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Abstract 
In designing autonomous agents that deal com­
petently with issues involving time and space, 
there is a tradeoff to be made between guaran­
teed response-time reactions on the one hand, 
and flexibility and expressiveness on the other. 
We propose a model of action with probabilis­
tic reasoning and decision analytic evaluation 
for use in a layered control architecture. Our 
model is well suited to tasks that require rea­
soning about the interaction of behaviors and 
events in a fixed temporal horizon. Decisions 
are continuously reevaluated, so that there is 
no problem with plans becoming obsolete as 
new information becomes available. In this pa­
per, we are particularly interested in the trade­
offs required to guarantee a fixed reponse time 
in reasoning about nondeterministic cause-and-
eflect relationships. By exploiting approximate 
decision making processes, we are able to trade 
accuracy in our predictions for speed in deci­
sion making in order to improve expected per­
formance in dynamic situations. 

1 In t roduct ion 
The world demands behavior that is immediate, and 
yet guided by the anticipated consequences of observed 
events. The field is grudgingly coming to accept that 
systems embedded in the world must be engineered to 
respond to external events in a timely manner. The 
consequences of this observation for traditional methods 
of representation and reasoning in AI are profound. In 
the situated automata approach [Rosenschein, 1987], tra­
ditional run-time symbolic reasoning is bypassed in fa­
vor of highly specific condition-action relations that have 
been compiled into circuit-like systems [Rosenschein and 
Kaelbling, 1986]. However, in domains with complex 
causal dependencies, particularly nondeterministic ones, 
the space of possible conditions is large. It may not be 
feasible to evaluate this space completely at run-time, 
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or to anticipate and store all contingencies at compile-
time. In order to generate a run-time system with a 
guaranteed response time, it may be necessary to make 
tradeoffs regarding the optimality of the decisions that 
an agent makes. 

In this paper, we explore a model of decision theoretic 
control that allows a designer to make such tradeoffs in 
designing control systems that reason about possible fu­
ture courses of action at run time. The basic model of de­
cision making is quite simple. At fixed intervals of time, 
the system makes inferences about all possible plans of 
actions that it knows about and selects the behavior that 
maximizes expected uti l i ty, given its current knowledge 
and the time it is given to compute. By fixing the set 
of possible plans and employing approximate algorithms 
for computing the expected ut i l i ty of plans, we are able 
to trade accuracy in the expected uti l i ty computations 
for speed in responding to the environment and thereby 
improve the overall system performance. Our methods 
depend upon being able to perform experiments at de­
sign time in order to determine the optimal tradeoff. 

The model that we adopt is an extension of our pre­
vious work in probabilistic temporal reasoning [Dean and 
Kanazawa, 1988a, Dean and Kanazawa, 1988b]. It is 
a model of reasoning well suited to tasks such as de­
tecting simple interactions among behaviors and coping 
with uncertain events. Wi th the adoption of a decision 
analytic criterion for selecting among behaviors, the con­
trol system is able to perform run-time decision making 
in accord with the tenets of decision theory, and the 
designer is able to able to make compile-time tradeoffs 
that take into account realistic computational capabil­
ities and improve expected performance. By selecting 
the behavior that maximizes uti l i ty given its most cur­
rent state of knowledge, a system based on our model 
should be able to respond to changing conditions in the 
world in a timely manner. 

2 Our Model of Project ion and Act ion 
In our model, an agent has a fixed representation of 
knowledge about the world in the form of an influence 
diagram [Howard and Matheson, 1984]. An influence di­
agram is a compact graphical representation of a prob­
abilistic causal theory including the effects of determin­
istic decisions and preferences over possible world states 
(see Figure 1). In the following, we follow Shachter's 
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Figure 1 : An influence d iag ram 

presentat ion of inf luence d iagrams in [Shachter, 1986]. 
An inf luence d i a g r a m is a d i rected graph G — (N, A), 

consist ing of a set of nodes AT, and a set of arcs A. Nodes 
represent propos i t ions , decisions, and the value of wor ld 
states; the arcs define the causal and i n f o r m a t i o n a l de­
pendency between nodes, and the func t ion def in ing the 
value of wor ld states. 

