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Abstract 

The paper addresses the problem of action selec­
tion for an autonomous agent. An autonomous 
agent is viewed as a collection of "competence 
modules". The hypothesis that is put forward is 
that rational action selection can be modeled as an 
emergent property of an activation/inhibition 
dynamics among these modules. Results of a 
computer simulation are discussed and a first step 
towards a qualitative theory is presented. The 
advantages and disadvantages of this non-
hierarchical, distributed form of control of action 
over the classical, programmed, centralized 
method are studied. 

1 Introduction 

This paper addresses the following problem: Given an 
autonomous agent which has a number of general goals 
and which is faced with a particular situation at a specific 
moment in time. How can this agent select an action 
such that global rational behavior results? Characteristics 
of rational behavior are: it is goal-oriented, opportunities 
are exploited, some looking ahead is done, it is highly 
adaptive to unpredictable and changing situations, it is 
able to realize interacting and conflicting goals, and there 
is a graceful degradation of performance when certain 
components fail, all of this with limited resources and 
incomplete information. 

The paper studies this problem in the context of 
Minsky's Society of the Mind theory [10] (to which 
Brooks' Subsumption Architectures are very much related 
[3]). This theory suggests to build an intelligent system 
as a society of interacting, mindless agents, each having 
their own specific competence. For example, a society of 
agents that is able to build a tower would incorporate 
agents for finding a block, for grasping a block, for 
moving a block, etc. The idea is that agents cooperate 
(locally) in such a way that the society as a whole func­
tions properly. Such an architecture would be attractive 
because of its modularity, distributedness, flexibility and 
robustness: agents can be added, changed, or modified 
without caring about ihe other agents. 

One of the open problems is however how action 
could be controlled in such a distributed system. More 
specifically: (i) how is it determined whether some agent 
should become active (taking some real world actions by 
steering the effectors) at a specific moment or not, and 
(ii) what are the factors that determine a cooperation 
among certain agents. Several solutions can be adopted. 
One approach is to hand-code (and by that hard-wire) the 
control flow among the agents [3]. Another approach is 
to use a meta-level which tells the agents whether they 
are allowed to perform an action or not. This paper 
investigates yet another, entirely different type of solu­
tion. 
The hypotheses that are tested are: 

(i) rational action of the global system can emerge 
by letting the agents activate and inhibit each other 
in the right way, 
(ii) no "bureaucratic" agents are necessary (i.e. 
agents whose only competence is determining 
which other agents should be activated or inhibited) 
nor do we need global forms of control. 
The research questions that are studied are how 

adequate this solution is and which activation/inhibition 
dynamics is appropriate. To this end two tools have been 
developed: a simulation environment and a qualitative 
theory. Using the simulation environment, societies of 
agents can be defined and their behavior simulated. 
Several input parameters can be varied, such as the 
threshold for becoming active, the strengths of activation 
and inhibition, the influence from the global goals and 
the state of the environment, etc. Experiments have been 
performed for several applications. The resulting sys­
tems exhibit a selection of action which can be made 
more/less data-oriented (and thereby more/less oppor­
tunistic), more/less goal-oriented, more/less deliberated, 
and more/less fast by choosing certain relations in the 
input parameters. They also exhibit the expected proper­
ties of flexibility (adapting to new or unforeseen situa­
tions), robustness (graceful degradation of performance) 
and modularity (agents are black boxes, only their 
expected behavior has to made explicit, therefore it is 
easy to introduce new agents or modify agents). 
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The second tool used to test the hypotheses is a 
qualitative theory of the behavior of these dynamical sys­
tems. A first set of laws can be stated about the relation 
between the input parameters and the observables and 
between the structure of the network and the observables. 

2 Theory. Part I: Abstract 
The agents in a society resemble the operators of a clas­
sical planning system. An agent i can be described by a 
tuple lp is a list of preconditions which have 
to be fulfilled before the agent can become active. and 

represent the expected effects of the agent's action in 
terms of an add list and a delete list. In addition each 
agent has a level of activation a. An agent is executable 
at time t when all of its preconditions are observed to be 
true at time t. An executable agent may become active, 
which means that it wil l - perform some real world 
actions. The operation of an agent (what computation it 
performs and how it takes its action) is not made expli­
cit. I.e. agents could be hard-wired inside, they could 
perform logical inference, whatever. 

