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Abstract

This paper presents a new planning/scheduling
methodology for the constrained resource prob-
lem (CRP), in which the amount of available
resources is limited and usually monotonically
diminishing as the planning process progresses.
The tasks are tightly-coupled since they compete
for the limited resources. Two domain indepen-
dent policies — most-constraint and least-tmpact

help to make this planning/scheduling
approach sensitive to dynamic interactions
among tasks. The most-constraint policy selects
a task dynamically according to the criticality,
which measures how a task is constrained by
task interaction. The least-impact policy dynam-
ically chooses a solution for the selected task
according to the cruciality of each possible solu-
tion, which expresses the impact on the rest of
the unachieved tasks. These policies have
enhanced the operability and measurability of
problem solving by planning/scheduling. Hence,
this method can provide realistic and executable
planning/scheduling guidelines for CRP solvers.
This model has been successfully applied to
several CRPs in which the amount of backtrack-
ing has been reduced dramatically.

1 Introduction

Many artificial intelligence tasks can be formulated as
the constraint-satisfaction problem (CSP) which
involves the assignment of values to variables subject
to a set of constraints. The CSP consists of a finite set
of n variables (or tasks) V4, . . ., V, a set of domains
D, ..., D, and a set of constraint relations
Cs, ..., 1. Each D; defines a finite set of values (or
labels or solutions) that variable V} may be assigned.
A constraint C; specifies the consistent or inconsistent
choices among variables and is defined as a subset of
the Cartesian product:
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C/ C Dy x Dy x eeee x D,
In this paper the goal of the CSP is to find one tuple
from D; x X D, such that n assignments of
values to variables satisfy all constraints simultane-
ously.

In the process of solving a CSP, two decisions
have to be made at each cycle, i.e. which variable to
instantiate next and which value to assign to that vari-
able. Since heuristics are used to guide these decisions
in solving difficult CSPs, backtracking is usually una-
voidable. If the cost of backtracking is high, the prob-
lem of how to reduce the amount of backtracking
become crucial. Intelligent backtracking such as
dependency-directed backtracking in truth mainte-
nance systems [Doyle, 1979] is one way to deal with
the problem. For problems in which the dependency
relation is complicated, however, dependency-directed
backtracking may be ineffective. An example that illus-
trates this behavior is N-queens problem in which
every decision depends on all previous decisions. An
alternative to dependency-directed backtracking is to
give good advice for each decision so that the number
of backtracks can be minimized. Various strategies for
this have been developed. For variable selection,
Bitner, 1975, Haralick et a/., 1980, Purdom, 1983] try
to order uninstantiated variables dynamically in every
branch of the search tree so that the next variable is
always the one that will most constrain the rest of the
search tree. Usually the variable that has the least
number of values left is selected. In value assignment,
Dechter [1988] attempts to assign a value that maxim-
izes the number of options available for future assign-
ment. Dechter identifies classes of constraint graphs
lending themselves to backtrack-free solutions and dev-
ises efficient algorithms for solving them. By selec-
tively deleting constraints from the original constraint
graph, the original problem is then transformed into a
simplified and backtrack-free problem. The number of
consistent solutions in the simplified problem is there-
fore used to establish priorities of value assignments to
variables in the original problem.

A subclass of CSP — the constrained resource
problem (CRP) — supplies significant information that
may be used to guide the search. This information has



not been used in previous approaches. In CRP, vari-
ables are tasks and values are resources. In this frame-
work, two important characteristics of the problem are
imited resources and non-sharable resources, Il.e. a
value can only be assigned to one variable and the
total number of values is limited. The N-queens prob-
lem is an example of CRP if we assume that the rows
are tasks and the columns are resources. In CRP the
tasks are competing for the limited resources, i.e. the
tasks interact. These tasks have to work cooperatively
in order to find the solution for the problem. Both the
task selection and the resource assignment should be
guided in the way that:

(1) the possibility of success in the future is
maximized;

(2) the amount of backtracking is minimized.