The arcs define a successor re la t ion between nodes. 
The set of direct successors succ( i) of a node N is 
defined as succ whi le the 
indirect successors of i is the set of nodes a long directed 
paths emana t i ng f r o m node i . S imi la r l y , we may define 
the direct predecessors p red( i ) as p red( i ) = N : 

and the indirect predecessors as the set of 
nodes a long d i rected paths in to z. 

The nodes of an influence d iag ram consist of a set of 
chance nodes C, a set of decision nodes D, and a set of 
value nodes V. Chance nodes are discrete valued var i ­
ables tha t encode states of knowledge about the w o r l d 1 . 
Let be the set of discrete values of a node 
There is a p robab i l i t y d i s t r i bu t i on 
for each chance node. If the chance node has no prede­
cessors, then th is is i ts ma rg ina l p robab i l i t y d i s t r i b u t i o n ; 
otherwise, i t is a cond i t i ona l p robab i l i t y d i s t r i b u t i o n de­
pendent on the states of i ts d i rect predecessors. Decision 
nodes mode l the choices of an agent. They are discrete 
valued; each state of a decision node corresponds to a 
determin is t ic choice by an agent to pe r fo rm a cer ta in 
ac t ion. Value nodes are cont inuous valued and represent 
the object ive(s) to be max im ized in expecta t ion . Value 
nodes only have arcs going in to t h e m ; associated w i t h 
each value node is a value function m a p p i n g f r o m the 
states of i ts direct predecessors to the real l ine. 

Our model of reasoning ut i l izes a special case of i n ­
fluence d iagrams, wh ich we refer to as causal models. 
Causal models exp l i c i t l y take t ime in to account, in order 
to al low us to make predict ions about the fu tu re wh ich 
we refer to as projections. Let be a set of propos i t ions 
of interest in our doma in . Define the time partition T 
to be a f in i te set of time points, discrete points in t i m e , 
tha t we are interested in representing. The set of chance 

Influence diagrams wi th continuous chance variables have 
been studied [Shachter and Kenley, 1988], but they are gen­
erally more complex and will not be considered here. 

nodes C in the complete causal mode l is constructed 
f r om so tha t where each is a set 
of variables, one for each p ropos i t ion in corresponding 
to t ha t propos i t ion being t rue a t t ime 

Figure 2 depicts par t of a causal mode l for a s imple 
au tonomous agent. Th i s agent is designed to mode l a 
mob i le robot tha t moves about in a s imple env i ronment , 
and tr ies to stay in opera t ion by replenish ing i ts energy 
at locat ions known to have energy sources. The par t 
of the causal mode l in the f igure encodes how certa in 
act ions, such as mov ing , change the robo t ' s pos i t ion w i t h 
respect to locat ions, and models changing expectat ions 
about the energy rema in ing at a given loca t ion . 

Causal models represent t i m e indexically; a l l t ime 
po in ts in the t ime p a r t i t i o n are in reference to the present 
t ime , and there is no quan t i f i ca t ion i nvo l v ing t ime . A 
causal mode l may have a fixed time model in which case 
there is a f ixed distance between each po in t in t ime , or 
it may have a telescopic time model in wh ich case the 
in te rva l between consecutive t i m e po in ts is smal l near 
the present t ime , but becomes g radua l l y larger between 
consecutive t ime po in ts in the f u tu re . W i t h i n a causal 
mode l , there are two d is t ingu ished t i m e po in ts , one rep­
resenting past i n f o rma t i on and one current sensory in ­
puts ; a l l other t ime po in ts correspond to those in the 
fu tu re . I t is of ten i m p o r t a n t to keep i n f o r m a t i o n f r o m 
the past for various purposes, for example , for incorpo­
ra t i ng sensor da ta f r o m the past. 

W i t h i n a causal mode l , a special class of influences 
describe persistence [ M c D e r m o t t , 1982] of proposi t ions. 
We may, for example, have knowledge such as, "The en­
ergy at a given source is likely to diminish by ev­
ery hour". Let P(energy, be the p robab i l i t y t ha t a 
energy exists at t ime t ; one way to encode the d im in i sh ­
ing p robab i l i t y of energy rema in ing is by the cond i t iona l 
p robab i l i t y 

W i t h i n the scope of th is work , causal models are dis­
t inguished by a Markov p roper ty and a time separa-
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ble value function. The Markov property means that 
a proposit ion is only affected by proposit ions f rom the 
previous t ime point . Thus, 

By a t ime separable value funct ion, we mean the follow­
ing. Let us define a set of value nodes 
Assume that for each t ime point t, there exists a func­
t ion u t such tha t We say that 
our value funct ion is t ime separable if the to ta l value V 
is given by 

In that case, we say that is the objective value at 
time t. These two properties essentially define a Markov 
decision process2 [Howard, I960]. As far as decisions in 
causal models are concerned, w i th in the scope of this 
work, causal models contain only one decision: the plan 
selection decision. 