Agents are linked in a network through predeces­
sor and successor links. The description of the agents of 
the society in terms of a precondition list, add list and 
delete list completely defines this network. There is a 
successor link from agent 1 to agent 2 ("1 has 2 as suc­
cessor") for every predicate P which is member of the 
add list of 1 and also member of the precondition list of 
2 (so more than one successor link between two agents 
may exist). Formally, given agent 

and a g e n t t h e r e will b e a successor 

link from 1 to 2, for every predicate 

Further, a predecessor link from 1 to 2 ("1 has 2 as 
predecessor") exists for every successor link from 2 to 
1. 

The links of the network are used to spread activa­
tion among agents. There is an external input of activa­
tion coming from the state of the environment and the 
global goals of the society. This input is continuous: 
there is a permanent flow of activation towards the 
agents which partially match the current state or promise 
to realise one of the global goals. The state of the 
environment and the global goals may change unpredict­
ably at any moment in time. If this happens, the external 
input of activation will automatically flow to other 
agents. An agent is said to partially match the current 
state if one of its preconditions is observed to be true. 
An agent is said to promise to realise one of the global 
goals if one of the goals is member of the add list of the 
agent. 

Agents spread activation along their links as fol­
lows. An executable agent spreads activation forward. It 
gives away part of its own activation to some of its suc­
cessors. Intuitively, we want these successor agents to 
become more activated because they are "almost execut-
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able", since more of their preconditions wil l be fulfilled 
after the agent has becomes active. Formally, given that 
agent is executable, it spreads forward 

through those successor links for which the predicate that 
defined them is false. An agent that is not execut­

able spreads activation backward. It gives away a part of 
its own activation to some of its predecessors. Intui­
tively, such an agent spreads to the agents that "prom­
ise" to fulfill its preconditions that are at the moment 
false, so that the agent may become executable itself 
afterwards. Formally, given that agent 

is not executable, it spreads backward 

through those predecessor links for which the predicate 
that defined them is false. 

At every timestep the following computation takes 
place for all of the agents, (a) The input from the state 
and goals to an agent is computed, (b) The spreading of 
activation of an agent is computed, (c) A locally com­
puted "forgetting" factor ensures that the overall activa­
tion level remains constant, (d) The agent which fulfills 
the following three conditions becomes active (in case 
there is one): (i) It has to be executable, (ii) Its level of 
activation has to surpass a certain threshold and (iii) It 
must have a higher activation level than all other agents 
which fulfill conditions (i) and (ii). When two agents 
fulfill these conditions, one of them is chosen randomly. 
Steps (a) through (d) are repeated infinitely. 

Four global input parameters can be used to "tune" 
the input and the spreading of activation, and thereby the 
behavior of the whole society, (i) The threshold for 
becoming active (and related to it the quantity of activa­
tion put into the society at every timestep). (ii) The per­
centage of their activation executable agents spread for­
ward, (iii) The percentage of their activation non execut­
able agents spread backward. And (iv) The relative 
amount of external input that comes from the goals as 
opposed to from the state of the environment. Interest­
ing global properties are: the sequence of agents that 
have become active, the optimality of this sequence 
(which is computed by a domain-dependent function) and 
the speed in choosing an action (the number of timesteps 
an agent has become active relative to the total number 
of timesteps the system has been running). 

3 Theory. Part I I : Illustration 

This section illustrates the theory with a concrete, simple 
example. Later in the paper more interesting examples 
are discussed. Our toy example is that of a robot with 
two hands that has to sand a board. The definition of 
the agents in terms of their preconditions, add and delete 
lists is presented in figure 1. On the basis of these 
definitions the spreading activation network in figure 2 is 
constructed. 