In order to achieve these goals we require some meas-
ures for how task competition affects individual tasks
and we must use these measurements to guide the deci-
sions.

In this paper we propose an approach for CRP
that is different from Dechter's and others. We
demonstrate the approach and show its effectiveness on
the N-queens problem. We then generalize the
approach to solve the general CRP in which the solu-
tion for a task may contain more than one resource.

2 A Planning/Scheduling Methodolo
for CRP ° ° 9

The CRP consists of a finite set T of n task
T,,....,T,, a set D of domains (or solution space)

Dy,...,D,, a finite set R of resource units
r,...,,, and a set C of constraint relations
Cy,...,0. Each D, defines a finite set of solutions

P, ..., Py that task 7, may be assigned. Each F
can satisfy T, and consists of a resource unit r;.

Due to the heavy Interactions among tasks in
CRP, the way in which resources are assigned to a
task greatly impacts the possible resource assignment
of other tasks. The problem solver searching for the
local optimal solution without considering the global
consequence of the solution suffers from:

(1) myopia with respect to only a specific task
interaction;

(2) premature commitment of resources to the
task, thereby constraining the future possi-
ble resource assignments of the remaining
tasks and the final solution.

Myopia and premature commitment often arise from
implicitly or unnecessarily predetermined orderings on
search control, rule firing, resource priority or
ignorance of global interactions in the problem. They
increase the chance of making wrong decisions at the
early stage of the planning/scheduling process, conse-
quently increasing the amount of backtracking and the
overall cost of problem solving.

The traditional least commitment strategy, as
used in the current literature [Sacerdoti, 1975, Tate,

1977, Stefik, 1981], attempts to make a commitment
only if there is a clear reason for doing so. The CRP is
underconstrained and there is usually more than one
alternative for the direction in which to proceed. The
least commitment strategy is insensitive to these dis-
tinct needs, and is hence incapable of dynamically han-
dling the interactions, in a situation-specific manner.
Therefore, in order to provide the flexibility of dealing
with task selection separately from solution selection,
while continuing to monitor and handle the interac-
tions between the two decision phases, we propose two
domain independent policies - most-constraint and
least-impact - to govern task selection and resource
assignment respectively. The most-constraint policy
tries to select the task which has least chance to sur-
vive under the resource competition. The least-impact
policy attempts to select a resource which needs the
least cost to use up that resource. These policies can
avoid myopia and premature commitment by doing
situation-specific reasoning that is sensitive to task
Interactions. The task interactions, in turn, are
modeled by considering the criticality of the task, the
cruciality of the solution, and constraint propagation,
as described below. The planning/scheduling metho-
dology can then be represented by a "four-corner"

model shown in Figure 1. The planner/scheduler

repeats the following four steps. Starting with a

current agenda,

a Select the most critical task by the most-
constraint policy.

b. Formulate the solution space (feasible solutions)
for the selected task.

C. Select the least crucial solution from the current
solution space by the least-impact policy.

d. Commit the resource to the selected task and

propagate constraints (generating a new agenda
and updating the status of the tasks and the

resources).
Task solution space Solution
fTormulation Space
'y

most-constraint least-impact

|

Task | constraint .
= — Solution
Agenda propagation
Figure 1 The Planning/Scheduling Model

2.1 Criticality of the Task

Each task Is associated with a value called criicality
which measures the impact of task interactions. The
criticality of a task considers not only the number of
possible resource assignments for the task, but also the
iImpact from other tasks that are competing for the
same resources. Task criticality measures the degree
of flexibility for a task, i.e. the degree of survivability
for a task that is constrained by resource competition
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and earlier commitments. The higher the criticality,
the more flexible the task, and therefore the less criti-
cal the task. The most-constraint policy selects as the
next task the most critical one. Task criticality 1is
updated at each cycle since each commitment for a
task reduces the number of possible resource assign-
ments of the remaining tasks, due to the diminishing
resources and the constraint relations. Hence, the cri-

ticality for each task is sensitive to any previous com-
mitments.

