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A b s t r a c t 

This paper presents a new approach to effi­
cient parallel computat ion of stat ist ical infer­
ences. Th is approach involves two heuristics, 
highest impact first and highest impact remain­
ing, which control the speed of convergence and 
error est imat ion for an a lgor i thm that i tera-
t ively refines degrees of belief. When applied 
to causal reasoning, this a lgor i thm provides a 
performance solut ion to the qual i f icat ion prob­
lem. Th is a lgor i thm has been implemented and 
tested by a program called H I T E S T , which 
runs on paral lel hardware. 

1 I n t r o d u c t i o n 
A useful fo rm of stat ist ical inference derives a belief that 
an object is a member of a hypothesis set, given that the 
object is a known member of other sets. For example, 
we might wish to derive the probabi l i ty that Tweety is in 
the set f l y e r s , given tha t she is in the set b i r d s . This 
probabi l i ty can be obtained f rom the value of the statistic 
% ( i l y e r s | b i r d s ) , which captures the propor t ion of 
birds that fly [Kyburg , 1987, Lou i , 1987, Bacchus, 1988]. 
The set on the r ight -hand side of the condit ional bar, 
b i r d s in this case, is called the reference class [Kyburg , 
1983] since it provides a reference f rom which to ascribe 
probabi l i t ies to assertions about its members belonging 
to other sets. 

It is generally agreed that a more specific reference 
class w i l l tend to derive a more appropriate probab i l i t y 1 

[Reichenbach, 1949, Bacchus, 1988, Ether ington, 1987]. 
In the case of Tweety, if we also know that she lives 
in Antarct ica, i t is prudent to incorporate this fact 
in the reference class, using the value of the statist ic 
% ( f l y e r s | b i r d s Pi a n t a r c t i c a n s ) instead. 

However, if we take the pr inciple of specificity to its 
logical extreme, we must incorporate all available knowl­
edge about her in to our reference class, inc luding her 
size, color, age, parentage, etc. In complex domains, it 
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Provided that the relevant statistics are believed with 
equal confidence. This paper ignores this issue in the interests 
of clarity and economy. See Kyburg [1989] and Loui [1987] 
for more details. 

may not be pract ical for a reasoner to consider all these 
potent ia l ly relevant factors. When choosing a reference 
class, an impor tan t consideration is the cost of comput­
ing (or indexing to) the statist ic corresponding to that 
class. Th is aspect has not been addressed by any of the 
above approaches. 

Th is paper presents a solut ion to this problem. Given 
a set of p r imi t ive object-propert ies, this approach incre­
mental ly bui lds more specific reference classes by consid­
ering these properties in order of decreasing magnitude 
of their stat ist ical impacts. As more properties are con­
sidered, the magnitudes of the impacts are used to esti­
mate the current error, and when this is small enough 
and/or t ime is cr i t ica l , the computat ion terminates. 

The problem of reference class choice arises in causal 
reasoning [Weber, 1989] as the famous qualification prob­
lem [McCarthy, 1977]. Therefore, this paper also pro­
vides a performance solut ion to the qual i f icat ion prob­
lem. Section 4 describes this appl icat ion of highest im­
pact heuristics, and Section 5 uses an example of causal 
reasoning as the pr incipal appl icat ion of a system called 
H I T E S T , a parallel implementat ion of these techniques. 

2 Be l i e f Re f i nemen t and I m p a c t 

A key theorem in Bayesian techniques is the fol lowing 
"recursive evidential updat ing" rule: 

which follows easily f rom Bayes rule. It tells us how to 
compute the new statistical value for a hypothesis set 
obtained when a reference class is made more specific 
by intersecting it w i th new factor set 

It w i l l be more convenient to use a logarithmic odds 
version of the above update rule, obtained by dividing 
(1) by the update rule for and taking the natural log­
ar i thm of both sides, i.e. 
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Since these degrees of belief are computed incremen­
tally, at each step of the iteration the reasoner has a 
value which can be used as the belief. The highest im­
pact first heuristic will tend to make this value a better 
estimate (with respect to the value of the statistic based 
on all factors) as more iterations are performed. In this 
way, the reasoner can trade speed (number of iterations) 
off against accuracy (specificity of the reference class). 
The reasoner can respond to requests for both a "quick 
guess" or a "slow analysis", by performing a different 
number of iterations. 