This network performs action selection in the following 



PICK-UP-SANDER 
preconditions: (hand-empty, sander-somewhere) 
add-list: (sander-in-hand) 
delete-list: (hand-empty, sander-somewhere) 

PUT-DOWN-SANDER 
preconditions: (sander-in-hand) 
add-list: (hand-empty, sander-somewhere) 
delete-list: (sander-in-hand) 

PICK-UP-BOARD 
preconditions: (hand-empty, board-somewhere) 
add-list: (board-in-hand) 
delete-list: (hand-empty, board-somewhere) 

PUT-DOWN-BOARD 
preconditions: (board-in-hand) 
add-list: (hand-empty, board-somewhere) 
delete-list: (board-in-hand) 

SAND-BOARD 
preconditions: (sander-in-hand, board-in-hand) 
add-list: (board-sanded) 
delete-list: () 

Fig. 1. Definition of the agents involved in the toy ex­
ample. 

Fig. 2. A spreading activation network. Only the for­
ward links (from an agent to its successors) are 
shown. The actual network has twice as many links 
(one backward link in the reverse direction for every 
forward link shown here). 

way. The activation levels of the agents are initialized to 
zero. Suppose that at time~0 the state of the environ­
ment is S(0)=(hand-empty\hand-emptyf sander-
somewheret board-somewhere) and the goals of the 
society G(0)=(board-sanded) (hand-empty is represented 
twice since the robot has two free hands). This means 
that pick-up-sander and pick-up-board receive external 
input of activation (because they partially match the 
state), while sand-board receives input because it prom­
ises to realize the goal of the society. During the inter­
nal spreading of activation phase, sand-board spreads 
backwards to pick-up-sander and pick-up-board, while 
these spread forward to put-down-sandert put-down-board 
and sand-board. The remaining two agents (i.e. put-
down-sander and put-down-board) will not have anything 
to spread yet. The external input and internal spreading 

of activation will continue and makes activation increase 
in certain agents. More specifically after some time either 
pick-up-sander or pick-up-board will have reached an 
activation level that surpasses the threshold. At that 
moment one agent - suppose it is pick-up-sander -
becomes active and performs an action in the world. 

Suppose that the action succeeded, such that now 
S(t)=(hand-is-empty,sander-in-hand, board-somewhere). 
The patterns of spreading of activation have changed 
now. The state influences different agents (more 
specifically, pick-up-sander receives less activation 
because one of its preconditions is no longer satisfied, 
and put-down-sander also receives some activation since 
one of its preconditions has become fulfilled). The input 
from the goals remains the same. Agents that now spread 
backwards are: pick-up-sander, sand-board, put-down-
board. The agents that spread forward are: put-down-
sander, pick-up-board. Pick-up-board will very soon have 
accumulated enough activation to become active (since 
sand-board spreads only to this one). Finally, after pick­
up-board has become active, sand-board accumulates 
enough activation and is executable so that it also 
becomes active. As a result the goal is achieved. 

4 Theory. Part ID: Mathematics 
This section of the paper describes the theory in a 
rigorous, mathematical way so as to make the results 
reproducable. Given: 

- a society of agents l . .n, 
- a set of propositions P, 
- a function S(t) returning the propositions that are 
observed to be true at time t (the state of the 
environment as perceived by the society); S being 
implemented by an independent simulator, 
- a function G(t) returning the propositions that are 
a goal of the society at time t; G being imple­
mented by an independent simulator, 
- a function executable(i), which returns 1 if agent 
i is executable at trime t (i.e. all of the precondition 
list propositions of agent i are member of S(t) ), 
and 0 otherwise. 

the total level of activation, 
the threshold of activation, 

the percentage for forward spreading, 
1, 
the percentage for backward spreading, 
1. 

the percentage determining the relative input 
from the goals, versus the state, 
The external input of activation to agent i at time t 

is defined as follows: 
external-input(i,t) 

where ranges over the predicates in the precondition 
list of agent i that are member of S(t) and ranges over 
the predicates in the add list of agent i that are member 
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where i ranges over the agents of the society. 
The following equations specify what an agent s 

spreads backward (b) to an agent i and what an agent p 
spreads forward (f) to an agent i, given that s is succes­
sor of i and p is predecessor of i. 

where si ranges over the preconditions of agent s which 
are not true at time t and which are in the add list of 
agent i and pi ranges over the add list predicates of agent 
p which are not true at time t and which are in the 
precondition list of agent i. Further, B and F are chosen 
such that: 

retains(i,a,t) 

where m ranges over the predecessors of agent s and q 
ranges over the successors of agent p and a(i,t) stands 
for the activation level of agent i at time t. 

