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Abstract 
This paper presents a new planning/scheduling 
methodology for the constrained resource prob­
lem (CRP), in which the amount of available 
resources is limited and usually monotonically 
diminishing as the planning process progresses. 
The tasks are tightly-coupled since they compete 
for the limited resources. Two domain indepen­
dent policies — most-constraint and least-tmpact 

help to make this planning/scheduling 
approach sensitive to dynamic interactions 
among tasks. The most-constraint policy selects 
a task dynamically according to the criticality, 
which measures how a task is constrained by 
task interaction. The least-impact policy dynam­
ically chooses a solution for the selected task 
according to the cruciality of each possible solu­
tion, which expresses the impact on the rest of 
the unachieved tasks. These policies have 
enhanced the operability and measurability of 
problem solving by planning/scheduling. Hence, 
this method can provide realistic and executable 
planning/scheduling guidelines for CRP solvers. 
This model has been successfully applied to 
several CRPs in which the amount of backtrack­
ing has been reduced dramatically. 

1 In t roduct ion 

Many artificial intelligence tasks can be formulated as 
the constraint-satisfaction problem (CSP) which 
involves the assignment of values to variables subject 
to a set of constraints. The CSP consists of a finite set 
of n variables (or tasks) V1, . . . , Vn, a set of domains 
D1, . . . , Dn and a set of constraint relations 
C1, . . . , 1. Each Di defines a finite set of values (or 
labels or solutions) that variable Vj- may be assigned. 
A constraint Ci; specifies the consistent or inconsistent 
choices among variables and is defined as a subset of 
the Cartesian product: 

1 This research was sponsored in part by the Defense Advanced 
Research Project Agency under contract MDA903-85-0182. 

Cj C D1 x D2 x •••• x Dn 
In this paper the goal of the CSP is to find one tuple 
from D1 x • x Dn such that n assignments of 
values to variables satisfy all constraints simultane­
ously. 

In the process of solving a CSP, two decisions 
have to be made at each cycle, i.e. which variable to 
instantiate next and which value to assign to that vari­
able. Since heuristics are used to guide these decisions 
in solving difficult CSPs, backtracking is usually una­
voidable. If the cost of backtracking is high, the prob­
lem of how to reduce the amount of backtracking 
become crucial. Intelligent backtracking such as 
dependency-directed backtracking in truth mainte­
nance systems [Doyle, 1979] is one way to deal with 
the problem. For problems in which the dependency 
relation is complicated, however, dependency-directed 
backtracking may be ineffective. An example that illus­
trates this behavior is N-queens problem in which 
every decision depends on all previous decisions. An 
alternative to dependency-directed backtracking is to 
give good advice for each decision so that the number 
of backtracks can be minimized. Various strategies for 
this have been developed. For variable selection, 
Bitner, 1975, Haralick et a/., 1980, Purdom, 1983] try 

to order uninstantiated variables dynamically in every 
branch of the search tree so that the next variable is 
always the one that wil l most constrain the rest of the 
search tree. Usually the variable that has the least 
number of values left is selected. In value assignment, 
Dechter [1988] attempts to assign a value that maxim­
izes the number of options available for future assign­
ment. Dechter identifies classes of constraint graphs 
lending themselves to backtrack-free solutions and dev­
ises efficient algorithms for solving them. By selec­
tively deleting constraints from the original constraint 
graph, the original problem is then transformed into a 
simplified and backtrack-free problem. The number of 
consistent solutions in the simplified problem is there­
fore used to establish priorities of value assignments to 
variables in the original problem. 

A subclass of CSP — the constrained resource 
problem (CRP) — supplies significant information that 
may be used to guide the search. This information has 
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not been used in previous approaches. In CRP, va r i ­
ables are tasks and values are resources. In this frame­
work , two impor tan t characteristics of the problem are 
limited resources and non-sharable resources, i.e. a 
value can only be assigned to one variable and the 
to ta l number of values is l im i ted . The N-queens prob­
lem is an example of CRP if we assume that the rows 
are tasks and the columns are resources. In CRP the 
tasks are competing for the l imi ted resources, i.e. the 
tasks interact. These tasks have to work cooperatively 
in order to f ind the solut ion for the problem. Both the 
task selection and the resource assignment should be 
guided in the way tha t : 

(1) the possibi l i ty of success in the future is 
maximized; 

(2) the amount of backtracking is minimized. 