3.2 Highest impact remain ing 
It would be more interesting for the reasoner to be able 
to decide for itself how many iterations are necessary to 
provide a given accuracy. That way, the reasoner can 
spend only as much time computing as the situation re­
quires. This judgment is inherently contingent on the 
impacts of the known dependent factors, e.g. one can 
predict whether the sun will rise tomorrow with great 
accuracy in very little time, whereas it takes much longer 
to make a reasonable prediction about the next hockey 
game. Since highest impact iteration involves scrutiniz­
ing these impacts, it provides a promising framework to 
make the accuracy judgment. 

I propose that a reasonable estimation of the error of 
the prediction at a given iteration is the magnitude of the 
highest impact over all the factors known to contain the 
object in question. If this highest impact is zero, then 
the current prediction is exactly the value of the statistic 
in the KB with the most specific reference class. When 
all impacts but the highest are zero, the absolute error 
is exactly that highest impact. In other cases, the high­
est impact is merely an estimate of the error, but it will 
tend to be reasonable because of the way the statistic 
for the current reference class generalizes over the fac­
tors not currently included. The current statistic asserts 
that over all the possible states of knowledge the agent 
may have with respect to the fluents not yet considered, 
the average sum of all of the impacts will be zero. The 
current highest impact is an upper bound on how much 
the incorporation of a single factor can defy this average. 

To use this heuristic, an error bound is attached to 
each request of the statistical reasoner. At the end of 
each iteration the reasoner examines the highest impact 
that was just added, and if it is less than or equal to 
the error bound specified, then the iteration will stop 
and return the current value as the posterior probabil­
ity. Note that as a special case, if the error bound is 
zero, then highest impact iteration will continue until all 
knowledge about dependent factors is incorporated into 
the reference class. 

3.3 Highest impact i te ra t ion 
For example, suppose we known that Tweety is a bird, 
she lays eggs, swims, and lives in Antarctica, i.e. she is 
a member of each of the following sets: 

b i rds egg-layers swimmers antaxct icans 
The ideal degree of belief that she flies would be equal to 
the statistic conditioned on all of these facts (and possi­
bly many more, in more realistic reasoning situations). 

Weber 901 



Highest impact iteration derives this degree of belief i t -
eratively, as described above, start ing wi th a reasonable 
prior natural log odds of ( f l y e r s animals) = —3 (5% 
of animals fly). This odds value, as well as the impact 
values to follow, are art i f icial. 

On the first i terat ion, the impacts of the known factors 
are as follows: 

( b i r d s , f l y e r s , animals) = 4-5.2 
( egg - l aye rs , f l y e r s , animals) = +1.8 
(swimmers, f l y e r s , animals) = —5 
( a n t a r c t i c a n s , f l y e r s , animals) = —1.6 

The first two impacts embody positive influences on the 
degree of belief that Tweety flies, and the latter two im­
pacts embody negative influences. By HIF, the impact 
of b i r d s is chosen and added to the prior odds, produc­
ing a drastic swing of the belief to -3 + 5.2 = +2.2 (90% 
of birds fly). 

On the next i terat ion, new impacts are used that are 
relative to the reference class an imals b i r d s = b i r d s , 
as follows: 

( b i r d s , f l y e r s , b i r d s ) = 0 
( e g g - l a y e r s , f l y e r s , b i r d s ) — 0 
(swimmers, f l y e r s , b i r d s ) = —.05 
( a n t a r c t i c a n s , f l y e r s , b i r d s ) — —4.4 

The impact of b i r d s has fallen to zero, since any fac­
tor is independent of the hypothesis given itself. Due to 
H IF , an impact of zero wi l l always be considered last; 
this shows how HIF automatically avoids the incorpora­
tion of redundant information. This is further i l lustrated 
by the fact that the impact of e g g - l a y e r s also fell to 
zero, since all birds happen to lay eggs (other egg-layers 
include reptiles). Thus HIF wi l l avoid the redundancy 
of considering less specific factors. 