The following equations specify what an agent i 
retains for itself and what it receives from the other 
agents during spreading activation: 

if executable(i,t) = 1 
if executable(i ,t) = 0 

receives(i,t) 

where s ranges over the successor of agent i and p 
ranges over the predecessors of agent i. 

Finally, the activation level of an agent i at time t 
is defined as: 

The division by 2 takes care that the global activation 
level remains constant, namely equal to Il The agent 
that becomes active at time t is agent i such that: 

0) 
executable(i,t) = 1 (ii) 

5 Results. Part I: Empirical 

(iii) 

We are using two tools to test the theory: a computer 
simulation and a quantitative theory. This section 
discusses the results of the former one. A (computer-) 
environment has been built in which societies of agents 
can be denned and their behavior simulated. The pro­
gram is written in Common-LISP on a SYMBOLICS 
machine. Figure 3 shows the graphical interface of the 
system. It is also possible to obtain a trace showing in 
detail how the spreading activation has evolved. 

Several example applications have been experi­
mented with: 
• The example discussed in the prologue of Minsky's 
Society of the Mind book [10]. The global goal of this 
society is to build a tower of blocks as high as possible. 
It consists of 7 agents (find-place, lay-first-block, move-
block, grasp-block, see-block, release-block, destroy-
tower) and 26 links. The network has interesting 
features, such as loops, local high concentrations of 
links, and destructive agents (the destroy-tower agent). 
• The example discussed in the planning chapter of 
Charniak and Mc Dermott [4]. A two-handed robot has 
to perform 2 tasks: paint itself with a sprayer and sand a 
board with a sander. This example involves 10 agents 
and 68 links. This task is already more complex: the 
robot has to coordinate the use of its hands or otherwise 
be clever enough to use a vise to hold the board and 
perform the jobs in parallel. An experiment with this 
example is shown in the bitmap. 
• The well-known conflicting goals examples from the 
blocks world [11]. This is a real big network involving 
18 agents and 594 links. An example of the kind of 
tasks the society has to perform is the achievement of the 
conjunctive goal (and on-a-b on-b-c) given that on-a-c, 
b-on-table and c-on-table are true. 

Al l of the problems were solved for specific (large) 
ranges of parameters. The results of these empirical stu­
dies are discussed in the following subsections. 

Planning Capabilities 

The simulated societies exhibit certain planning capabili­
ties. The notion of a plan is however very different from 
the classical one. A society does not build an explicit 
representation of one specific plan, but instead expresses 
its " intention" or "urge" to take certain actions by high 
activation levels of the corresponding agents. Societies 
are able to consider (to some extend) the effect of 
sequences of actions: if a sequence of agents exists which 
transforms the current state in the goal state, then this 
sequence becomes highly activated through the forward 
spreading (starting from the current state) and the back­
ward spreading (starting from the goals). Goal-oriented 
planning behavior is obtained through the spreading of 
activation backward, while data-oriented (opportunistic) 
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behavior through the spreading of activation forward. 
Local maxima in the selection of action can be avoided, 
provided that the spreading of activation can go on long 
enough (the threshold is high enough), so that the society 
can evolve towards the optimal activity pattern. 

Conflicting or interacting goals can be dealt with. 
For example, the two goals of painting itself and sanding 
a board interact, since achieving them in parallel would 
require the agent to have three hands (one to hold the 
board, one to hold the sprayer and one to hold the 
sander). We obtained the three possible solutions to this 
problem (performing one task after the other or using the 
vise and doing both in parallel) for different selections of 
parameters. For some selections of parameters, the 
spreading activation is such that put-board-in-vise 
becomes active (it receives activation from sand-board-
in-vise and is also urged to become active by pick-up-
sprayer in order to make a hand free). For different 
selections of parameters the urge to fulfill either one of 
the goals is so strong that the society first performs one 
task and afterwards puts some tool down to start the 
other task. 

