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Abst rac t 
A planning problem is time-dependent, if the 
time spent planning affects the uti l i ty of the 
system's performance. In [Dean and Boddy, 
1988], we define a framework for construct­
ing solutions to time-dependent planning prob­
lems, called expectation-driven iterative refine­
ment. In this paper, we analyze and solve a 
moderately complex time-dependent planning 
problem involving path planning for a mobile 
robot, as a way of exploring a methodology 
for applying expectation-driven iterative refine­
ment. The fact that we construct a solution 
to the proposed problem without appealing to 
luck or extraordinary inspiration provides evi­
dence that expectation-driven iterative refine­
ment is an appropriate framework for solving 
time-dependent planning problems. 

1 Introduction 
We are interested in the problem of controlling an au­
tonomous agent embedded in the real world ( i.e., a 
robot). In order to act effectively in a complex envi­
ronment, the agent will most likely need to reason about 
sequences of predicted events, some corresponding to its 
own actions, some the result of other processes. We call 
this reasoning process planning. In some situations, the 
time required to plan may be considerable. Predicted 
events may provide constraints on the amount of time 
available or otherwise affect the cost of time spent plan­
ning. We say that a planning problem is tunc-dependent 
if the time spent planning has a cost ( i.e., affects the 
uti l i ty of the agent's performance). 

In [Dean and Boddy, 1988], we define a framework for 
constructing solutions to time-dependent planning prob­
lems that we call expectation-driven iterative refinement. 
This framework is intended to restrict the form of the so­
lutions generated, in order to make their analysis easier. 
Planning using expectation-driven iterative refinement is 
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accomplished using a set of decision procedures known 
as anytime algorithms. Anytime algorithms are defined 
as algorithms that return some answer for any alloca­
tion of computation time, and are expected to return 
better answers when given more time. A solution to 
a time-dependent planning problem using expectation-
driven iterative refinement wil l consist of a set of anytime 
algorithms for planning, and a deliberation-scheduling al­
gorithm that allocates computational resources to the set 
of anytime algorithms based on expectations regarding 
their performance. 

In this paper, we take the first steps in developing 
a methodology for applying expectation-driven iterative 
refinement to time-dependent planning problems. As 
an example of what such a methodology should consist 
of, consider the use of divide-and-conquer as a strategy 
for solving combinatorial problems. Divide-and-conquer 
is a useful strategy for problems that can be decom­
posed, such that the resulting subproblems have sub­
stantially easier solutions. The literature offers a great 
deal of advice on how to go about decomposing a par­
ticular problem ( e.g., keeping the size of the subprob­
lems approximately equal [Aho ct a/., 1974]). Problems 
that are not completely decomposable may have approx­
imate divide-and-conquer solutions based on the intro­
duction of appropriate assumptions ( e.g., Karp's par­
tition for TSP [1977]). Analogously, a methodology for 
expectation-driven iterative refinement will require some 
way of identifying planning problems as likely candidates 
for expectation-driven iterative refinement, and a set of 
methods for generating solutions. 

We proceed with the development of a methodology 
for expectation-driven iterative refinement by applying 
it to a moderately complex robot planning problem. The 
process of constructing a solution provides some insight 
into what a methodology for expectation-driven iterative 
refinement will look like. It also helps validate our claim 
that the framework itself is useful in that we construct 
a useful solution without appealing to luck or extraordi­
nary inspiration. In the next section, we present a robot 
planning problem, and discuss how to break the problem 
down into pieces suitable for implementation as anytime 
algorithms. The rest of the paper describes our solution 
in detail. 
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2 T h e r o b o t cour ie r 

Suppose that we are in charge of designing the control 
program for a new model of robot courier for a deliv­
ery service in Manhat tan. The funct ion of these couriers 
is to pick up small parcels and deliver them to speci­
fied locations. Assuming that a courier completes all of 
its assigned deliveries, the main factor in evaluating the 
courier's performance wi l l be the speed w i th which it ac­
complishes this task. The faster deliveries are made, the 
more deliveries a courier can make, and the more income 
i t w i l l generate. 