A plan in our model is just a sequence of behav­
iors where a behavior corresponds to a mode of op­
eration for a subsystem in a layered control architec­
ture [Brooks, 1985, Kaelb l ing, 1987]. Each behavior 
in a plan has a condi t ion attached to it called its 
task completion criterion that specifies when to ter­
minate the behavior. For example, consider the plan 
[wander u n t i l n e a r - e n e r g y - s o u r c e ] / / [ e a t u n t i l 
' hungry ] / / [wander f o r e v e r ] , where / / is a sequenc­

ing operator. The first step in the plan says to wander 
unt i l the agent is near an energy source. W i t h i n the 
causal model , we assume that there is a proposit ion that 
represents the current act ion being undertaken at a point 
in t ime. In concert w i t h that and the task complet ion 
cr i ter ion, we are able to determine at what point in the 
causal model a part icular subtask might end and an­
other go into effect. Note that , since influence diagrams 
are static representations, plan generation is carried out 
at design t ime. 

Given a causal model , the agent ini t iates the behavior 
specified in the plan w i th the highest expected ut i l i ty . 
There is, however, no commi tment to a specific plan; 
only the first step in a part icular p lan. As soon as an 
agent has in i t ia ted the first behavior in a p lan, it is re­
comput ing the plan w i t h the highest expected u t i l i t y 
based on whatever new in fo rmat ion is available. Sup­
pose there is a plan [P] // The agent may choose 
[P] // as the best p lan, but once it has actually 
completed [ P ] , i t w i l l not actual ly begin to do un­
less there is a separate plan Because of this, every 
plan suffix must itself be represented as a plan. 

Let us now define the causal model decision problem. 
The input nodes for a causal model decision problem con-
siste of the set of chance nodes representing past informa­
t ion , and those representing current sensory in format ion. 

2It might be appropriate the call causal models Markov 
influence diagrams; however, a Markov influence diagram 
would be a proper superset of what we have termed causal 
models because causal models are defined to have a time sep­
arable value function. 

The input to the run- t ime system is a probabi l i ty d is t r i ­
but ion on the input nodes. Recall that there is a single 
decision node representing the plan selection decision in 
causal models. The solut ion to a causal model decision 
problem is the plan w i th the m a x i m u m expected ut i l i ty . 

Thus, at any given instant, an agent has a set of pos­
sible plans, and a prior d is t r ibut ion on the nodes cor­
responding to the current sensor input . An agent w i th 
un l imi ted computat ional capabil it ies would compute the 
expected u t i l i t y of each plan, choose the plan w i t h max­
imum ut i l i ty , and then in i t iate the behavior correspond­
ing to the first step in the chosen plan, and it would re­
peat this as often as necessary to keep pace w i th changes 
in the in format ion returned by its sensors. Assuming 
that an agent has l imi ted computat ional capabilit ies, it 
takes some t ime to compute the plan that maximizes ex­
pected u t i l i t y ; this t ime determines the response time of 
the agent: how fast the agent responds to changes in its 
input . 

An influence diagram consisting only of chance nodes 
is known as a belief net. Roughly speaking, since the 
expected value for an influence diagram is uniquely de­
termined by the condit ional probabi l i ty d ist r ibut ion of 
its chance nodes given determinist ic choices and prior 
d istr ibut ions in the root nodes of the graph, if there 
are efficient methods for comput ing a d ist r ibut ion in a 
belief net, then it w i l l be efficient to compute the ex­
pected value for an influence diagram. Unfortunately, 
it has been shown [Cooper, 1988], that that comput ing 
a probabi l i ty d is t r ibut ion for a general belief network is 
an NP-Hard problem. Even the most efficient known al­
gor i thm for comput ing an exact d is t r ibut ion in a belief 
net [Lauritzen and Spiegelhalter, 1988] has a t ime com­
plexity exponential in the size of the largest clique in the 
belief net graph 3. Therefore, in general, it may be nec­
essary to make tradeoffs in order to obtain guaranteed 
response-time behavior. 