Also note that the impact of swimmers lessened con­
siderably. To see why, consider that the previous large 
negative impact was due to the fact that most swim­
mers are fish, which in general don't fly. Now that the 
impact is constrained to swimming birds, we find that 
only slightly less than half of swimming birds fly (ducks 
do, penguins don't , etc.). The opposite effect occurs 
wi th a n t a r c t i c a n s : its negative impact magnifies, since 
we know that most Antarctic birds are penguins, which 
happen to not fly. This last impact is the clear winner, 
which is added to the previous log odds value of +2.2, to 
produce an updated belief of —2.2 (only 10% of Antarc­
tic birds fly). On the next i terat ion, the only non-zero 
impact left is: 

(swimmers, f l y e r s , b i r d s a n t a r c t i c a n s ) = —.1 

This impact has become more negative, since there arc 
some flying Antarct ic birds that don't swim. It is added 
to produce a final odds value of —2.3. 

This example has shown how the HIF heuristic leads 
a statistical reasoner down paths of interdependent evi­
dence. Standard approaches to evidential updating are 
better suited for a set of factors that are independent 
given the hypothesis [Pearl, 1988, pg. 38]. Here, how­
ever, the dynamic interactions between the factors' im­
pacts is the most interesting aspect of this approach, 
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and the whole key behind HIF . As more factors are in­
corporated, the remaining impacts wi l l tend to diminish, 
promoting fast convergence. 

Highest impact i teration is summarized by the follow­
ing algori thm: 

HII(hypothesis h, fac tors r, e r ro r e) 
b e l i e f = p r i o r ( h ) 
context = 
whi le r do 

pick f of r with max abs(impact (f ,h,context)) 
delete f from r 
be l i e f = b e l i e f + impact( f ,h ,context ) 
add f to context 
i f impact (f , h , context) e then break 

re tu rn be l i e f 
As wi th the EvUpdate algorithm before, the time com­
plexity of HI I depends on the number of iterations, 
which this time is at most the number of known factors. 
Thus this algorithm may perform substantially fewer it­
erations, depending on the individual impacts and the 
error bound specified. However, H I I must produce and 
rank all impacts for each i terat ion, instead of just the 
factor chosen in EvUpdate. Section 5 shows how this 
apparent inefficiency can be overcome by evaluating the 
impacts in parallel. 

4 Stat ist ical Causal Reasoning 
Having now outlined the basics of statistics and highest 
impact heuristics, I turn to their application to causal 
reasoning. Since I have described a statistical nota­
t ion using sets, it wi l l be convenient to use a set-based 
causal notation when combining the concepts of statisti­
cal inference and causal reasoning. This section reviews 
the approach to statistical causal reasoning from Weber 
[1989], and then goes on to show how highest impact 
iteration provides a new technique for efficient causal 
reasoning. 

4 .1 S t a t i s t i c a l causal ru les 

We start wi th a totally-ordered countable set of moments 
M, also known as a discrete t ime line. The successor 
to a moment m is represented by m'. This paper uses 
the common convention of using integers to represent 
moment constants. 

A fluent is simply a set of these moments; for example, 
the fluent i g n i t i o n is the set of all moments at which 
the car's key is turned. The fact that a fluent, is true 
of a particular moment is represented by set member­
ship, e.g. 1 i g n i t i o n . A collection of these set mem­
bership assertions comprises the reasoner\s situational 
knowledge. 

An agent's statistical causal knowledge consists of con­
dit ional statistical assertions about fluents. This knowl­
edge represents what is known about the domain in gen­
eral. Specifically, I wi l l use statistical assertions about 
how fluents that contain a moment m influence whether 
other fluents contain , e.g. 

That is, the proportion of t ime points in which the car is 
running preceded by a t ime point in which the key was 



turned is equal to Since I w i l l be using rules of this 
form extensively, I w i l l use the shorthand notat ion for 
the set 

4.2 S p e c i f i c i t y as a r e p r e s e n t a t i o n a l s o l u t i o n to 
t h e q u a l i f i c a t i o n p r o b l e m 

McCar thy [1977] introduced the most famous example 
of the quali f icat ion problem, called the "potato in the 
ta i lp ipe" scenario. Suppose you get in your car, and tu rn 
the key. You might expect the car to start , despite not 
knowing (for sure) whether the battery is st i l l charged, 
whether the ign i t ion system is intact , whether there is 
a potato in the ta i lp ipe, nor whether any of a long list 
of relevant fluents hold. The quali f icat ion problem asks 
how a reasoner can make a causal predict ion based on 
a reasonable body of evidence. These predictions are 
necessarily defeasible. 