In any world where the robot does not have complete 
in format ion, the exact u t i l i t y of a part icular course of 
action cannot be determined a priori. If we can formu­
late expectations regarding the exact state of the world 
(possibly conditioned upon informat ion that the robot 
has some way of obtaining) then it is possible to calcu­
late the expected u t i l i t y of a proposed course of action. 
This is the metric on the robot's performance that we 
seek to maximize. The u t i l i t y of the robot's performance 
we define in terms of the t ime required to complete the 
entire set of deliveries ( i.e., the less t ime, the better). 

How might a robot courier plan, in order to do its 
job better? The robot must fix upon a tour that visits 
all of locations on its current list of deliveries. We refer 
to this as tour improvement planning. Choosing a tour 
may have considerable impact on the length of t ime re­
quired to visit al l the locations. Once the robot has an 
ordering for the locations, it may spend t ime determin­
ing how to get f rom one to another of them. We refer 
to this as path p lanning. We assume that path planning 
is accomplished by constructing an ordered set of tar­
get points between the two locations. Planning in any 
greater detail we ignore. Arguably, the tasks involved in 
navigating between target points are sufficiently routine 
that "p lanning" is not normal ly required.1 In addi t ion, 
whatever work is done on achieving tasks at lower lev­
els wi l l be local in scope (determining which door to go 
in , avoiding bumping into things, etc.) and should not 
greatly affect the expected u t i l i t y of tour improvement 
or path planning.2 

The benefit to be expected f rom either tour improve­
ment or path planning w i l l depend on the current situa­
t ion. F inding a tour that avoids the area around the 
Lincoln Tunnel at rush hour is most likely t ime well 
spent. On the other hand, if the next location to visit is 
straight down 5th Avenue f rom the robot's current po­
sit ion, there may be only a minor benefit to refining a 
path to get there. In either case, t ime spent planning 
may hurt more than it helps if it causes the robot to 
delay too long. Deliberation scheduling for the robot 
courier consists of al locating t ime to algorithms for tour 
improvement and path planning based on the expected 
improvement in the robot's performance. An optimal 
deliberation schedule for a given si tuat ion is a deliber-

1See, for example, [Brooks, 1985]. 
We are not ignoring the possibility that the robot may 

fail at low-level tasks so as to require additional planning. 
The possibility of failure is included in the expected uti l i ty 
of the plans generated. 
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ation schedule that maximizes the expected ut i l i ty of 
the robot's performance in that s i tuat ion. An opt imal 
deliberation scheduling a lgor i thm always generates the 
opt imal schedule for the current s i tuat ion. A l l the de­
l iberation scheduling algorithms discussed in this paper 
are opt imal . 

In the next section, we describe an experimental do­
main w i th in which we have implemented a solution to 
the robot courier problem. 

3 T h e g r i d w o r l d 

One of the salient characteristics of solutions using 
expectation-driven iterative refinement is their reliance 
on expectations to support deliberation scheduling. Us­
ing expectations is necessary because we have no way 
of determining the precise behavior of the planning al­
gorithms employed by the robot, apart f rom actually 
running them. Accordingly, an impor tant part of con­
struct ing a solution to the robot-courier problem consists 
of gathering statistics on which to base expectations re­
garding the anytime algorithms for path planning and 
tour improvement. For the purposes of this exercise we 
have designed a simulated world in which the required 
statistics can be gathered easily. We call this simulated 
world the gridworld. The gr idworld consists of a rectan­
gular subset of the integer plane where each point 
is a location that may be occupied by the robot, or by 
something else, but not both. The robot can move onto 
any of the 4 neighbors of the point it currently occupies, 
provided that neighbor is not already occupied. We de­
fine the distance between adjacent locations to be one 
unit . The robot has a map of the wor ld , and is capa­
ble of f inding its way f rom one point to another wi th­
out a planned path, by keeping track of the heading of 
the destination as it performs a form of obstacle avoid­
ance. Path planning helps because a planned path may 
be more direct. 