Let the operation ASSIGN(T;, ry) represent the
attempt of assigning ri to 7T;. Let a; be the degree of
need (or demand or competition) for r, by 7,;. There-
fore, a;, = 1 / |D;| for all r, € D,. Let vy, represent
the strength of the impact/competition to
ASSIGN(T;,r) from all unachieved tasks. Thus,
Y = ag + Y aj, where T; has possible resource
assignments ASSIGN(T;,r;) which is in conflict with
ASSIGN(T;,ri). That is, all unachieved tasks express
their degree of dislike to the idea ASSIGN(T;,r;) or
their strength of the need/compegition for r,. Accord-
ingly, a; /vy represents the survivability for
ASSIGN(T;,r,) from the competition. Therefore,
[; = Y (ag / vi) where {2; represents the criticality

id
k

of T;, with respect to all possible assignments r, to T},
re € D;. The task having smallest criticality is the
most constrained task and 1s selected as the next job.
The solution space of the selected task 7; i1s the
current corresponding domain D;.

2.2 Cruciality of the Solution

Each individual solution is associated with a value
called cruciality that measures the impact to the rest
of the tasks if we commit a resource to a task. The
cruciality of a solution is the cost of using up the
resource in the solution. That is, in order to commit a
resource to a task, we may have to give up several pos-
sible solutions for other tasks. The higher the crucial-
ity of a solution, the more competitive the resource
unit in the solution. The least-impact policy selects
the solution having least cruciality for the chosen task,
hence the commitment of that solution has a minimal
iImpact on the remaining tasks. The cruciality of the
solution is updated at each cycle because each commit-
ment for a task may disable a resource unit, conse-
quently increasing the criticalities of the affected tasks
and changing the solution crucialities of unachieved
tasks. The cruciality of the solution, therefore, is not
only sensitive to the resource demands of unachieved

tasks, but also sensitive to any commitment made ear-
lier.

For the current task T;, let I';, represent the cru-
ciality of the solution P, which contains r,.
Fg = yg —a;, where y,; and ay has been defined
above. That is, the commitment of ASSIGN(T;, 1) is
on the cost of reducing possible solutions of remaining
tasks, 1.e. reducing the flexibility of some remaining
tasks. The solution having smallest cruciality has the
least impact on the unachieved tasks and i1s hence com-
mitted to 7;.
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2.3 Constraint Propagation

At each planning/scheduling cycle, the current
environment should be consistent, i.e. no constraints
should be violated and all unachieved subgoals should
have at least one potential solution. Committing a
solution, however, imposes new constraints (e.g. dis-
ables some resources) on the current environment.
The current environment, therefore, has to be updated
in order to reflect these changes. (One special case,
called the domino effectt occurs when the impact of
committing one task prunes another task's solution
space to an unique solution.) Accordingly, a new con-
sistent environment is generated or an inconsistency is
found, which means a task is overconstrained. In that
case, we retreat to the most recent choice point for
which alternatives exist and make a new choice (i.e.
retreat counterclockwise along the four-corner model).

3 An Example: the N-queens problem

We formulate the N-queens problem as a N x N
board. Each position in the board is denoted by
ASSIGN(Ri,c,) where R, and c¢, represent the ith row
and the kth column respectively. The tasks of the
problem are rows and the resources are columns. The
goal is to find a N tuple of consistent positions for N
queens. Let D; be the domain of row R; where D;, con-
tains all possible column assignments to R;,. For all
¢k € D, ayg =1/ |D;] and hence yy; = Y  a, where
| = k (same column) or |t - j| = |k - I| (diagonal).
Therefore, [}, = ¥ (ayu / vi) where [2; 1s the critical-

k
ity of R, and ¢, € D;,. 'y = vy4 - a; where [, 1s the
cruciality of ASSIGN(R;, ¢;)

