
Constraint Satisfiability Algorithms for Interactive Student Scheduling 

Ronen Feldman Martin Charles Golumbic 

Department of Mathematics and Computer Science 
Bar-Han University 
Ramat Gan, Israel 

IBM Israel Scientific Center 
Technion City 
Haifa, Israel 

Abstract 

A constraint satisfiability problem consists of a set 
of variables, their associated domains (i.e., the set of 
values the variable can take) and a set of con­
straints on these variables. A solution to the CSP is 
an instantiation (or labeling) of all the variables 
which does not violate any of the constraints. Since 
constraint satisfiability problems are, in general, 
NP-complete, it is of interest to compare the effec­
tiveness and efficiency of heuristic algorithms as 
applied, in particular, to our application. 

Our research effort attempts to determine which 
algorithms perform best in solving the student 
scheduling problem (SSP) and under what condi­
tions. We also investigate the probabilistic tech­
niques of Nudcl for finding a near optimal 
instantiation order for search algorithms, and 
develop our own modifications which can yield a 
significant improvement in efficiency for the SSP. 
Finally, we assign priorities to the constraints and 
investigate optimization algorithms for finding 
schedules which rank high with respect to the prior­
ities. Experimental results have been collected and 
are reported here. Our system was developed for 
and used at Bar-Ilan University during the registra­
tion period, being available for students to construct 
their timetables. 

1. Introduction 

Techniques for solving constraint satisfiability problems1 

(CSPs) have received much attention in artificial intelli­
gence, operation research and symbolic logic. Applications 
which may be viewed as CSPs are found in scene identifica­
tion in computer vision, space and motion planning, data­
base consistency, combinatorial optimization, and 
cryptarithm puzzle solving. Our research has dealt with 
algorithmic aspects of solving CSPs and using these 
methods for interactive scheduling in the Academic Plan­
ning Environment expert system project [8], a system which 

provides advising and assistance to university students in 
the planning of their program of studies. 

A constraint satisfiability problem (CSP) is composed of a 
set of variables V— {v1, ..., vn}, their related domains 
D1 ..., Dn and a set of constraints on these variables. (The 
domain of a variable is a group of values to which the vari­
able may be instantiated.) The domain sizes are 
mi , . . . , mn, respectively, and we let m denote the maximum 
of the mi Each constraint Cj is relevant to a subset of vari 
ables v.- i, ..., v £ and may be regarded as containing all 
the tuples of this set of variables that are legal with respect 
to C;, that is, C^ D: i, ..., D:■ L . A constraint which is 
relevant to exactly one variable is called a unary constraint. 
Similarly, a binary constraint is relevant to exactly two vari 
ables. 

A solution to the CSP consists of an instantiation of all the 
variables which does not violate any of the constraints, i.e., 
a consistent labeling of each variable with a value from its 
domain. Computationally, constraint satisfiability problems 
are NP-complete, which implies that there are no known 
polynomial time algorithms which can guarantee finding a 
solution. Therefore, it is of interest to compare the effec 
tiveness and efficiency of various heuristic algorithms for 
solving CSPs as applied, in particular, to our application. 

Because of the potentially exponential search that such 
algorithms will execute in order to find a solution, there arc 
a number of techniques for improving its performance by 
statically or dynamically pruning the search space [1,9, 10, 
I3J. For example, constraints which are relevant to small a 
subset of variables can be used to throw out, in a single 
consistency check, a much larger group of possible tuples 
(all the extensions of the rejected tuple). In section 3, we 
will formulate the most interesting and effective of these 
algorithms from the scheduling system point of view investi­
gate their performance characteristics. 

Our research effort attempts to determine which algorithms 
perform best in solving the student scheduling problem and 
under what conditions. Since the order in which variables 
are assigned values significantly affecLs the performance of 
such algorithms, we investigate the probabilistic techniques 

Constraint satisfiability problems are also known in the literature as consistent labeling problems 

1010 Planning, Scheduling, Reasoning About Actions 

1 



of Nudel [12] for finding a near optimal instantiation order 
and develop our own modifications which can yield a sig­
nificant improvement in efficiency for the SSP. This is pre­
sented in section 4. 