The statistics we needed were gathered over randomly-
generated instances of the gr idworld w i th a predeter­
mined size and a fixed probabi l i ty that any given loca­
t ion is occupied (.2). We wi l l refer to these instances as 
standard gridworlds. 

4 A n y t i m e a l g o r i t h m s 

In this section, we present and analyze anytime algo­
r i thms for path planning and tour improvement in the 
gr idwor ld. Before proceeding w i th our analysis, we in­
troduce some terminology and notat ion: 

• is a set of locations, defined as points in the integer 
plane 

• is a tour; an ordered sequence of 
locations in 

• dij is the distance between locations and In 
the gr idwor ld, equals the sum of the difference 
in x and coordinates between and 

• T>s is the length of the tour S 
• is the mean speed of the robot, moving without 

incident or obstacle. We assume that the t ime re-
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Figure 1: Performance profile for path planning 

quired to attain this speed is small compared to the 
time the robot spends traveling between locations. 

• Tij(6) is the expected amount of time required to 
go from li to , given an amount of time S spent 
planning a path. 

• Tij = Tij(0) is the expected amount of time re­
quired to go from /, to lj, without a path. 

4.1 P a t h p l ann ing 
The robot plans a path from one location to another by 
constructing an ordered set of adjacent locations (target 
points), starting at the init ial location and working to­
ward the destination. The algorithm used is a heuristic 
search similar to an algorithm descri bed in [Korf, 1987].3 

In the grid world, the algorithm when run to completion 
produces a path whose length averages 1.07 * the dis­
tance between the begin and end points, and examines 
a number of locations averaging 1.1 * the distance from 
one location to the other. Since it proceeds by searching 
from the init ial point towards the destination, it can be 
interrupted at any time to return a partial path whose 
expected length is a linear function of the time spent 
planning, as is the expected distance remaining to the 
destination. 

The robot can traverse a path at speed v, so that 
the expected time required to go from l\ to l? given a 
completely defined path is a * (dij/v), where a = 1.07. 
The mean time required to move from one location to 
another without a path ( i.e., working around obstacles 
as they are encountered) turns out to be a linear function 
of the distance between them. For standard gridworlds, 
the constant involved is approximately 3. Thus Tij = 
b + dij/v, where b « 3. In the interests of simplifying the 
analysis in the rest of this paper, we assume that a = 1 
and 6 = 3. 

We define /i(<5) to be Tij — Tij (6), the expected time 
saved by a partially defined path generated using an al­
location of deliberation time S. Then /i(£) = ^ j , up 
to 6 = Tpfdij, where Tpt equals the expected amount of 
time required to add another target point to an existing 
path.4 Figure 1 shows how the expected savings in travel 

3Basically A*, using the distance to the goal as a heuristic 
evaluation function. 

4 We assume that the robot can work on a path between 
two locations only before it starts moving between them. 
This is a stronger assumption than we might like, but it can 
be relaxed fairly easily at the cost of complicating the de-
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Figure 2: Performance profile for tour improvement 

time varies with the time spent planning. We call such a 
function a performance profile for the anytime algorithm. 
The dependent variable for a performance profile may be 
any characteristic of the result of an algorithm that we 
find significant. One anytime algorithm could have sev­
eral performance profiles tracking different attributes of 
the results it returns. 

4.2 Tour improvemen t 
We assume that the cost of a tour equals the total dis­
tance traversed. Though we make the assumption, it 
is not apparent that a minimum-distance tour will take 
minimal time to traverse, including planning time. In 
fact, it is possible to construct two tours such that the 
longer one is expected to take less time to traverse. How­
ever, our expectations regarding the result of tour im­
provement are in terms of the length of the entire tour, 
not the distribution of the distances between individ­
ual locations. Thus we can make no better assump­
tion about the individual distances than that they are 
all equal. Given two tours of different lengths, both 
assumed to have all individual distances equal, the ex­
pected time to traverse the longer tour will be greater. 

