expressive. Second, the fact that the behavior
rules are ail hand-crafted is a cause for concern; the
temporally coarse models ought to be derived from more
basic (temporally detailed) models. Third, the approach
needs to be generalized. Some preliminary work has been
done in extending it to the domains of computer net
works, automobile engines, and physiology.

References
[Allen, 1984] J. Allen. Towards a General Theory of Ac­

tion and Time. Artificial Intelligence, 23(2): 123 154,
July 1984.

[Brown et ai, 1982] J. S. B rown, R. Burton, and
J. de Kleer. Pedagogical, Natural Language, and
Knowledge Engineering Issues in SOPHIE I, I I , and
I I I . In D. Sleeman and J. S. Brown, editors, Intel­
ligent Tutoring Systems, pages 227-282. Academic
Press, New York, 1982.

[Campbell and Shapiro, 1986] S. S. Campbell and S. C
Shapiro. Using Belief Revision to Detect Faults in
Circuits. Research report, Department of Computer
Science, SUNY Buffalo, 1986.

[Dague et ai, 1987] P. Dague, 0. Rairnan, and P. Deves.
Troubleshooting: When Modeling is the Difficulty. In
AAAI-87, pages 600-605, Seattle, WA, August 1987.

[Davis, 1984] R. Davis. Diagnostic Reasoning Based
on Structure and Behavior. Artificial Intelligence,
24(1):347-410, 1984. Also in Qualitative Reasoning
about Physical Systems, Bobrow (ed.), MIT Press,
Cambridge, MA 1985.

[de Kleer, 1986] J. de Kleer. An Assumption-Based
TMS. Artificial Intelligence, 28(2):127-162, 1986.

[de Kleer and Williams, 1987] J. de Kleer and B. C.
Williams. Diagnosing Multiple Faults. Artificial In­
telligence, 32(1):97-130, Apri l 1987.

[Dean and McDermott, 1987] T. Dean arid 1). McDer-
mott. Temporal Data Base Management. Artificial
Intelligence, 32(l) : l -56, Apri l 1987.

[First et ai, 1982] M. B. First, B. J. Weimer, S. McLin-
den, and R. A. Miller. LOCALIZE: Computer-
Assisted Localization of Peripheral Nervous Sys­
tem Lesions. Computers and Biomedical Research,
15(6):525-543, December 1982.

[Genesereth, 1984] M. Genesereth. The Use of Design
Descriptions in Automated Diagnosis. Artificial In­
telligence, 24(1):411-436, 1984. Also in Qualita­
tive Reasoning about Physical Systems, Bobrow (ed.),
MIT Press, Cambridge MA 1985.

[Hamscher and Davis, 1984] W. C. Hamscher
and R. Davis. Diagnosing Circuits with State: An
Inherently Underconstrained Problem. In AAAI-84,
pages 142-147, Austin, TX, August 1984.

[Hamscher and Davis, 1987] W. C. Hamscher and
R. Davis. Issues in Model-Based Troubleshooting.
Memo 893, MIT Artificial Intelligence Lab, March
1987.

[Hamscher, 1988] W. C. Hamscher. Model-based Trou­
bleshooting of Digital Systems. Technical Report
1074, MIT Artificial Intelligence Lab, August 1988.

[Lifschitz, 1987] V. Lifschitz. Formal Theories of Action
(Preliminary Report). In IJCAI-87, pages 966-972,
Milan, Italy, August 1987.

[McAllester, 1980] D. A. McAllester. An Outlook on
Truth Maintenance. Memo 551, MIT Artificial In­
telligence Lab, August 1980.

[McCarthy and Hayes, 1969] J. M. McCarthy and P. J.
Hayes. Some Philosophical Problems from the
Standpoint of Artificial Intelligence. In D. Michie
and B. Meltzer, editors, Machine Intelligence 4,
pages 463-502. Edinburgh University Press, Scot­
land, 1969. Also in Readings in Artificial Intelligence,
B. L. Webber and N. J. Nilsson (eds.), Tioga Press,
1981.

[Pan, 1984] J. Pan. Qualitative reasoning with Deep-
level Mechanism Models for Diagnoses of Mechanism
Failures. In Proc. 1st IEEE Conf, on A.I. Applica­
tions, pages 295 301, Denver, CO, 1984.

[Rowley et ai, 1987] S. Rowley, H. Shrobe, R. Cassels,
and W. C. Hamscher. Joshua: Uniform Access to
Heterogeneous Knowledge Structures, or, Why Josh­
ing is Better than Conniving or Planning. In AAAI-
87, pages 45 52, Seattle, WA, 1987.

[Scarl et ai, 1985] E. Scarl, J. R. Jamieson, and C. I.
Delaune. A Fault Detection and Isolation Method
Applied to Liquid Oxygen Loading for the Space
Shuttle. In IJCAI-85, pages 414 416, Los Angeles,
CA, 1985.

[Shoham, 1986] Y. Shoh am. Chronological Ignorance:
Time, Nonmonotonicity, Necessity, and Causal The­
ories. In AAAI-86, pages 389-393, Philadelphia, PA,
August 1986.

[Williams, 1986] B. C. Williams. Doing Time: Putting
Qualitative Reasoning on Firmer Ground. In AAAI-
86, pages 105 112, Philadelphia, PA, August 1986.

Hamscher 893