In a practical scheduling system is generally the case that 
some constraints must be satified while others can be 
relaxed according to specified priorities. This implies a 
ranking on the quality of all valid schedules. Therefore, in 
section 5 we investigate optimization algorithms for student 
scheduling under prioritized constraints. 

2. The student scheduling problem as a CSP 

The student scheduling problem (SSP), which we present in 
this section, can be looked at as a var iat ion of a CSP. 
Thus, we wi l l be able to apply the algorithms and theory of 
CSPs to help in solving the SSP. 

Associated to each course at a university is a set of offer­
ings where "taking a course* means registering for one of its 
offerings. An offering consists of a number of meetings 
which the student must attend. For example, 88.101.5, the 
fifth offering of course 101 in department 88, might be 
represented by 

Ml 10 1 I semester 1,2 lecture prof.golumbic 
Th 16 17 semester 1 recitation mr.feldman 
T 14 17 semester 2 laboratory dr.schild 

T w o offerings conflict if their t ime intervals intersect. We 
assume here that time intervals do not include their 
endpoints, (e.g., W 11-12 does not confl ict wi th W 12-13.) 
These conflicts constitute the implicit constraints. The basic 
unit of the SSP, called a group, consists of a list Lj of 
courses and lower and upper bounds, indi­
cating the m in imum and the max imum number of courses 
to be taken f rom the list. A group is strict if 
If trie student wants to force the scheduler to schedule a 
part icular course, he can do so by declaring a strict group. 

The input to the SSP wi l l be a disjoint list of groups, called 
the requirements, a timetable of offerings (as published by 
the university), and a set of explicit constraints and pr ior i ­
ties to be described below. A successful output wil l be a set 
of offerings which satisfies the requirements and all implicit 
and explicit constraints. 

We regard each course as a variable whose set of offerings 
is its domain . If the requirements arc all strict groups, then 
our problem would be to f ind a consistent labeling of the 
set of all the courses included in the requirements, i.e., the 
union of all the course lists of the groups. But if the 
requirements include non-strict groups, men there wil l be 
courses that need not be instantiated in a solution to the 
prob lem. In this sense, one may either regard the SSP as a 
slight generalization of the regular CSP to allow for 

uninstantiated variables, or simply add a ''dummy' offering 
to each domain and incorporate the number of dummy 
instantiations in a group with the lower and upper bound 
constraint checks. 

Priorities and constraints: In addition to the implicit con­
straints defined above, we also allow certain "user defined' 
explicit constraints. In this paper we define a priority to 
be any number in the range -P,...,0,...,P . The actual 
explicit constraints are those which have priority P or — P 
and all other priorities are simply recommendations to the 
scheduler. The scheduler uses those priorities to indicate 
which schedule will be preferred over another by the 
student. This is particularly important when there is no 
solution, and the system attempts to relax the explicit con­
straints or adjust the groups in order to find a good partial 
solution. Each of the following 2 types of objects can have 
a priority assigned to it: 

• Fixed time constraints - Each hour in the week is 
assigned a priority indicating how important it is for 
the student to learn or not to learn in this hour. Any 
hour with priority — P is completely blocked, while any 
hour with priority P must be scheduled. 

• Non-fixed time constraints — An hour range (start hour 
to end hour) and a number of days in a single week 
may be assigned a priority. This differs from the fixed 
time constraints in that it leaves the actual days to be 
blocked or preferred unspecified. 

There is one additional type of constraint which is not 
assigned a priority, namely the 

• Hour load constraints - The minimum and maximum 
number of hours in the week, for each semester, that 
the student wants to learn. 

The hour load constraints together with the fixed and non-
fixed time constraints constitute the all the explicit con­
straints. 