3 Tradeoffs in Generating Efficient 
Run-Time Systems 

Our goal is to construct embedded systems w i th a proce­
dure, or a set of procedures, that solves the causal model 
decision problem in bounded t ime. We speak of the pro­
cess of constructing such a procedure as compilation] the 
product, of compi lat ion is referred to as the run-time sys­
tem. In this section, we explore various tradeoffs that we 
may need to make in order to construct an efficient run­
t ime system. 

To make the tradeoffs involved in compi lat ion precise, 
we need to consider the overall u t i l i t y of a run- t ime sys­
tem including the practical u t i l i ty associated w i th the 
t ime that is spent in comput ing an answer [Dean and 
Boddy, 1988, Horv i tz , 1988). A run-t ime system that 
computes accurate answers, but takes a long t ime to do 
so is not l ikely to be as useful as a system that com­
putes approximate, but close to accurate answers very 

3There is a known efficient polynomial time algorithm for 
computing the probability distribution for a belief net if the 
underlying undirected graph of the net has no cycles [Pearl, 
1988]. 
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fast. Our goal in compilation is to maximize the overall 
util ity. 

As an illustration of a simple compilation method, 
consider the following. Assume that we have a number 
of algorithms available to us for computing an answer to 
the problem of what to do next. Each of these algorithms 
has a parameter that can be set to enable the algorithm 
to return an answer in a fixed amount of time. We fix 
the causal model and determine a set of cycle intervals 
(intervals of time that we will allow for computation) 
and a set of possible-world simulations that we will use 
for evaluation. For each algorithm and cycle interval, we 
run all the possible-world simulations and obtain a cum-
mulative score. We then select the algorithm and cycle 
interval that has the best score to use in the run-time 
system. Simple as this may seem, compile-time decisions 
based on simulations are at the heart of most engineer­
ing approaches to control. We,now consider how one 
might actually generate an appropriate set of algorithms 
for performing this sort of compilation. 

There are three basic methods that are available to 
us in order to obtain better response time. These are 
off-line computation, model reduction, and approximate 
run-time computation. The tradeoffs themselves come 
in two basic flavors: space/time and accuracy/time. In 
the best cases, we will be able to effect a problem refor­
mulation that allows us to maximize our overall uti l i ty 
without sacrificing accuracy. This will most likely be 
achieved at the cost of a combination of off-line compu­
tation and run-time storage. In other cases, we may need 
to sacrifice the accuracy of the run-time system to pro­
duce acceptable overall util ity. In these cases, the run­
time system will be an approximation scheme. Where 
the approximation scheme involves a run-time compu­
tation algorithm, we may speak of the algorithm as an 
approximation algorithm. 

As noted above, in the ideal cases, it will be possi­
ble to construct either a circuit, a table, or a reduced 
model that enables us to compute exact answers with no 
loss in accuracy. In general, since space may grow ex­
ponentially, there are limits to the applicability of such 
methods. However, where the cost of memory or cir­
cuitry is cheap, or the cost of slow performance is great, 
these methods are likely to produce the most significant 
gains in performance. Later in this section, we exam­
ine a method of causal model reduction which produces 
substantial performance improvements. 

A special class of approximation algorithms receiv­
ing attention are anytime algorithms [Dean and Boddy, 
1988, Boddy and Dean, 1989]: algorithms that itera-
tively improve the quality of their answers relative to 
a given query. Such algorithms are of particular value 
in deliberation scheduling, where an attempt is made at 
run-time to maximize overall uti l i ty of a combination of 
deliberation and action. Since more computation may 
result in a better answer, there is a tradeoff to be made 
between acting and spending more time computing. 

Our approach to compilation determines at compile-
time the fixed time for deliberation that results in the 
maximal overall expected utility. Within that con­
text, anytime algorithms are just as applicable for us 
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as for systems with more complex run-time deliberation 
scheduling. Applicable anytime algorithms for causal 
models include Monte Carlo simulation algorithms [Hen-
rion, 1988a, Pearl, 1988], and bounding algorithms such 
as bounded cutset conditioning [Horvitz et a/., 1989]. 