The approach belongs to the class of reactive 
planners [6], [5], [8], [1]. There is no separate execution 
module: whenever an agent has accumulated enough 
activation it becomes active (and takes some real world 
actions). The system is completely 'open'. The environ­
ment may change during the process of action selection. 
Even the goals may change at run time. As a result the 
external input as well as the internal spreading activation 
patterns will change to reflect the modified situation. 
Even more, the external influence during the "planning** 
or spreading activation phase is so important that plans 
are only formed as long as the influence (or "pertur-
bance") from the environment and goals is present. 

An important difference with classical action sys­
tems as well as with most reactive planners is that there 
is no centralized preprogrammed search process. Instead, 
the operators (agents) themselves select the sequence of 
operators that are activated, and this in a non-
hierarchical, highly distributed way. The difference 
between this work and the bulk of work in distributed 
planning and action [7] [2] is that in the latter the plan­
ning agents communicate on a much higher level. 

Fig. 3. The upper pane is a menu of commands. It makes it possible to define a new society, to initialize the 
current society, to change the global parameters, to change (manually) the current state of the environment, to 
change the goals of the society and to run or step through the behavior of a society. The left-hand panes display 
the parameters, the current state of the environment, the current goals of the society and the results of the simula­
tion. The right hand-panes display the activation levels of agents over time. The little circles tell when an agent 
has become active. 
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They reason about each other, they debate and negotiate 
among one another. Another important difference is that 
there is no search tree constructed, i.e. there is no expli­
cit representation built of the state changes after taking 
certain actions. Consequently, the system does not suffer 
from the disadvantages of search trees such as: that 
information is duplicated in several parts of a tree; trees 
grow exponentially with the size of the problem; trees 
only make a strict representation of plans possible 
(impossible to work with uncertainties); etc. 
However, there are limitations to this form of planning: 

- A society can only look ahead in a local neigh­
borhood (in time) which is determined by the level 
of threshold. The higher the threshold the more a 
society can look ahead. 
- There is only a very limited model of the 
environment. It is not possible to model how the 
environment most probably wi l l change without the 
agent's interference, e.g. by other agents. Only the 
effects of own actions are represented. A society is 
however able to cope with the problems that this 
causes, because it performs a partial replanning at 
every timestep. 
- There is no description of the past "search", i.e. 
no "memory" of past states neither locally, nor 
globally. As a consequence the same planning 
mistake can be made over and over again. 
- The representation of the environment is 
oversimplified at this moment. Neither abstractions, 
nor variables are being used. 
- Although the behavior is deterministic, it is 
impossible to exactly predict what wi l l happen on a 
global level. Section 6 shows however that it is 
possible to construct a qualitative theory. 

Varying the Global Parameters 
By varying the global parameters the behavior can be 
tuned. Figure 4 shows the results of four experiments 
with different choices of parameters. 

Fig. 4. This table illustrates some of the effects of the 
input parameters on the global results showing the 
data for 4 experiments. 

The behavior can be made more or less data-oriented in 
its selection of action, for example by varying the param­
eter (cf. column 1 and 2 in the above figure). The 
data-orientedness is proportional to the level of opportun­
ism, or the degree to which a society exploits opportuni­

ties. The behavior can be made more or less goal-
oriented by varying as above. For example, for 
backward search is performed. 

The behavior can be made more or less deliberated 
by increasing the threshold which makes the spreading 
activation process go on for a longer time before a 
specific action is selected. This allows the society to look 
ahead further (cf. column 3 and 4 in the above figure). 
The behavior can be made more or less fast, by varying 
the threshold as above. The resulting selection is how­
ever less optimal. It is still an open question how the 
values for these parameters should be selected. At the 
moment we set them ourselves such that the resulting 
behavior has the characteristics we want it to have. We 
envision to use a second society of agents which would 
tune the parameters of the first one so as to obtain the 
required level of data-orientedness, goal-orientedness, 
deliberation and speed. These agents would reflect the 
qualitative laws discussed in section 6. 