To construct a useful anytime algorithm, we need an 
initial answer whose cost is known, and some measure of 
how that cost is expected to improve with deliberation 
time. For tour improvement planning, the initial cost is 
the length of the initial tour (choose one at random, if 
necessary), and the optimal cost is the length of the opti­
mal tour. The length of the optimal tour for n grid world 
locations can be approximated by 1.2d(n) , where d is 
the mean distance between the points on the tour, with 
a standard deviation of about 10% for tours of between 
10 and 15 locations. 

The next step is to find an anytime algorithm for tour 
improvement planning. Edge-exchange algorithms [Lin 
and Kernighan, 1973J produce tours that are progres­
sively closer to optimal by exchanging small sets of edges 
(typically 2 or 3) such that the length of the overall 
tour decreases. It has been shown empirically that for 
large (100 city) tours, these algorithms average within 
about 8% of the optimal tour length when run to com­
pletion [Lawler et a/., 1985]. In the grid world, a tour-
improvement algorithm that looks for pairs of edges to 
exchange averages within 2% of optimal when run to 

liberation scheduling algorithm (reschedule, breaking up the 
area to be traversed into planned and unplanned segments). 
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Figure 4: A deliberation schedule for path planning 

there is no other schedule for which the robot is expected 
to complete the tour in less t ime. The procedure works 
backward f rom the last path to be traversed, ensuring 
that each path is allocated the max imum useful amount 
of t ime. There may be times where the robot is pre­
dicted to be traversing a path and all later paths have 
already been allocated as much t ime as wi l l produce any 
improvement. The length of the earliest such predicted 
idle t ime is the value of the variable gap. The algor i thm 
is simplif ied considerably by the fact that c is the same 
for any path ( i.e., as long as it doesn mat­
ter which gets allocated, for . That c is a 
constant is a property of the grid wor ld, not an assump­
t ion we make. Figure 4 shows a deliberation schedule 
constructed for an example tour. The shaded regions 
represent t ime allocated for del iberation. 

5.2 P r - I I 

F r - I I extends Pr-I by al lowing S to be reordered, but 
only before any path planning gets done. In other words, 
if the in i t ia l tour is far f rom opt ima l , we expend some 
effort improving it before doing path planning. Given S, 
we can generate a del iberation schedule for path plan­
ning using Sched-1. Sched-1 returns the expected t ime 

The procedure given in Figure 3 is opt imal in exactly 
the sense defined in Section 1. In other words, the algo­
r i t hm generates a deliberation schedule for S such that 

5 D e l i b e r a t i o n schedu l ing 
In this section, we discuss deliberation scheduling for 
three restricted versions of the robot-courier problem: 
P r - I . Deliberation scheduling for path planning for a 

fixed sequence of locations. 
P r - I I . Del iberat ion scheduling for tour improvement 

followed by path planning for the improved tour. 
P r - I I I . Deliberation scheduling for a l imi ted interleav­

ing of tour improvement and path planning. 



to complete S, i nc l ud ing p a t h p lann ing t i m e . We also 
know the expected length of the tou r S' resu l t ing f r o m a 
g iven a m o u n t o f t ime a l located to t ou r improvement . To 
calculate the expected u t i l i t y o f t ou r improvement , we 
need the expected t i m e requ i red , i nc lud ing pa th p lan­
n ing t i m e , to complete We have no bet ter in fo rma­
t i o n t han the assumpt ion t h a t a l l the distances between 
locat ions in S' are equal . So the p a t h p lann ing p rob lem 
involves pa ths , a l l o f leng th 

In th is case, the expected t i m e to complete the tour 
given an o p t i m a l de l ibera t ion schedule can be expressed 
as a l inear f unc t i on of d (and thus of There are 
four cases, depending on the value of c. T h e cases are 
d is t ingu ished by d i f fe r ing values of c and In the f irst 
case, the expected benef i t f r o m p a t h p l ann ing is so h igh 
t h a t each p a t h is a l located the m a x i m u m de l ibera t ion 
t ime . In the second case, the expected benef i t is s l igh t ly 
less, so t h a t se t t ing to m i g h t make the tour take 
longer. In the t h i r d case, the expected benefit of pa th 
p l ann ing is low enough t h a t any value of > 0 has a 
negat ive u t i l i t y , and t h a t on ly 6k is au tomat i ca l l y al lo­
cated the m a x i m u m amoun t o f t ime . In the last case, 
the improvemen t to be expected is so sma l l t ha t only 
the last pa th in the tou r is w o r t h p l ann ing for, and tha t 
on ly wh i le t rave l ing among the other locat ions.5 