In order to achieve these goals we require some meas­
ures for how task compet i t ion affects ind iv idual tasks 
and we must use these measurements to guide the deci­
sions. 

In this paper we propose an approach for CRP 
tha t is different f rom Dechter's and others. We 
demonstrate the approach and show its effectiveness on 
the N-queens problem. We then generalize the 
approach to solve the general CRP in which the solu­
t ion for a task may contain more than one resource. 

2 A P lann ing /Schedu l ing Methodo logy 
for CRP 

The CRP consists of a finite set T of n task 
a set D of domains (or solution space) 

a finite set R of resource uni ts 
and a set C of constraint relations 
Each D, defines a finite set of solutions 

tha t task may be assigned. Each 
can satisfy T, and consists of a resource unit 

Due to the heavy interactions among tasks in 
CRP, the way in which resources are assigned to a 
task greatly impacts the possible resource assignment 
of other tasks. The problem solver searching for the 
local op t ima l solut ion w i thou t considering the global 
consequence of the solut ion suffers f rom: 

(1) myopia w i t h respect to only a specific task 
in teract ion; 

(2) premature commi tment of resources to the 
task, thereby constraining the future possi­
ble resource assignments of the remaining 
tasks and the final solut ion. 

M y o p i a and premature commi tment often arise f rom 
imp l i c i t l y or unnecessarily predetermined orderings on 
search cont ro l , rule fir ing, resource pr io r i t y or 
ignorance of global interact ions in the problem. They 
increase the chance of mak ing wrong decisions at the 
early stage of the p lanning/schedul ing process, conse­
quently increasing the amount of backtracking and the 
overal l cost of problem solving. 

The t rad i t iona l least commi tment strategy, as 
used in the current l i terature [Sacerdoti, 1975, Tate , 

1977, Stefik, 1981], at tempts to make a commi tment 
only if there is a clear reason for doing so. The CRP is 
underconstrained and there is usually more than one 
alternative for the direct ion in which to proceed. The 
least commitment strategy is insensitive to these dis­
t inct needs, and is hence incapable of dynamical ly han­
dling the interactions, in a situation-specific manner. 
Therefore, in order to provide the f lexibi l i ty of deal ing 
w i th task selection separately f rom solut ion selection, 
while cont inuing to moni tor and handle the interac­
tions between the two decision phases, we propose two 
domain independent policies - m o s t - c o n s t r a i n t and 
l e a s t - i m p a c t - to govern task selection and resource 
assignment respectively. The most-constraint pol icy 
tries to select the task which has least chance to sur­
vive under the resource compet i t ion. The least- impact 
policy attempts to select a resource which needs the 
least cost to use up that resource. These policies can 
avoid myopia and premature commi tment by doing 
situation-specific reasoning tha t is sensitive to task 
interactions. The task interact ions, in t u r n , are 
modeled by considering the cr i t ica l i ty of the task, the 
crucial i ty of the solut ion, and constraint propagat ion, 
as described below. The planning/schedul ing metho­
dology can then be represented by a " fou r -co rne r " 
model shown in Figure 1. The planner/scheduler 
repeats the fol lowing four steps. Star t ing w i t h a 
current agenda, 

Select the most cr i t ical task by the most-
constraint policy. 

Formulate the solut ion space (feasible solutions) 
for the selected task. 

Select the least crucial solut ion f rom the current 
solution space by the least- impact pol icy. 

Commi t the resource to the selected task and 
propagate constraints (generating a new agenda 
and updat ing the status of the tasks and the 
resources). 

a 

c. 

d. 