Flexibility and Adaptivity 

Because of the continuous "replanning" the behavior is 
flexible. Unforeseen situations (due to incomplete 
knowledge about the environment or the effects of 
actions) can be dealt with. For example, if after the 
activation of pick-up-board, the board is not in the 
robot's hand (e.g. because it slipped away), the same 
agent becomes active once more, because it still receives 
a lot of activation from the agents that want the board to 
be in the robots hand. Another example: if some other 
agent picks up the board and puts it in the vise, pick­
up-board is no longer urged to become active. A l l of 
these experiments have been simulated with success. 

The societies are also modular. It is possible to 
define new agents or to delete agents. The dynamics 
adapts to the new situation and the society still does 
whatever is in its possibilities. For example, when the 
agent put-board-in-vise is deleted, the society still comes 
up with a solution. The behavior also adapts to changes 
made to the agents, the environment or the goals. For 
example, an experiment was performed in which a third 
hand was given to the robot at run time. The robot 
immediately made use of it to realize its goals in a more 
efficient way. In another experiment spray-paint-self was 
given as extra precondition that the board had to be 
sanded. As a result, the society produced action 
sequences which fulfilled this new constraint. It even 
came to a solution faster because this constraint reduced 
its search space. 

Impasses 

One drawback of the theory is that for a certain selection 
of the parameters impasses emerge. They are not too fre­
quent (around 8%), and come in two forms: 

- loops, i.e. the same sequence of agents is 
activated over and over again. 
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- deadlocks, i.e. there is a converges to a situation 
in which none of the agents is strong enough to 
become active and all activation levels remain con­
stant over time. 
It is questionable whether a solution to impasses 

should be built in. The hypothesis could be adopted that 
in a real environment the state and goals will change 
anyhow after some time which is very small. This 
changes the spreading activation patterns and therefore 
would get the society out of its impasse. If we do want 
to avoid (even temporal) impasses, this cannot be 
guaranteed by a careful selection of the parameters. One 
very simple solution however could be to introduce some 
randomness in the system. Another solution might be to 
use the second network mentioned above to monitor pos­
sible loops or deadlocks in the first network. 

6 Results. Part I I : Qualitative Theory 

A second tool that we are developing to study the pro­
posed theory of action is a qualitative theory. The 
dynamics of the resulting systems are too complicated to 
be studied with a system of differential equations. So, the 
only possible formal theory is a qualitative one. The 
complete qualitative theory is discribed in [9]. We give 
in this section some idea of how it allows to (partially) 
predict, understand and tune the behavior of a society. 
A first type of laws is about the relationship between the 
parameters and the results. Examples of such laws are: 

(i) 

(ii) 
(iii) 

Law (ii) indicates that the optimaiity of the selection 
increases when the threshold increases , while (i) says 
that the selection becomes slower at the same time, (iii) 
says that the backward-spreading parameter may be used 
to control the goal-orientedness. A second type of laws 
is about the relationship between the structure of the net­
work and the results. Some examples are (where '#' 
stands for 'the number o f ) : 

# agents-realizing-goal time-necessary-for-goal (iv) 

# goals (v) 
goal-orientedness 

ft propositions-in-state 
data-one ntedness 

1 
: (vi) 

opportunism 
Law (iv) states that the more agents there are that can 
realize a specific goal, the longer it takes for the society 
to realize that goal. So a goal which can only be 
achieved by one agent is realized very fast (cf. routines). 
When the society has many ways for realising a goal, the 
consideration of them makes it slower, (v) indicates that 
the more goals a society has the less goal-oriented it 
becomes (and therefore the more data-oriented and 
opportunistic), (vi) states that the behavior becomes less 

data-oriented (and thus also less opportunistic) when 
more things are observed in the environment. 

7 Conclusions 

The results reported upon in the paper demonstrate the 
feasability of using an activation/inhibition dynamics 
among agents proposing actions, to solve the problem of 
rational action selection. The algorithm discussed here is 
not meant to be the ultimate one. We are currently 
experimenting with variations of it. In particular we are 
trying to exploit the information in the delete lists of 
agents to better model negative interactions among 
agents. Another variation that is being worked upon is to 
allow parallellism in the activation of agents. Apart from 
this, future work will be concerned with: a systematic 
study of the limitations of the theory, the application of 
the theory in real mobile robots, and the introduction of 
learning. 
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