For a pa r t i cu la r d o m a i n , c and v are constants. is 
f ixed for a given set of locat ions. Let (d) be the ap­
p ropr ia te l inear f unc t i on of wh ich we w i l l wr i te as ad. 
Let be the expected length of the tour returned 
by the any t ime a l g o r i t h m for tour improvement , al lo­
cated un i ts of t i m e . T h e n the fo l l ow ing procedure is 
an o p t i m a l de l ibera t ion schedul ing a l g o r i t h m . 
Procedure : Sched-2( S) 

begin 

e n d 

Once the tou r improvement a l g o r i t h m has been run , 
we run Sched-1 on the resu l t ing tour . T h a t the required 
m i n i m i z a t i o n can be done easily is guaranteed by the 
fact t ha t is a lways negat ive and " is always posi t ive 
(see Sect ion 4.2) ; there are no local m i n i m a . 

5.3 Pr-III 
In te r leav ing tou r improvemen t and pa th p lann ing arb i ­
t r a r i l y can be complex ; there are an exponent ia l number 
of ways in wh ich a g iven tou r m i g h t be subd iv ided in to 
pieces on wh ich to r un the tou r improvement a l go r i t hm . 
There is a useful special case, however, for wh ich we 
can const ruc t a de l ibe ra t ion schedul ing a l g o r i t h m whose 
comp lex i t y is in the number of locat ions. We 
define the schedul ing p rob lem Pr-111 to consist of de­
t e r m i n i n g some number o f locat ions for which 
we p lan paths f i rs t , fo l lowed by the rema in ing locat ions, 
wh i ch are t reated as an instance of p rob lem Pr-11. An 
o p t i m a l schedul ing a l g o r i t h m for P r - I I I is given in the 
longer paper. 

5 The exact form of the relation between distance and ex­
pected completion t ime for each of these cases is given in 
[Boddy and Dean, 1989], an extended version of this paper. 

T h e a lgo r i t hm works by assuming i n i t i a l l y t h a t al l the 
t ravel t ime for the locat ions w i l l be used to 
del iberate about f i nd ing an improved tou r for 
Using a procedure a lmost ident ica l to Sched-1, the algo­
r i t h m then sweeps back f r o m begin de te rm in ing for 
each increment of t ime whether spending t ime on tour 
improvement or pa th p lann ing is expected to save more 
t ime in the f inal schedule. 

6 Related work 
There is a g rowing interest in app l y ing decision theory to 
AI problems. [Horv i tz et a/., 1988] sketches the current 
state of th is effort , and points ou t some areas where fur­
ther research m igh t be most f r u i t f u l . In add i t i on to our 
work on p lann ing , the app l i ca t ion of decision theory to 
the cont ro l of resource-bounded reasoning is cur rent ly 
being pursued in at least the areas of medical diagno­
sis [Horv i t z , 1987], heurist ic search [Hanson and Meyer, 
1988], [Russell and Wefa ld , 1989], and computer v is ion 
[Lev i t t et a/., 1988]. B reese and Fehl ing [1988] provide an 
abstract character izat ion for the decision-theoret ic con­
t ro l of an autonomous agent, i nc lud ing reasoning about 
tradeoffs among p lann ing , ac t ing , and gather ing infor­
m a t i o n . 