2.1 C r i t i c a l i t y o f t h e T a s k 

Each task is associated w i t h a value called criticality 
which measures the impact of task interact ions. The 
cr i t ical i ty of a task considers not only the number of 
possible resource assignments for the task, but also the 
impact f rom other tasks tha t are compet ing for the 
same resources. Task cr i t ica l i ty measures the degree 
of flexibility for a task, i.e. the degree of surv ivab i l i t y 
for a task that is constrained by resource compet i t ion 
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and earlier commi tments . The higher the cr i t ica l i ty , 
the more flexible the task, and therefore the less c r i t i ­
cal the task. The most-constra int policy selects as the 
next task the most c r i t i ca l one. Task cr i t ical i ty is 
updated at each cycle since each commitment for a 
task reduces the number of possible resource assign­
ments of the remain ing tasks, due to the diminishing 
resources and the constra int relations. Hence, the cr i­
t ica l i ty for each task is sensitive to any previous com­
mitments. 

2.2 C r u c i a l i t y o f t h e S o l u t i o n 

Each ind iv idua l so lu t ion is associated w i t h a value 
called cruciality t ha t measures the impact to the rest 
of the tasks if we c o m m i t a resource to a task. The 
crucial i ty of a so lut ion is the cost of using up the 
resource in the so lu t ion. T h a t is, in order to commi t a 
resource to a task, we may have to give up several pos­
sible solutions for other tasks. The higher the crucial­
i ty of a solut ion, the more compet i t ive the resource 
uni t in the solut ion. The least- impact policy selects 
the solut ion having least cruc ia l i ty for the chosen task, 
hence the commi tmen t of tha t solut ion has a m in ima l 
impact on the remain ing tasks. The crucial i ty of the 
solution is updated at each cycle because each commit ­
ment for a task may disable a resource un i t , conse­
quently increasing the cr i t ical i t ies of the affected tasks 
and changing the so lu t ion crucial i t ies of unachieved 
tasks. The cruc ia l i ty of the so lut ion, therefore, is not 
only sensitive to the resource demands of unachieved 
tasks, but also sensitive to any commi tment made ear­
lier. 

2.3 C o n s t r a i n t P r o p a g a t i o n 

At each p lanning/schedul ing cycle, the current 
env i ronment should be consistent, i.e. no constraints 
should be v io lated and all unachieved subgoals should 
have at least one potent ia l solut ion. C o m m i t t i n g a 
solut ion, however, imposes new constraints (e.g. dis­
ables some resources) on the current env i ronment . 
The current envi ronment, therefore, has to be updated 
in order to reflect these changes. (One special case, 
called the domino effect, occurs when the impact of 
commi t t i ng one task prunes another task's so lut ion 
space to an unique solut ion.) Accord ing ly , a new con­
sistent env i ronment is generated or an inconsistency is 
found, wh ich means a task is overconstrained. In t ha t 
case, we retreat to the most recent choice po in t for 
which al ternat ives exist and make a new choice (i.e. 
retreat counterclockwise along the four-corner model). 

3 An E x a m p l e : the N-queens p rob lem 

We formula te the N-queens problem as a N x N 
board. Each posi t ion in the board is denoted by 
ASSIGN(Ri,ck) where R, and ck represent the i t h row 
and the k t h column respectively. The tasks of the 
problem are rows and the resources are columns. The 
goal is to find a N tuple of consistent positions for N 
queens. Let D t be the domain of row R i where D i, con­
tains all possible column assignments to R i. For all 

We have implemented the proposed approach in 
C on a S U N 3/260 runn ing 4.2 BSD Un ix and tested it 
on board sizes ranging f rom N==4 to N==100. We 
compare the results w i t h those generated by an 
approach which uses two simple heuristics to guide the 
row selection and co lumn assignment. The heuristic for 
the row selection chooses the row having least number 
of possible column assignments. The heuristic for 
column assignment selects the column whose assign­
ment maximizes the number of possible column assign­
ments for remain ing rows. For both approaches, ties 
are broken v ia the natura l order ing of the indices. F ig ­
ure 2(a) shows the number of backtracks as funct ion of 
the prob lem size. The small o's and x's represent the 
numbers of backtracks generated by our approach and 
simple heurist ic method, respectively. Figure 2(b) 
plots the execution t ime as funct ions of the prob lem 
size. The dashed l ine denotes the execution t ime of the 
program using the simple heuristic method, whi le the 
solid l ine indicates the execution t ime using our 
approach. 