We have implemented the proposed approach in
C on a SUN 3/260 running 4.2 BSD Unix and tested it
on board sizes ranging from N==4 to N==100. We
compare the results with those generated by an
approach which uses two simple heuristics to guide the
row selection and column assignment. The heuristic for
the row selection chooses the row having least number
of possible column assignments. The heuristic for
column assignment selects the column whose assign-
ment maximizes the number of possible column assign-
ments for remaining rows. For both approaches, ties
are broken via the natural ordering of the indices. Fig-
ure 2(a) shows the number of backtracks as function of
the problem size. The small o's and x's represent the
numbers of backtracks generated by our approach and
simple heuristic method, respectively. Figure 2(b)
plots the execution time as functions of the problem
size. The dashed line denotes the execution time of the
program using the simple heuristic method, while the
solid line indicates the execution time using our
approach.

Using our approach, no backtracking was per-
formed 76% of the time, the maximum number of
backtracks in any single case was 13, and the average
number of backtracks was less than 1. This indicates
that our approach is usually successful in guiding the



search in the right direction, especially at the early
stages of the process. For the simple heuristic method,
backtracking was performed 80% of the time, the
maximum number of backtracks was more than 10°
and there were 4 cases whose numbers of backtracks
were more than 10*. This indicates that the perfor-
mance of the simple heuristic method is very unstable.
In contrast, the performance of the proposed approach
IS consistent in the test cases. The main reason is that
the number of possible column assignments for each
row does not express the actual flexibility of the row.
That is, the simple heuristic method makes decisions
based on insufficient information that does not con-
sider the impact of resource competition. Conse-
quently, in several cases, it made wrong decisions at
the very early stages of the process and thus, the sim-
ple method had Iong execution times due to the
extremely large numbers of backtrack.

Our approach incurs considerable overhead in
computing task criticality and solution cruciality. The
number of backtracks is diminished to such an extent,
however, that our approach is frequently competitive
(and occasionally outperforms) the simple heuristic,
even when Dbacktracking is very cheap, as in the N-
gqueens problem. For problems where backtracking is
expensive, the strength of our approach is likely to be
demonstrated more persuasively. There are, however,
opportunities for reducing this overhead significantly
by parallelizing these computations since all the com-
putations for task criticalities and solution crucialities
are independent.

4 Model Generalization

Our model can be generalized to more general class of
CRP in which a task may demand more than one
resource unit. That is, each D; defines a finite set of
subplans P, ..., Py Every Py sists of a
different set of resource units {r;]ri€ R}.

Let B, be the number of solutions including
resource unit r, in D;, i.e. the importance ort o T;
IS increasing while the number of solutions that need r;
is increasing in D;, T h ag =Ba |D;| and
Y =ag + Y a; wtere  ASSLN(Ty,r) is in conflict
with ASYANN(T;,r,) due to resource competition or
the constraint relation. Let w;; be the criticality of

. . gk _
solution P wy = Aka ~—= where r€F,. Since a
Y ik

solution may contain more than one resource unit, we
define the criticality of the solution to be the surviva-
bility of the most competitive resource unit. There-
fore, the criticality of the task is the sum of the criti-
calities of their possible solutions, ie. {§ =Y wy.

For selected 7T;, solution cruciality is the impact of
committing Fi; to other tasks. [y = Y (v — @)

k

where r € P;;. With these modified definitions of task
criticality and solution cruciality, our
planning/scheduling model can be applied to the gen-

eral CRP.

5 Other Applications

We have attempted to apply our model to several
CRPs such as VLS| switchbox routing and job-shop
scheduling. In this paper we only formulate the CRP
model for these two problems. Our executable model

can then be applied to these problems according to the
definitions described above.

5.1 Switchbox Routing Problem
Switchbox routing [Burstein et a/., 1983, Ho et a/.,
1985] is an important task in the physical design of
VLS| chips. The problem is formulated on a
rectangular-grid with fixed-position net terminals on
each of the four edges. Each terminal is identified by
the name of the net to which it belongs and each net
contains at least two terminals. A track is a line seg-
ment between two grid points and there are two rout-
ing planes. One plane contains horizontal tracks and
the other one contains vertical tracks. Connection
between a vertical track and a horizontal track is
made through a small hole called via. Different nets
cannot contact one another on the same layer. The
task for the switchbox router is to connect all of the
terminals with the same net name.