There is also some in terest ing work in other areas. In 
bu i l d i ng his p ing -pong p lay ing robo t , Andersson [1988] 
solves special cases of exact ly the k i n d of problems we are 
interested i n . I t is not clear to wha t extent his techniques 
w i l l generalize, bu t they are obv ious ly qui te successful 
for one par t i cu la r doma in . We l l man [1988] provides an 
extended analysis of the use of uncerta in knowledge in 
p lann ing , which is a p rob lem tha t the cont ro l system 
for any reasonably complex agent must address. The 
work in [Ow et al., 1988] deals w i t h the prob lem of re­
source bounds by using the analysis of a specific domain 
to guide the const ruc t ion of strategies for con t ro l l ing rea­
soning in tha t doma in . 

7 Conclusions 
Account ing for the t ime required for p lann ing or other 
complex computa t ions is a necessary part of construct­
ing systems for con t ro l l i ng robots. In [Dean and Boddy, 
1988], we define a f ramework for solut ions to t ime-
dependent p lann ing problems called expecta t ion-dr iven 
i terat ive ref inement. Th i s f ramework is intended to re­
st r ic t the f o r m of those solut ions to fac i l i ta te decision-
theoret ic analysis. In the current paper, we are inter­
ested in a methodo logy for app ly ing expectat ion-dr iven 
i tera t ive ref inement. Specif ical ly, we want a way to iden­
t i f y problems as l ike ly candidates and a body of tech­
niques for generat ing solut ions. We deta i l the process 
of so lv ing a t ime-dependent p lann ing prob lem invo lv ing 
a mobi le robot courier, as a way of invest iga t ing such a 
methodology. 

There are several lessons to be taken f r om th is paper 
on how to go about so lv ing a t ime-dependent p lann ing 
p rob lem. For one, we do not "solve" ei ther of the p lan­
n ing problems facing the robot . We prov ide approx imate 
solut ions, and some measure of the errors to be expected. 
A prob lem where a precise answer is c r i t i ca l wou ld prob-
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ably use different algori thms. An interesting point that 
arises in the generation of performance profiles is that we 
need a fast estimate of how good an answer is obtain­
able. This estimation w i l l of necessity introduce some 
error (otherwise the anyt ime algor i thm would be super­
fluous) and we should know how much. Assuming that 
the anytime algorithms can be represented by continu­
ous performance profiles does not for this problem intro­
duce any large error—the increments in which planning 
is done are small enough that the approximation is a 
reasonable one. The form of the solution we provide 
is strongly determined by the structure of the environ­
ment w i th in which the robot operates. The environment 
determines the performance profiles of the anytime algo­
r i thms the robot employs for planning, and to a lesser 
extent the algorithms themselves. 

The process of generating a solution provides some 
indicat ion of the characteristics'of the methodology we 
are developing. Good candidates for solution using 
expectation-driven iterative refinement w i l l be problems 
that can be decomposed into subproblems that can be 
solved using anyt ime algorithms for which we can gener­
ate useful expectations in the form of performance pro­
files. There is an addit ional restr ict ion, which is that 
the problem must be decomposed in such a way that we 
know how to combine the profiles for the subproblems 
so as to produce a performance profile for t ime spent on 
the problem as a whole. 

Solving even a moderately complex time-dependent 
planning problem requires combining the results of sev­
eral processes. In some problems, there may be several 
unrelated subproblems competing for processor t ime. 
For the robot courier, this would correspond to allocat­
ing planning t ime for the indiv idual paths on a tour. 
Also, most useful anyt ime algorithms we know of ap­
ply to sufficiently simple problems that any interesting 
planning problem wi l l require combining the results of 
several anytime algorithms. In order to plan for a tour, 
our robot courier needs to combine the results of path 
planning and tour improvement. These are not sepa­
rate competing processes. The expected ut i l i ty of t ime 
spent path planning depends on the result of tour im­
provement. In our example, combining expectations for 
the two planning algorithms is straightforward: they can 
be composed, given an assumption that is just i f ied by 
the informat ion available to the robot. Other problems 
and other decompositions wi l l require combining expec­
tations in different ways. 

In this and earlier papers, we have analyzed a few 
special cases of time-dependent planning problems. In 
future work, we hope to provide a more general clas­
sification of time-dependent planning problems, and to 
analyze the various classes in terms of their solution us­
ing expectation-driven iterative refinement. 
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