Using our approach, no backt rack ing was per­
formed 7 6 % of the t ime, the m a x i m u m number of 
backtracks in any single case was 13, and the average 
number of backtracks was less than 1. Th is indicates 
tha t our approach is usually successful in gu id ing the 
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search in the r i gh t d i rect ion, especially at the early 
stages of the process. For the simple heuristic method, 
backtrack ing was performed 8 0 % of the t ime, the 
max imum number of backtracks was more than 106, 
and there were 4 cases whose numbers of backtracks 
were more than 104 . Th is indicates that the perfor­
mance of the simple heuristic method is very unstable. 
In contrast, the performance of the proposed approach 
is consistent in the test cases. The main reason is tha t 
the number of possible column assignments for each 
row does not express the actual flexibility of the row. 
Tha t is, the simple heuristic method makes decisions 
based on insuff icient in fo rmat ion tha t does not con­
sider the impact of resource compet i t ion. Conse­
quently, in several cases, it made wrong decisions at 
the very early stages of the process and thus, the sim­
ple method had long execution times due to the 
extremely large numbers of backtrack. 

Our approach incurs considerable overhead in 
comput ing task c r i t i ca l i t y and solut ion crucial i ty. The 
number of backtracks is diminished to such an extent, 
however, t ha t our approach is frequently competit ive 
(and occasionally outperforms) the simple heuristic, 
even when backt rack ing is very cheap, as in the N-
queens problem. For problems where backtracking is 
expensive, the strength of our approach is l ikely to be 
demonstrated more persuasively. There are, however, 
opportuni t ies for reducing this overhead significantly 
by paral le l iz ing these computat ions since all the com­
putat ions for task cr i t ical i t ies and solut ion crucialit ies 
are independent. 

4 M o d e l Genera l iza t ion 

Our model can be generalized to more general class of 
CRP in which a task may demand more than one 
resource un i t . T h a t is, each defines a finite set of 
subplans E v e r y c o n s i s t s o f a 
different set of resource uni ts 

Let be the number of solutions including 
resource un i t i n i.e. the importance o f t o 
is increasing whi le the number of solutions that need 
i s increasing i n T h u s , / and 

where ASSIGN is in conflict 
w i th ASSIGN due to resource competi t ion or 
the constraint re la t ion. Let be the cr i t ical i ty of 

solut ion where Since a 

solut ion may conta in more than one resource uni t , we 
define the c r i t i ca l i t y of the solut ion to be the surviva­
b i l i t y of the most compet i t ive resource unit . There­
fore, the cr i t i ca l i ty of the task is the sum of the c r i t i ­
calities of thei r possible solut ions, i.e. 

commi t t i ng to other tasks. 
For selected solut ion crucia l i ty is the impact of 

k 
where W i t h these modif ied definitions of task 
cr i t ica l i ty and solut ion crucial i ty, our 
p lanning/schedul ing model can be applied to the gen­
eral CRP. 

5 O t h e r App l i ca t i ons 

We have at tempted to apply our model to several 
CRPs such as VLS I switchbox rou t ing and job-shop 
scheduling. In this paper we only fo rmula te the CRP 
model for these two problems. Our executable model 
can then be applied to these problems according to the 
definit ions described above. 

5 .1 S w i t c h b o x R o u t i n g P r o b l e m 

Switchbox rout ing [Burstein et a/., 1983, Ho et a/., 
1985] is an impor tan t task in the physical design of 
VLS I chips. The problem is formula ted on a 
rectangular-grid w i th fixed-position net terminals on 
each of the four edges. Each terminal is identi f ied by 
the name of the net to which it belongs and each net 
contains at least two terminals. A t rack is a l ine seg­
ment between two gr id points and there are two rout­
ing planes. One plane contains hor izontal t racks and 
the other one contains vert ical t racks. Connect ion 
between a vert ical track and a hor izonta l t rack is 
made through a small hole called v ia . Different nets 
cannot contact one another on the same layer. The 
task for the switchbox router is to connect a l l of the 
terminals w i th the same net name. 

