
A Model for Projection and Action

Kei j i Kanazawa and Thomas Dean*
Department of Computer Science

Brown University, Box 1910
Providence, Rl 02912

tld@cs.brown.edu

Abstract
In designing autonomous agents that deal com­
petently with issues involving time and space,
there is a tradeoff to be made between guaran­
teed response-time reactions on the one hand,
and flexibility and expressiveness on the other.
We propose a model of action with probabilis­
tic reasoning and decision analytic evaluation
for use in a layered control architecture. Our
model is well suited to tasks that require rea­
soning about the interaction of behaviors and
events in a fixed temporal horizon. Decisions
are continuously reevaluated, so that there is
no problem with plans becoming obsolete as
new information becomes available. In this pa­
per, we are particularly interested in the trade­
offs required to guarantee a fixed reponse time
in reasoning about nondeterministic cause-and-
eflect relationships. By exploiting approximate
decision making processes, we are able to trade
accuracy in our predictions for speed in deci­
sion making in order to improve expected per­
formance in dynamic situations.

1 In t roduct ion
The world demands behavior that is immediate, and
yet guided by the anticipated consequences of observed
events. The field is grudgingly coming to accept that
systems embedded in the world must be engineered to
respond to external events in a timely manner. The
consequences of this observation for traditional methods
of representation and reasoning in AI are profound. In
the situated automata approach [Rosenschein, 1987], tra­
ditional run-time symbolic reasoning is bypassed in fa­
vor of highly specific condition-action relations that have
been compiled into circuit-like systems [Rosenschein and
Kaelbling, 1986]. However, in domains with complex
causal dependencies, particularly nondeterministic ones,
the space of possible conditions is large. It may not be
feasible to evaluate this space completely at run-time,

*This work was supported in part by the National Science
Foundation under grant IRI-8612644 and by the Advanced
Research Projects Agency of the Department of Defense and
was monitored by the Air Force Office of Scientific Research
under Contract No. F49620-88-C-0132.

or to anticipate and store all contingencies at compile-
time. In order to generate a run-time system with a
guaranteed response time, it may be necessary to make
tradeoffs regarding the optimality of the decisions that
an agent makes.

In this paper, we explore a model of decision theoretic
control that allows a designer to make such tradeoffs in
designing control systems that reason about possible fu­
ture courses of action at run time. The basic model of de­
cision making is quite simple. At fixed intervals of time,
the system makes inferences about all possible plans of
actions that it knows about and selects the behavior that
maximizes expected uti l i ty, given its current knowledge
and the time it is given to compute. By fixing the set
of possible plans and employing approximate algorithms
for computing the expected ut i l i ty of plans, we are able
to trade accuracy in the expected uti l i ty computations
for speed in responding to the environment and thereby
improve the overall system performance. Our methods
depend upon being able to perform experiments at de­
sign time in order to determine the optimal tradeoff.

The model that we adopt is an extension of our pre­
vious work in probabilistic temporal reasoning [Dean and
Kanazawa, 1988a, Dean and Kanazawa, 1988b]. It is
a model of reasoning well suited to tasks such as de­
tecting simple interactions among behaviors and coping
with uncertain events. Wi th the adoption of a decision
analytic criterion for selecting among behaviors, the con­
trol system is able to perform run-time decision making
in accord with the tenets of decision theory, and the
designer is able to able to make compile-time tradeoffs
that take into account realistic computational capabil­
ities and improve expected performance. By selecting
the behavior that maximizes uti l i ty given its most cur­
rent state of knowledge, a system based on our model
should be able to respond to changing conditions in the
world in a timely manner.

2 Our Model of Project ion and Act ion
In our model, an agent has a fixed representation of
knowledge about the world in the form of an influence
diagram [Howard and Matheson, 1984]. An influence di­
agram is a compact graphical representation of a prob­
abilistic causal theory including the effects of determin­
istic decisions and preferences over possible world states
(see Figure 1). In the following, we follow Shachter's

Kanazawa and Dean 985

Figure 1 : An influence d iag ram

presentat ion of inf luence d iagrams in [Shachter, 1986].
An inf luence d i a g r a m is a d i rected graph G — (N, A),

consist ing of a set of nodes AT, and a set of arcs A. Nodes
represent propos i t ions , decisions, and the value of wor ld
states; the arcs define the causal and i n f o r m a t i o n a l de­
pendency between nodes, and the func t ion def in ing the
value of wor ld states.