In switchbox routing, tracks and vias are
resource units, while tasks correspond to the connect-
ing of pairs of terminals. For each pair, the coordi-
nates of the two terminals define four edges of a rec-
tangle, i.e. demand block (DB), in which the two termi-
nals are two opposite vertices. Each pair demands
tracks and vias in the rectangle. The solution space of
a pair contains all shortest paths connecting the pair
in the rectangle. A path consists of at least one track.
The application of our model, as well as the implemen-
tation and results have been presented in [Ho et a/.,
1985, Keng et a/., 1987].

5.2 Job-Shop Scheduling Problem

The job-shop scheduling problem [Baker, 1974, Fox,
1983, Keng f{t al/., 1988] consists of a set of machines
and a set of orders of products. For each product, a
partial ordering (process routing) of operations whose
execution results in the completion of the product is
given. For each order, the scheduler assigns a time
interval (start and end times) and a machine to each
operation in its corresponding process routing. The
task for the job-shop scheduler is to construct a
schedule in which all orders are finished.

The set of resource units contains (machine,
time) pairs {(M; t1;), ..., (Mm tma)}, where t;; denotes
the time unit 3 on machine Mj-. Each machine is asso-
ciated with a time horizon that is divided into consecu-
tive time units The set of tasks are operations that
are obtained through decomposition of the set of ord-
ers and their corresponding process routings. The pre-
cedence relations among operations are constraints.
For each operation we can compute the resource
demand, i.e. demand window (DW), that defines the
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earliest possible start-time and the latest possible end-
time for the operation, using the ready time and the
due date of the corresponding order. DW defines all
possible time intervals that can be assigned to the
operation and is the solution space of the operation. A
time interval consists of at least one resource unit. A
detailed discussion of the application of our model to

the job-shop scheduling problem is found in (Keng et
ai, 1988].

6 Conclusion

A dynamic planning/scheduling methodology for the
CRP has been presented in this paper. Our model uses
two domain independent policies — most-constraint
and least-impact — to control the search for a solution.
The most-constraint policy controls the selection of the
next task according to the task criticality that meas-
ures how task competition for resources constrains a
task. For a selected task, the least-impact policy
guides the search for the solution according to the
solution cruciality, that measures how the commitment
of a solution affects the possible resource assignments
for other tasks. The criticality and the cruciality are
sensitive to the dynamically changing environment,
because they are updated after each resource commit-
ment and rearranged according to their new priorities.
Consequently, our model acts opportunistically and in
a constructive, situation-specific manner, without mak-
Ing premature commitment.

Experiments indicate that our approach is usu-
ally successful in guiding the search in the correct
direction. In a set of 97 test cases using the above
model, no backtracking was performed 76% of the
time and the maximum number of backtracks in any
single case was 13. Our model is likely to be highly
appropriate for problems where the cost of backtrack-
ing is high. Our approach does incur considerable
overhead Iin performing the analysis required for deci-
sion making, however there are opportunities for
reducing this cost by parallelizing the computations of
task criticality and solution cruciality.

The problems to which our model has been suc-
cessfully applied includes the VLS| switchbox routing
problem [Ho ct ai, 1985, Keng ct ai, 1987], the job-
shop scheduling problem [Keng ct ai, 1988], the task
assignment problem in parallel processing [Tsal, 1988].
By using two control policies and uniform representa-
tion to measure the resource competition among tasks,
our methodology not only has provided realistic and
executable planning/scheduling guidelines for CRP
problem solvers, but also has enhanced the operability
and measurability of problem  solving by
planning/scheduling. Hence, we believe our model

presents a general methodology for problem solving by
planning/scheduling.
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