It is well known that stat ist ical ly-founded beliefs such 
as I have described have defeasible characteristics [Ether-
ington, 1987, Neufeld and Poole, 1988, Bacchus, 1988], 

the preferred statist ical belief in the proposit ion 
can change (increase or decrease) as a result of 

new knowledge about x's inclusion in other sets. For ex­
ample, a reasoning system may have the fol lowing rule: 

( r u n n i n g * | i g n i t i o n ) = ln(20), 

which says that the odds are twenty to one that the car 
wi l l be running after the igni t ion is engaged. This statis­
tic is used if i g n i t i o n is the only contextual informat ion 
known. If it is also known that there is a potato in the 
tai lp ipe, then by specificity, the fol lowing statistic wi l l 
be used: 

( r u n n i n g * | i g n i t i o n p o t a t o ) — l n ( l / 1 0 ) 

which says that the odds are ten to one against the car 
star t ing. In this way, the addit ion of more situational 
knowledge can override previous assessments of statis­
t ical belief, provid ing a representational solution to the 
q u al i fi cation problem. 

4.3 H i g h e s t i m p a c t i t e r a t i o n as a p e r f o r m a n c e 
s o l u t i o n t o t h e q u a l i f i c a t i o n p r o b l e m 

App ly ing highest impact i terat ion takes the above repre­
sentational solut ion to the quali f ication problem one step 
farther, by control l ing the tradeoff between the amount 
of evidence that specificity says to incorporate, the t ime 
the reasoner has to act, and the accuracy required by 
the s i tuat ion. In the car star t ing example, specificity 
says that generally irrelevant factors such as the day of 
the week and the current U.S. president should be incor­
porated, since they are known properties of the moment 
in question. Highest impact i terat ion would preclude the 
consideration of these factors, unless an unusual al ign­
ment of already considered factors made their impacts 
significant. Th is solut ion solves a stronger version of the 
quali f icat ion problem than addressed in previous work: 
that the reasoner should employ whatever evidence is 
practical given the performance demands of the reason­
ing s i tuat ion. 

Figure 1: Flow of in format ion w i th in H I T E S T . 

5 Parallel Impact Computations 

Since impacts are sensitive to the nature of the current 
reference class, they must all be recomputed at each iter­
at ion, or at least examined to see if they must be recom­
puted. This would seem to be a prohibi t ively expensive 
operation. It would be senseless to use an algori thm 
where the complexity of a single i terat ion rivals the en­
t ire running complexity of more "naive" algorithms. 

Fortunately, this problem is solved by the power of a 
key insight: the impacts for the individual factors can 
be computed in parallel. The parallel t ime complexity to 
compute the impacts is then merely the max imum t ime 
it takes to compute a single impact. 

This approach is implemented by the H I T E S T (High­
est Impact Techniques for Empir ical STatistics) sys­
tem, which runs on the RBN Butter f ly multiprocessor. 
H I T E S T invokes parallel process control and message 
passing pr imit ives f rom the SMP package [LeBlanc et 
a/., 1986J, developed here at the University of Rochester. 
The flow of informat ion in H I T E S T is depicted in Fig­
ure 1. Statist ical causal rules are encoded in the flu­
ents' prior probabil i t ies, stored in the central accumula­
tor, and the reference class dependent impacts stored at 
the fluent processors. The si tuat ional knowledge is en­
coded by which fluent processors respond to the input 
moment exactly those processors whose corre­
sponding fluents contain 

5.1 T h e c e n t r a l a c c u m u l a t o r 

The accumulator collects incoming impacts from the flu­
ent processors, and picks the highest. The winning im­
pact is then added to the current degree of belief, im­
plementing the highest impact first heuristic described 
in the last chapter. If the winning impact is less than or 
equal to the input accuracy, then the accumulator an­
swers the original request by returning the current de­
gree of belief, implement ing the highest impact remain­
ing heuristic. Otherwise, it broadcasts the name of the 
winning fluent processor to the fluent processors, and 
repeats the procedure in this paragraph. 