The arcs define a successor re la t ion between nodes.
The set of direct successors succ(i) of a node N is
defined as succ whi le the
indirect successors of i is the set of nodes a long directed
paths emana t i ng f r o m node i . S imi la r l y , we may define
the direct predecessors p red(i) as p red(i) = N :

and the indirect predecessors as the set of
nodes a long d i rected paths in to z.

The nodes of an influence d iag ram consist of a set of
chance nodes C, a set of decision nodes D, and a set of
value nodes V. Chance nodes are discrete valued var i ­
ables tha t encode states of knowledge about the w o r l d 1 .
Let be the set of discrete values of a node
There is a p robab i l i t y d i s t r i bu t i on
for each chance node. If the chance node has no prede­
cessors, then th is is i ts ma rg ina l p robab i l i t y d i s t r i b u t i o n ;
otherwise, i t is a cond i t i ona l p robab i l i t y d i s t r i b u t i o n de­
pendent on the states of i ts d i rect predecessors. Decision
nodes mode l the choices of an agent. They are discrete
valued; each state of a decision node corresponds to a
determin is t ic choice by an agent to pe r fo rm a cer ta in
ac t ion. Value nodes are cont inuous valued and represent
the object ive(s) to be max im ized in expecta t ion . Value
nodes only have arcs going in to t h e m ; associated w i t h
each value node is a value function m a p p i n g f r o m the
states of i ts direct predecessors to the real l ine.

Our model of reasoning ut i l izes a special case of i n ­
fluence d iagrams, wh ich we refer to as causal models.
Causal models exp l i c i t l y take t ime in to account, in order
to al low us to make predict ions about the fu tu re wh ich
we refer to as projections. Let be a set of propos i t ions
of interest in our doma in . Define the time partition T
to be a f in i te set of time points, discrete points in t i m e ,
tha t we are interested in representing. The set of chance

Influence diagrams wi th continuous chance variables have
been studied [Shachter and Kenley, 1988], but they are gen­
erally more complex and will not be considered here.

nodes C in the complete causal mode l is constructed
f r om so tha t where each is a set
of variables, one for each p ropos i t ion in corresponding
to t ha t propos i t ion being t rue a t t ime

Figure 2 depicts par t of a causal mode l for a s imple
au tonomous agent. Th i s agent is designed to mode l a
mob i le robot tha t moves about in a s imple env i ronment ,
and tr ies to stay in opera t ion by replenish ing i ts energy
at locat ions known to have energy sources. The par t
of the causal mode l in the f igure encodes how certa in
act ions, such as mov ing , change the robo t ' s pos i t ion w i t h
respect to locat ions, and models changing expectat ions
about the energy rema in ing at a given loca t ion .

Causal models represent t i m e indexically; a l l t ime
po in ts in the t ime p a r t i t i o n are in reference to the present
t ime , and there is no quan t i f i ca t ion i nvo l v ing t ime . A
causal mode l may have a fixed time model in which case
there is a f ixed distance between each po in t in t ime , or
it may have a telescopic time model in wh ich case the
in te rva l between consecutive t i m e po in ts is smal l near
the present t ime , but becomes g radua l l y larger between
consecutive t ime po in ts in the f u tu re . W i t h i n a causal
mode l , there are two d is t ingu ished t i m e po in ts , one rep­
resenting past i n f o rma t i on and one current sensory in ­
puts ; a l l other t ime po in ts correspond to those in the
fu tu re . I t is of ten i m p o r t a n t to keep i n f o r m a t i o n f r o m
the past for various purposes, for example , for incorpo­
ra t i ng sensor da ta f r o m the past.