So far, we have not said much about the plan selection 
decision itself. As we noted before, the causal model de­
cision problem involves selecting the plan with the high­
est expected utility. There is substantial opportunity 
to exploit context and prior expectation of the value of 
adopting various plans, and the properties of anytime 
algorithms in this process. We may determine an order 
of plan evaluation with high expected uti l i ty depending 
on context and prior expectation of the value of various 
plans in that context. The attraction of anytime approxi­
mation algorithms, and particularly anytime algorithms 
with guaranteed bounds on their answers is that they 
can be used to quickly cycle through the space of deci­
sions and identify those decisions that appear to be most 
worthwhile pursuing. If the lower bound of the expected 
value of one decision is more than the upper bound of 
another, then we can drop consideration of the second 
alternative and focus on the first decision and others. 

It is also possible to combine methods such as ta­
ble generation, with approximation algorithms to obtain 
even better speedups. For example we may choose to 
tabulate the optimal decisions for the most time-critical 
situations, or the most frequently ocurring situations in 
our domain. 

Finally, in cases where a combination of model reduc­
tion and approximation algorithms are either infeasible 
or do not produce the desired results, we may need to 
sacrifice accuracy in the model, producing an approx­
imate model. This may be done through a sensitivity 
analysis on the causal model to determine what input 
nodes and which decisions the expected value is most 
sensitive to. As a result, we may reduce the number of 
nodes, node states, or influences in the causal model. 
We may also, for example, compile a table that contains 
the most important and most likely decisions that the 
run-time system will need to make. Such methods are 
related to the use of defaults in nonmonotonic reasoning 
schemes. Unfortunately, we do not have the space to 
explore issues in the use of approximate models fully in 
this paper. 

We now focus attention on a particular method, model 
reduction through absorption, that offers large reductions 
in the time-complexity of run-time systems for moderate-
sized causal models. A particularly attractive topology 
for causal models for computational purposes is an in­
fluence diagram that maps directly from the inputs to 
a single value node. In the causal model decision prob­
lem, we are essentially uninterested in the actual states 
of chance nodes at future time points, except inasmuch 
as they contribute to the expected utility. Therefore, 
there is nothing conceptually to bar us from reducing 
our causal model to this form (see Figure 3). 

There is a well known method [Shachter, 1986] for 
eliminating a chance node in an influence diagram when 
it is neither an input node, nor a node for which we are 
explicitly computing a conditional probability distribu-



Figure 3: A reduced causal model for a situated agent 

tion. This is the process of absorption; when a chance 
node is absorbed, its successors inherit the chance node's 
predecessors, and a new influence is computed by condi­
tional expectation on the states of the absorbed chance 
node. 

Such reduced influence diagrams have very attractive 
properties. Although it may still take exponential time 
to compute exactly with such networks, it will be of a 
drastically reduced order from the original network, ren­
dering it more tractable to compute. Time complexity 
in the reduced causal model may be further reduced if 
the inputs nodes are independent of one another; then 
the reduced model becomes tree-like with no influences 
between input nodes. The time complexity of the reduc­
tion is itself exponential in the size of the set of proposi­
tions. We ran a series of experiments on causal models 
which in their original form experienced serious combi­
natorial explosion in exact computation. In one set of 
experiments, increasing the size of the causal model by 
one time point caused the exact computation time to in­
crease from 15 minutes to 2 hours, and by adding another 
time point, from 2 hours to over 24 hours. The time 
for exact computation decreased by a couple of orders 
of magnitude when reduction was applied to the causal 
model. When we increased the number of time points in 
the causal model, the post-reduction exact computation 
time increased only roughly linearly. The run-time of the 
reduction process itself was of the same order of magni­
tude as the post-reduction exact computation time. 

Reduced causal models of this form are attractive for 
other reasons. At compile-time, reduction of the model 
in this form makes the causal model easier to analyze 
and apply other compilation methods including further 
reduction of the model through sensitivity analysis. At 
run-time, the reduction of the model lead to performance 
improvements not only for exact algorithms, but for ap­
proximation algorithms as well. 