5.2 T h e f l uen t p rocesso rs 

H I T E S T uses fluent processors for n pr imi t ive fluents. 
A fluent processor is enabled, allowed to send im­
pacts to the accumulator, if the input moment belongs 
to the processor's fluent. An enabled processor for flu­
ent starts by sending its prior impact to the 
accumulator. I t waits unt i l the accumulator returns the 
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[2] h i test running 0.2 + igni t ion -running -damp\ 
+cold +heater 

Timer started. 
Prediction is now -1.935520 

-damp .012499 
+ ign i t ion 4.733500 
+cold -.139392 
-running -1.590289 
+heater .001621 

+igni t ion has highest impact 4.733500 
Prediction is now 2.797979 

-damp .128041 
-running -.465519 
+heater .037387 
+cold -.765457 
+ ign i t ion -.000000 

+cold has highest impact -.765457 
Prediction is now 2.032521 

-damp .139698 
+cold .000000 
+ ign i t ion .000000 
+heater .331753 
-running -.779762 

-running has highest impact -.779762 
Prediction is now 1.252759 

-damp .097163 
-running .000000 
+heater .514899 
+cold .000000 
+ ign i t ion .000000 

+heater has highest impact .514899 
Prediction is now 1.767658 

+damp .178248 
+running .000000 
+cold .000000 
+ ign i t ion .000000 
+heater .000000 

-damp has highest impact .178248 
Complete with f i n a l predict ion of 1.945906 
Elapsed time: 1.085687 seconds 

Figure 2: An example run of H ITEST . 

name of the winner, and then computes the new revised 
impact, and repeats the send-revise loop. 

The impacts are revised incrementally. A fluent pro­
cessor can be thought of as a finite state machine, whose 
transitions are labeled by the values of the last high­
est impact, winner. Each transition, or equivalently, the 
new state the transition points to, causes a specific im­
pact value to be output. Therefore, the state of the 
FSM is an encoding of the current reference class in the 
computation, with the start state corresponding to the 
vacuous reference class M. With this approach, impact 
revision takes constant time to index to and follow a 
state transition. 

5.3 H I T E S T example r u n 

Figure 2 shows the results from a request to know the 
degree of belief that the car will be running to an accu­
racy of 0.2, given that the car is currently not running, 
the ignition is engaged, the weather is cold but not damp, 
and the car has a device called a "block heater", which 

helps the car start in cold weather. The accumulator 
spawns the processes corresponding to these fluents, and 
then starts the i terat ive refinement of the degree of belief. 
At the start of each i tera t ion, the accumulator pr ints out 
the current belief, which starts out as the prior probabi l ­
i ty of r u n n i n g . Thus the (non- logar i thmic) pr ior odds 
starts as approximately the car is run­
ning dur ing one-eighth of the moments. The data used 
to derive the priors and impact values are art i f ic ia l ; see 
Section 6 for more in format ion on the derivat ion of these 
values. 

The doubly- indented lines contain the impacts for the 
ind iv idua l fluent programs (they appear in different or­
ders on different i terat ions because the fluent processors 
are asynchronous). Notice tha t i g n i t i o n jumps out as 
the winner, w i t h r u n n i n g as a distant second. After 
i g n i t i o n is chosen to be added, the belief j umps f rom 
(non- logar i thmic) 1/7 to 1 6 / 1 . Th is belief reflects that 
the car starts fa i r ly rel iably, and also the fact that the 
car w i l l generally remain runn ing when the ign i t ion is 
engaged. On the next i terat ion, notice how the impact 
of i g n i t i o n drops to zero. The f luent c o l d is chosen 
and added to the degree of belief. 

On the th i rd i terat ion, notice tha t the impact of the 
block heater has increased dramat ica l ly ; this is because 
the impact is now evaluated w i t h respect to c o l d , i.e. a 
block heater is only a significant factor when the weather 
is cold. However, its impact is obscured by the more 
impor tan t f luent r u n n i n g , so h e a t e r is not considered 
unt i l the four th i terat ion. 

On the fifth i terat ion, the impact of damp has fallen 
below the specified error bound. The accumulator stops 
the execution of the fluent programs, and returns a value 
of 1.94, representing a 99% belief that the car w i l l start 
in the given s i tuat ion. 