W i t h i n a causal mode l , a special class of influences
describe persistence [M c D e r m o t t , 1982] of proposi t ions.
We may, for example, have knowledge such as, "The en­
ergy at a given source is likely to diminish by ev­
ery hour". Let P(energy, be the p robab i l i t y t ha t a
energy exists at t ime t ; one way to encode the d im in i sh ­
ing p robab i l i t y of energy rema in ing is by the cond i t iona l
p robab i l i t y

W i t h i n the scope of th is work , causal models are dis­
t inguished by a Markov p roper ty and a time separa-

986 Planning, Scheduling, Reasoning About Actions

ble value function. The Markov property means that
a proposit ion is only affected by proposit ions f rom the
previous t ime point . Thus,

By a t ime separable value funct ion, we mean the follow­
ing. Let us define a set of value nodes
Assume that for each t ime point t, there exists a func­
t ion u t such tha t We say that
our value funct ion is t ime separable if the to ta l value V
is given by

In that case, we say that is the objective value at
time t. These two properties essentially define a Markov
decision process2 [Howard, I960]. As far as decisions in
causal models are concerned, w i th in the scope of this
work, causal models contain only one decision: the plan
selection decision.

A plan in our model is just a sequence of behav­
iors where a behavior corresponds to a mode of op­
eration for a subsystem in a layered control architec­
ture [Brooks, 1985, Kaelb l ing, 1987]. Each behavior
in a plan has a condi t ion attached to it called its
task completion criterion that specifies when to ter­
minate the behavior. For example, consider the plan
[wander u n t i l n e a r - e n e r g y - s o u r c e] / / [e a t u n t i l
' hungry] / / [wander f o r e v e r] , where / / is a sequenc­

ing operator. The first step in the plan says to wander
unt i l the agent is near an energy source. W i t h i n the
causal model , we assume that there is a proposit ion that
represents the current act ion being undertaken at a point
in t ime. In concert w i t h that and the task complet ion
cr i ter ion, we are able to determine at what point in the
causal model a part icular subtask might end and an­
other go into effect. Note that , since influence diagrams
are static representations, plan generation is carried out
at design t ime.

Given a causal model , the agent ini t iates the behavior
specified in the plan w i th the highest expected ut i l i ty .
There is, however, no commi tment to a specific plan;
only the first step in a part icular p lan. As soon as an
agent has in i t ia ted the first behavior in a p lan, it is re­
comput ing the plan w i t h the highest expected u t i l i t y
based on whatever new in fo rmat ion is available. Sup­
pose there is a plan [P] // The agent may choose
[P] // as the best p lan, but once it has actually
completed [P] , i t w i l l not actual ly begin to do un­
less there is a separate plan Because of this, every
plan suffix must itself be represented as a plan.

Let us now define the causal model decision problem.
The input nodes for a causal model decision problem con-
siste of the set of chance nodes representing past informa­
t ion , and those representing current sensory in format ion.

2It might be appropriate the call causal models Markov
influence diagrams; however, a Markov influence diagram
would be a proper superset of what we have termed causal
models because causal models are defined to have a time sep­
arable value function.

The input to the run- t ime system is a probabi l i ty d is t r i ­
but ion on the input nodes. Recall that there is a single
decision node representing the plan selection decision in
causal models. The solut ion to a causal model decision
problem is the plan w i th the m a x i m u m expected ut i l i ty .

Thus, at any given instant, an agent has a set of pos­
sible plans, and a prior d is t r ibut ion on the nodes cor­
responding to the current sensor input . An agent w i th
un l imi ted computat ional capabil it ies would compute the
expected u t i l i t y of each plan, choose the plan w i t h max­
imum ut i l i ty , and then in i t iate the behavior correspond­
ing to the first step in the chosen plan, and it would re­
peat this as often as necessary to keep pace w i th changes
in the in format ion returned by its sensors. Assuming
that an agent has l imi ted computat ional capabilit ies, it
takes some t ime to compute the plan that maximizes ex­
pected u t i l i t y ; this t ime determines the response time of
the agent: how fast the agent responds to changes in its
input .

An influence diagram consisting only of chance nodes
is known as a belief net. Roughly speaking, since the
expected value for an influence diagram is uniquely de­
termined by the condit ional probabi l i ty d ist r ibut ion of
its chance nodes given determinist ic choices and prior
d istr ibut ions in the root nodes of the graph, if there
are efficient methods for comput ing a d ist r ibut ion in a
belief net, then it w i l l be efficient to compute the ex­
pected value for an influence diagram. Unfortunately,
it has been shown [Cooper, 1988], that that comput ing
a probabi l i ty d is t r ibut ion for a general belief network is
an NP-Hard problem. Even the most efficient known al­
gor i thm for comput ing an exact d is t r ibut ion in a belief
net [Lauritzen and Spiegelhalter, 1988] has a t ime com­
plexity exponential in the size of the largest clique in the
belief net graph 3. Therefore, in general, it may be nec­
essary to make tradeoffs in order to obtain guaranteed
response-time behavior.