In experiments that we have conducted with Monte 
Carlo simulation algorithms, the probability for input 
nodes typically converges very quickly, but the time it 
takes to converge for leaf nodes appears to increase sub­
stantially as depth in the circuit grows. Reducing the 
depth of the network offered substantial speedup in the 
convergence of the value node. For bounding algorithms, 
the topology of reduced diagrams makes it easy to gen­

erate good heuristic methods of ordering the plan evalu­
at ion. We are currently performing experiments in this 
area. 

Final ly, the reduced diagram is in a form that can be 
separated into mul t ip le copies wi thout a increasing the 
size of the value funct ion. Because the value node de­
pends on the value of al l input nodes and the decision 
node, we may separate out the value funct ion for each 
decision. Except for the overhead of the size of nodes, 
there is no net increase in space. W i t h different copies for 
each decision, it is possible to interrupt expected value 
computat ion for a decision wi thout overhead in swap­
ping intermediate results. Therefore, depending on how 
well the expected value is converging for each decision al­
ternat ive, we may focus our computat ional resources on 
those decisions that appear to clearly dominate others. 
Natura l ly , it would be possible to compute the expected 
value for each decision in parallel as well. 

The space tradeoff involved in this diagram reduction 
is as follows. The value funct ion for any value node in­
creases (at least doubles) for every increase of one in the 
size of the set of predecessors to the value node. Since a 
value node inherits al l of its predecessors, the value func­
t ion may grow fair ly large as we "rol l back" the value 
nodes toward the input nodes. A value node ul t imately 
inherits al l of its predecessors in the set of input nodes. 
At the very last stage, we have a si tuat ion where all the 
value nodes are direct successors of the input nodes 4. 
We can replace the value funct ion tables by one, 
since the to ta l objective value is just the sum of the ob­
jective values at each t ime step. Because of the regular 
structure of causal models, we are guaranteed that this 
table w i l l be no larger than the largest of the ||T|| tables. 
If the largest table is less than the product of the size 
of the or ig inal value funct ion tables (note that they are 
al l the same) and the number of times points, then we 
have a net reduction in space. Thus, the space penalty 
incurred by reduction by absorption appears relatively 
benign for causal models. 

4 Discussion 

There are a number of problems w i th the approach as 
it is out l ined here. The current model does not han­
dle continuous variables at al l . In part icular, it is not 
possible to do any sophisticated spatial reasoning w i th in 
our f ramework. Our approach does not allow an agent 
to take advantage of situations in which it can make 
reasonably accurate long term predictions: situations in 
which the cost of planning might be amort ized over some 
length of t ime. In the classical approach to planning, an 
agent computes a plan once, and commits to the plan to 
acnieve a goal. This can be advantageous if the world is 
relatively static, or if the agent has an effective method 
for predict ing future states; in such cases, the work done 
in generating a plan need only be done once. In a more 
dynamic environment, commi t t i ng to a plan can be prob­
lematic; a s i tuat ion can change quickly rendering a plan 
obsolete that was considered opt imal under some previ-

4 Note that any input node that is not a predecessor of a 
value node can be eliminated at this stage. 
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ous state of knowledge. In the approach taken in this 
paper, an agent recomputes the best plan at regular in­
tervals. More complicated strategies may be necessary 
to achieve a desired level of performance. 

Despite the above shortcomings, the approach out­
lined in this paper directly addresses a number of im­
portant tradeoffs concerning the value of prediction in 
dynamic situations that have motivated earlier work but 
have never been explicitly spelled out. It is our con­
tention that the only way to make sense of these tradeoffs 
is within a decision theoretic framework. We see our ap­
proach as providing a connection between the symbolic 
processing approach of AI and those disciplines that em­
phasize real-time control of processes. 

The main contribution of this paper is to provide a 
model for control that incorporates run-time reasoning 
about possible futures to support plan selection in dy­
namic environments. By exploiting approximate deci­
sion making processes, we are able to trade accuracy in 
our predictions for speed in decision making in order to 
improve expected performance. Wi th the adoption of a 
decision analytic criterion for selecting among plans, the 
control system is able to perform run-time decision mak­
ing in accord with the tenets of decision theory, and the 
designer is able to able to make compile-time tradeoffs 
that take into account realistic computational capabili­
ties. By continually attempting to determine a plan that 
maximizes uti l i ty, a system based on our model should 
be able to respond to changing conditions in a timely 
manner while at the same time taking into account fu­
ture states and assessing the value of extended plans of 
action. 
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