The "star" communicat ion topology of Figure 1 is ac­
tua l ly a special case of the topology used in H I T E S T . 
H I T E S T builds a tree of communicat ing processes, 
where the accumulator is at the root and the fluent pro­
grams are at the leaves. The use of a mult i - level tree 
allows the search for the max imum impact to be con­
ducted in paral lel . 

6 Compil ing Impacts f rom Observations 
A fluent program's impact table is what distinguishes 
i t f rom other f luent programs. Th is table contains the 
impact of the program's f luent on every " fu ture" f lu­
ent, w i t h respect to every possible reference class, For 
n fluents the dimensions of this table are n by 3n by 2. 
The last factor of two comes f rom the fact that a fluent 
program knows the impacts of bo th the f luent and its 
negation (one is not derivable f rom the other, al though 
they must satisfy a consistency constraint) . In general, 
the exponential size of the impact tables produced by 
F I L L E R U P wi l l not be pract ical . In practice, however, 
a domain may support a large number of condi t ional in­
dependence assumptions tha t al low these tables to be 
reduced to a reasonable size. 

Even ignor ing the ted ium of construct ing these ta­
bles by hand, subtle errors in the table values can make 
the impact assignments inconsistent. The constraint be-
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tween the impact of a fluent and the impact of i ts 
negation is as follows: there must exist two real num­
bers and such tha t and 
In addi t ion, there is a constraint on impacts of different 
f luents that stems f rom the fact that the posterior prob­
abi l i ty is the same for any order of consideration of the 
fluents, 

Thus the impacts contain some redundancy, both w i th in 
a single fluent program and between fluent programs. 
This makes it very dif f icult to ensure consistency in 
hand-coded tables. 

The program F I L L E R U P (Fabricated Impacts Lo­
cally . . .forget i t ) program performs the off-line compi­
lat ion of these impact tables. The input to F I L L E R U P 
is an array of weighted outcomes each of which contains 
a before part, an after part, and a weight. The before 
and after parts are each boolean assignments to the set 
of pr imi t ive fluents, an encoding of what was true 
dur ing a moment m and its successor The weight 
expresses how many times that part icular "confluence of 
fluents" was observed. 

In a real sense, the F I L L E R U P program derives sta­
t ist ical causal rules f rom domain observations (simulated 
observations, in my examples). Th is removes the bur­
den of specifying informat ive and consistent causal rules 
f rom the knowledge engineer. The derivation of causal 
rules is rarely even discussed in t rad i t ional approaches, 
largely due to the dispari ty between empir ical observa­
tions and constructions like default rules. Furthermore, 
the impact values can be computed by scanning the out­
come data in a single pass. Therefore, the impacts can 
be incremental ly computed as new outcome data arrives. 
Though H I T E S T and F I L L E R U P do not at tempt to 
do this, it is stra ight forward to construct a system that 
" t ra ins" on domain observations, even when intermixed 
wi th requests for predictions. 

7 S u m m a r y 

It may not be practical for a statist ical reasoner to base 
a degree of belief in a hypothesis on all factors known 
about the object question. The highest impact first 
heuristic defines an order of importance of these fac­
tors, based on their relative statist ical impacts on the 
hypothesis. Th is inspires an i terat ive procedure where 
the degree of belief is incremental ly refined, al lowing the 
reasoner to trade predict ion speed for accuracy. Further­
more, the highest impact remaining heuristic provides a 
way to estimate the current accuracy given the value of 
the highest impact . 

Highest Impact I terat ion becomes a practical ap­
proach when the stat ist ical impacts can be computed 
in paral lel . Th is suggests a parallel architecture where 
ind iv idua l asynchronous units compute relevant impacts 
and send these values to a central node that accumu­
lates the highest impacts for each i terat ion. H I T E S T is 
a work ing program on the B B N But ter f ly that performs 
this incremental refinement of stat ist ical beliefs f rom im­
pacts computed in paral lel . The priors and impacts for 

this computat ion are compiled f rom real or simulated 
empirical observations. 

Causal reasoning is a promising appl icat ion of highest 
impact i terat ion. The use of statist ical causal rules is 
a powerful generalization of the t rad i t ional default rule 
approach, w i th highest impact i terat ion strengthening 
its solution to the quali f ication problem by guiding the 
search for a practical body of evidence. For more detail 
on all of these issues, see Weber [1989]. 
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