3 Tradeoffs in Generating Efficient
Run-Time Systems

Our goal is to construct embedded systems w i th a proce­
dure, or a set of procedures, that solves the causal model
decision problem in bounded t ime. We speak of the pro­
cess of constructing such a procedure as compilation] the
product, of compi lat ion is referred to as the run-time sys­
tem. In this section, we explore various tradeoffs that we
may need to make in order to construct an efficient run­
t ime system.

To make the tradeoffs involved in compi lat ion precise,
we need to consider the overall u t i l i t y of a run- t ime sys­
tem including the practical u t i l i ty associated w i th the
t ime that is spent in comput ing an answer [Dean and
Boddy, 1988, Horv i tz , 1988). A run-t ime system that
computes accurate answers, but takes a long t ime to do
so is not l ikely to be as useful as a system that com­
putes approximate, but close to accurate answers very

3There is a known efficient polynomial time algorithm for
computing the probability distribution for a belief net if the
underlying undirected graph of the net has no cycles [Pearl,
1988].

Kanazawa and Dean 987

fast. Our goal in compilation is to maximize the overall
util ity.

As an illustration of a simple compilation method,
consider the following. Assume that we have a number
of algorithms available to us for computing an answer to
the problem of what to do next. Each of these algorithms
has a parameter that can be set to enable the algorithm
to return an answer in a fixed amount of time. We fix
the causal model and determine a set of cycle intervals
(intervals of time that we will allow for computation)
and a set of possible-world simulations that we will use
for evaluation. For each algorithm and cycle interval, we
run all the possible-world simulations and obtain a cum-
mulative score. We then select the algorithm and cycle
interval that has the best score to use in the run-time
system. Simple as this may seem, compile-time decisions
based on simulations are at the heart of most engineer­
ing approaches to control. We,now consider how one
might actually generate an appropriate set of algorithms
for performing this sort of compilation.

There are three basic methods that are available to
us in order to obtain better response time. These are
off-line computation, model reduction, and approximate
run-time computation. The tradeoffs themselves come
in two basic flavors: space/time and accuracy/time. In
the best cases, we will be able to effect a problem refor­
mulation that allows us to maximize our overall uti l i ty
without sacrificing accuracy. This will most likely be
achieved at the cost of a combination of off-line compu­
tation and run-time storage. In other cases, we may need
to sacrifice the accuracy of the run-time system to pro­
duce acceptable overall util ity. In these cases, the run­
time system will be an approximation scheme. Where
the approximation scheme involves a run-time compu­
tation algorithm, we may speak of the algorithm as an
approximation algorithm.

As noted above, in the ideal cases, it will be possi­
ble to construct either a circuit, a table, or a reduced
model that enables us to compute exact answers with no
loss in accuracy. In general, since space may grow ex­
ponentially, there are limits to the applicability of such
methods. However, where the cost of memory or cir­
cuitry is cheap, or the cost of slow performance is great,
these methods are likely to produce the most significant
gains in performance. Later in this section, we exam­
ine a method of causal model reduction which produces
substantial performance improvements.

A special class of approximation algorithms receiv­
ing attention are anytime algorithms [Dean and Boddy,
1988, Boddy and Dean, 1989]: algorithms that itera-
tively improve the quality of their answers relative to
a given query. Such algorithms are of particular value
in deliberation scheduling, where an attempt is made at
run-time to maximize overall uti l i ty of a combination of
deliberation and action. Since more computation may
result in a better answer, there is a tradeoff to be made
between acting and spending more time computing.

Our approach to compilation determines at compile-
time the fixed time for deliberation that results in the
maximal overall expected utility. Within that con­
text, anytime algorithms are just as applicable for us

988 Planning, Scheduling, Reasoning About Actions

as for systems with more complex run-time deliberation
scheduling. Applicable anytime algorithms for causal
models include Monte Carlo simulation algorithms [Hen-
rion, 1988a, Pearl, 1988], and bounding algorithms such
as bounded cutset conditioning [Horvitz et a/., 1989].