In switchbox rout ing, tracks and vias are 
resource units, while tasks correspond to the connect­
ing of pairs of terminals. For each pai r , the coordi­
nates of the two terminals define four edges of a rec­
tangle, i.e. demand block (DB), in which the two te rm i ­
nals are two opposite vertices. Each pair demands 
tracks and vias in the rectangle. The solut ion space of 
a pair contains all shortest paths connecting the pair 
in the rectangle. A path consists of at least one t rack. 
The appl icat ion of our model, as wel l as the implemen­
ta t ion and results have been presented in [Ho et a/., 
1985, Keng et a/., 1987]. 

5.2 J o b - S h o p S c h e d u l i n g P r o b l e m 

The job-shop scheduling problem [Baker, 1974, Fox, 
1983, Keng tt a/., 1988] consists of a set of machines 
and a set of orders of products. For each product , a 
par t ia l order ing (process routing) of operat ions whose 
execution results in the completion of the product is 
given. For each order, the scheduler assigns a t ime 
interval (start and end times) and a machine to each 
operat ion in its corresponding process rou t ing . The 
task for the job-shop scheduler is to construct a 
schedule in which all orders are finished. 

The set of resource units contains (machine, 
t ime) pairs where denotes 
the t ime un i t on machine Mj-. Each machine is asso­
ciated w i t h a t ime horizon that is d iv ided in to consecu­
t ive t ime units The set of tasks are operat ions tha t 
are obtained through decomposition of the set of o rd ­
ers and their corresponding process rout ings. The pre­
cedence relations among operations are constraints. 
For each operat ion we can compute the resource 
demand, i.e. demand window (DW), t ha t defines the 
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earliest possible start-time and the latest possible end-
time for the operation, using the ready time and the 
due date of the corresponding order. DW defines all 
possible time intervals that can be assigned to the 
operation and is the solution space of the operation. A 
time interval consists of at least one resource unit. A 
detailed discussion of the application of our model to 
the job-shop scheduling problem is found in (Keng et 
ai, 1988]. 

6 Conclusion 

A dynamic planning/scheduling methodology for the 
CRP has been presented in this paper. Our model uses 
two domain independent policies — most-constraint 
and least-impact — to control the search for a solution. 
The most-constraint policy controls the selection of the 
next task according to the task criticality that meas­
ures how task competition for resources constrains a 
task. For a selected task, the least-impact policy 
guides the search for the solution according to the 
solution cruciality, that measures how the commitment 
of a solution affects the possible resource assignments 
for other tasks. The criticality and the cruciality are 
sensitive to the dynamically changing environment, 
because they are updated after each resource commit­
ment and rearranged according to their new priorities. 
Consequently, our model acts opportunistically and in 
a constructive, situation-specific manner, without mak­
ing premature commitment. 

Experiments indicate that our approach is usu­
ally successful in guiding the search in the correct 
direction. In a set of 97 test cases using the above 
model, no backtracking was performed 76% of the 
time and the maximum number of backtracks in any 
single case was 13. Our model is likely to be highly 
appropriate for problems where the cost of backtrack­
ing is high. Our approach does incur considerable 
overhead in performing the analysis required for deci­
sion making, however there are opportunities for 
reducing this cost by parallelizing the computations of 
task criticality and solution cruciality. 

The problems to which our model has been suc­
cessfully applied includes the VLSI switchbox routing 
problem [Ho ct ai, 1985, Keng ct ai, 1987], the job-
shop scheduling problem [Keng ct ai, 1988], the task 
assignment problem in parallel processing [Tsai, 1988]. 
By using two control policies and uniform representa­
tion to measure the resource competition among tasks, 
our methodology not only has provided realistic and 
executable planning/scheduling guidelines for CRP 
problem solvers, but also has enhanced the operability 
and measurability of problem solving by 
planning/scheduling. Hence, we believe our model 
presents a general methodology for problem solving by 
planning/scheduling. 
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solid l ine — our approach dashed line — simple heuristic method 

Figure 2(b) 
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