So far, we have not said much about the plan selection
decision itself. As we noted before, the causal model de­
cision problem involves selecting the plan with the high­
est expected utility. There is substantial opportunity
to exploit context and prior expectation of the value of
adopting various plans, and the properties of anytime
algorithms in this process. We may determine an order
of plan evaluation with high expected uti l i ty depending
on context and prior expectation of the value of various
plans in that context. The attraction of anytime approxi­
mation algorithms, and particularly anytime algorithms
with guaranteed bounds on their answers is that they
can be used to quickly cycle through the space of deci­
sions and identify those decisions that appear to be most
worthwhile pursuing. If the lower bound of the expected
value of one decision is more than the upper bound of
another, then we can drop consideration of the second
alternative and focus on the first decision and others.

It is also possible to combine methods such as ta­
ble generation, with approximation algorithms to obtain
even better speedups. For example we may choose to
tabulate the optimal decisions for the most time-critical
situations, or the most frequently ocurring situations in
our domain.

Finally, in cases where a combination of model reduc­
tion and approximation algorithms are either infeasible
or do not produce the desired results, we may need to
sacrifice accuracy in the model, producing an approx­
imate model. This may be done through a sensitivity
analysis on the causal model to determine what input
nodes and which decisions the expected value is most
sensitive to. As a result, we may reduce the number of
nodes, node states, or influences in the causal model.
We may also, for example, compile a table that contains
the most important and most likely decisions that the
run-time system will need to make. Such methods are
related to the use of defaults in nonmonotonic reasoning
schemes. Unfortunately, we do not have the space to
explore issues in the use of approximate models fully in
this paper.

We now focus attention on a particular method, model
reduction through absorption, that offers large reductions
in the time-complexity of run-time systems for moderate-
sized causal models. A particularly attractive topology
for causal models for computational purposes is an in­
fluence diagram that maps directly from the inputs to
a single value node. In the causal model decision prob­
lem, we are essentially uninterested in the actual states
of chance nodes at future time points, except inasmuch
as they contribute to the expected utility. Therefore,
there is nothing conceptually to bar us from reducing
our causal model to this form (see Figure 3).

There is a well known method [Shachter, 1986] for
eliminating a chance node in an influence diagram when
it is neither an input node, nor a node for which we are
explicitly computing a conditional probability distribu-

Figure 3: A reduced causal model for a situated agent

tion. This is the process of absorption; when a chance
node is absorbed, its successors inherit the chance node's
predecessors, and a new influence is computed by condi­
tional expectation on the states of the absorbed chance
node.

Such reduced influence diagrams have very attractive
properties. Although it may still take exponential time
to compute exactly with such networks, it will be of a
drastically reduced order from the original network, ren­
dering it more tractable to compute. Time complexity
in the reduced causal model may be further reduced if
the inputs nodes are independent of one another; then
the reduced model becomes tree-like with no influences
between input nodes. The time complexity of the reduc­
tion is itself exponential in the size of the set of proposi­
tions. We ran a series of experiments on causal models
which in their original form experienced serious combi­
natorial explosion in exact computation. In one set of
experiments, increasing the size of the causal model by
one time point caused the exact computation time to in­
crease from 15 minutes to 2 hours, and by adding another
time point, from 2 hours to over 24 hours. The time
for exact computation decreased by a couple of orders
of magnitude when reduction was applied to the causal
model. When we increased the number of time points in
the causal model, the post-reduction exact computation
time increased only roughly linearly. The run-time of the
reduction process itself was of the same order of magni­
tude as the post-reduction exact computation time.

Reduced causal models of this form are attractive for
other reasons. At compile-time, reduction of the model
in this form makes the causal model easier to analyze
and apply other compilation methods including further
reduction of the model through sensitivity analysis. At
run-time, the reduction of the model lead to performance
improvements not only for exact algorithms, but for ap­
proximation algorithms as well.

In experiments that we have conducted with Monte
Carlo simulation algorithms, the probability for input
nodes typically converges very quickly, but the time it
takes to converge for leaf nodes appears to increase sub­
stantially as depth in the circuit grows. Reducing the
depth of the network offered substantial speedup in the
convergence of the value node. For bounding algorithms,
the topology of reduced diagrams makes it easy to gen­

erate good heuristic methods of ordering the plan evalu­
at ion. We are currently performing experiments in this
area.

Final ly, the reduced diagram is in a form that can be
separated into mul t ip le copies wi thout a increasing the
size of the value funct ion. Because the value node de­
pends on the value of al l input nodes and the decision
node, we may separate out the value funct ion for each
decision. Except for the overhead of the size of nodes,
there is no net increase in space. W i t h different copies for
each decision, it is possible to interrupt expected value
computat ion for a decision wi thout overhead in swap­
ping intermediate results. Therefore, depending on how
well the expected value is converging for each decision al­
ternat ive, we may focus our computat ional resources on
those decisions that appear to clearly dominate others.
Natura l ly , it would be possible to compute the expected
value for each decision in parallel as well.

The space tradeoff involved in this diagram reduction
is as follows. The value funct ion for any value node in­
creases (at least doubles) for every increase of one in the
size of the set of predecessors to the value node. Since a
value node inherits al l of its predecessors, the value func­
t ion may grow fair ly large as we "rol l back" the value
nodes toward the input nodes. A value node ul t imately
inherits al l of its predecessors in the set of input nodes.
At the very last stage, we have a si tuat ion where all the
value nodes are direct successors of the input nodes 4.
We can replace the value funct ion tables by one,
since the to ta l objective value is just the sum of the ob­
jective values at each t ime step. Because of the regular
structure of causal models, we are guaranteed that this
table w i l l be no larger than the largest of the ||T|| tables.
If the largest table is less than the product of the size
of the or ig inal value funct ion tables (note that they are
al l the same) and the number of times points, then we
have a net reduction in space. Thus, the space penalty
incurred by reduction by absorption appears relatively
benign for causal models.

4 Discussion

There are a number of problems w i th the approach as
it is out l ined here. The current model does not han­
dle continuous variables at al l . In part icular, it is not
possible to do any sophisticated spatial reasoning w i th in
our f ramework. Our approach does not allow an agent
to take advantage of situations in which it can make
reasonably accurate long term predictions: situations in
which the cost of planning might be amort ized over some
length of t ime. In the classical approach to planning, an
agent computes a plan once, and commits to the plan to
acnieve a goal. This can be advantageous if the world is
relatively static, or if the agent has an effective method
for predict ing future states; in such cases, the work done
in generating a plan need only be done once. In a more
dynamic environment, commi t t i ng to a plan can be prob­
lematic; a s i tuat ion can change quickly rendering a plan
obsolete that was considered opt imal under some previ-

4 Note that any input node that is not a predecessor of a
value node can be eliminated at this stage.

Kanazawa and Dean 989

ous state of knowledge. In the approach taken in this
paper, an agent recomputes the best plan at regular in­
tervals. More complicated strategies may be necessary
to achieve a desired level of performance.

Despite the above shortcomings, the approach out­
lined in this paper directly addresses a number of im­
portant tradeoffs concerning the value of prediction in
dynamic situations that have motivated earlier work but
have never been explicitly spelled out. It is our con­
tention that the only way to make sense of these tradeoffs
is within a decision theoretic framework. We see our ap­
proach as providing a connection between the symbolic
processing approach of AI and those disciplines that em­
phasize real-time control of processes.

The main contribution of this paper is to provide a
model for control that incorporates run-time reasoning
about possible futures to support plan selection in dy­
namic environments. By exploiting approximate deci­
sion making processes, we are able to trade accuracy in
our predictions for speed in decision making in order to
improve expected performance. Wi th the adoption of a
decision analytic criterion for selecting among plans, the
control system is able to perform run-time decision mak­
ing in accord with the tenets of decision theory, and the
designer is able to able to make compile-time tradeoffs
that take into account realistic computational capabili­
ties. By continually attempting to determine a plan that
maximizes uti l i ty, a system based on our model should
be able to respond to changing conditions in a timely
manner while at the same time taking into account fu­
ture states and assessing the value of extended plans of
action.

References
Boddy and Dean, 1989] Mark Boddy and Thomas

Dean. Solving time dependent planning problems. In
Proceedings IJCAI-89, 1989. (In this volume).

[Brooks, 1985] Rodney A. Brooks. A robust layered con­
trol system for a mobile robot. A. I. Memo 864, M I T
Artif icial Intelligence Laboratory, Cambridge, Mas­
sachusetts, 1985.

[Cooper, 1988] Gregory F. Cooper. The computational
complexity of probabilistic inference using belief net­
works. Memo KSL-87-27, Knowledge Systems Lab,
Stanford University, 1988.

[Dean and Boddy, 1988]
Thomas Dean and Mark Boddy. An analysis of time
dependent planning. In Proceedings AAAI-88, 1988.

[Dean and Kanazawa, 1988a] Thomas Dean and Keij i
Kanazawa. Probabilistic causal reasoning. In Pro­
ceedings of the Canadian Society for Computational
Studies of Intelligence. CSCSI, 1988.

[Dean and Kanazawa, 1988b] Thomas Dean and Keiji
Kanazawa. Probabilistic temporal reasoning. In Pro­
ceedings AAAI-88. A A A I , 1988.

Henrion. 1988a] Max Henrion. Propagating uncertainty
by logic sampling in bayes' networks. In John F. Lem-
mer and Laveen F. Kanal, editors, Uncertainty in Ar­

tificial Intelligence 2, pages 149-163. North-Holland,
1988.

[Henrion, 1988b] Max Henrion. Towards efficient prob­
abilistic diagnosis in mult iply connected belief net­
works. In Proceedings of the Conference on Influence
Diagrams, Berkeley, CA, 1988.

[Horvitz et al, 1989] Eric J. Horvitz, Gregory F.
Cooper, and David E. Heckerman. Reflection and ac­
tion under scarce resources: Theoretical principles and
empirical study. In Proceedings IJCAI-89, 1989. (In
this volume).

[Horvitz, 1988] Eric J. Horvitz. Reasoning about beliefs
and actions under computational resource constraints.
In Proceedings AAAI-88, pages 111-116, 1988.

Howard and Matheson, 1984] Ron A. Howard and
James E. Matheson. Influence diagrams. In Ron A.
Howard and James E. Matheson, editors, The Princi­
ples and Applications of Decision Analysis. Strategic
Decisions Group, Menlo Park, CA 94025, 1984.

[Howard, I960] Ron A. Howard. Dynamic Programming
and Markov Decision Processes. M I T Press, 1960.

[Kaelbling, 1987] Leslie Pack Kaelbling. An architec­
ture for intelligence reactive systems. In Michael P.
Georgeff and Amy L. Lansky, editors, Reasoning
About Actions and Plans, pages 395-410. Morgan
Kaufmann, 1987.

Lauritzen and Spiegelhalter, 1988] Stephen L. Lau-
ritzen and David J. Spiegelhalter. Local computations
with probabilities on graphical structures and their
application to expert systems. Journal of the Royal
Statistical Society Series B, 50(2): 157-194, 1988.

McDermott, 1982] Drew V. McDermott. A temporal
logic for reasoning about processes and plans. Cogni­
tive Science, 6:101-155, 1982.

[Pearl, 1988] J udea Pearl. Probabilistic Reasoning in
Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufman, 1988.

[Rosenschein and Kaelbling, 1986] Stanley J. Rosen-
schein and Leslie Pack Kaelbling. The synthesis of
digital machines with provable epistemic properties.
In Proceedings Conference on Theoretical Aspects of
Reasoning About Knowledge, pages 83-98, Asilomar,
California, 1986.

[Rosenschein, 1987] Stanley J. Rosenschein. Formal the­
ories of knowledge in ai and robotics. Report No.
CSLI-87-84, Center for Study of Language and Infor­
mation, Stanford, California, 1987.

[Shachter and Kenley, 1988
Ross D. Shachter and C. Robert Kenley. Gaussian
influence diagrams. Management Science, 1988. (To
appear).

[Shachter, 1986] Ross D. Shachter. Evaluating influ­
ence diagrams. Operations Research, 34(6):871~882,
November/December 1986.

990 Planning, Scheduling, Reasoning About Actions