3. Solution techniques for student 
scheduling problems 

There are two opposite approaches which have been devel­
oped for solving CSPs. The first approach is called fil­
tering which works by preprocessing the domains using 
constraint propagation in order to limit the search space 
and thereby reduce the time taken to find the first solution. 
The second approach is a tree-search which starts by giving 
some value to the first variable, then to the second and so 
on and if we fail then we backtrack, often in some intelli­
gent manner. A third,, hybrid approach, combines features 
of both of these techniques and includes such methods as 
the forward checking algorithm, variations which perform 
full or partial look ahead, and the word-wise forward 
checking algorithm (see [9, 13]). 

Feldman and Golumbic 1011 



3.1 Stages of the SSP 

We can divide the procedures and algorithms for solving an 
SSP into four stages: 

(Stage I) Preprocessing before starting the search. Vari­
able (or node) consistency against the fixed time constraints 
and very tight non-fixed time constraints having priority -P 
is carried out since checking these unary constraints is very 
cost effective, and can reduce the search space dramat­
ically. After this preprocessing is done, these constraints 
may be ignored. 

(Stage II) Checks done during the search to choose the next 
instantiation. In order to enhance the efficiency of how our 
predicates operate, we use bit masks extensively for the 
actual data types in our implementation. Each offering is 
represented by an offering mask indicating the semester and 
hours during the week in which it is active. Two offerings 
overlap if the bit-and between their masks is 1, i.e., there is 
at least one time conflict between their meetings on a 
certain day at the same hour. In addition, for each 
semester we maintain a semester mask of all courses that 
have been scheduled so far in that semester (the bit-and of 
all the offerings selected). 

As we try to instantiate the next variable (called the current 
course), we perform the following three checks in order to 
make extensive cuts in the search: (1) The overlapping 
check', a bit-and check between each offering mask of the 
current course and the semester masks, (2) The hour load 
check: verifying that we have not yet scheduled more hours 
than the top limit, and (3) Negative non-fixed time con­
straint checks (with priority —P): Each non-fixed constraint 
has a hour range which is coded into a mask and a speci­
fied number n of days and is matched against the semester 
masks. 

(Stage III) Procedures done in each stage of the search 
process after a new instantiation is made. Mere there are 
two kinds of procedures: (1) updating the domains of the 
future variables, and sorting them into increasing order by 
domain size as the sizes of their domains change, and (2) 
checking that we still can relax the positive priority con-
straints, since it is preferable to find out as soon as possible 
if they cannot be relaxed. 

(Stage IV) Checks done against the final schedules. Two 
final validating checks must be performed here on each 
candidate schedule, namely, (1) verifying that the bottom 
limit of the hour load constraint has not been violated, i.e., 
that enough hours have been scheduled, and (2) checking 
whether all the positive constraints have been satisfied. 

3.2 Algorithms for solving the student scheduling problem 

Minor modifications must be made to standard CSP algo­
rithms since, as we noted in section 2, the SSP is slightly 
more general than a regular CSP. In the case of a CSP, 
when there is no way to satisfy a given variable, we reach a 
"dead end* in the search for a solution. In the case of an 

1012 Planning, Scheduling, Reasoning About Actions 

SSP, however, if the variable is in a non-strict group, we 
leave it uninstantiated and continue the search in the event 
that satisfying other members of the group will be sufficient 
to satisfy the bounds associated with that requirement. 

In this section and in section 4 we assume the all priorities 
are P or — P, i.e., we deal with only the actual constraints. 
The default criterion for selecting the next variable to 
instantiate is choosing the course with the smallest domain, 
and was used exclusively in |8). In section 4, however, 
which deals with obtaining the best instantiation order, we 
will see better criteria for estimating the most "difficult" var­
iable to instantiate, which can be chosen as an option. 

Comparison between different CSP algorithms when used 
for solving the SSP, i.e., finding one schedule, have been 
carried out. In these experiments, we have compared three 
CSP algorithms for finding one schedule: 

1. regular backtracking, 
2. forward checking (sorting of the variables by increasing 

order of their domain sizes after each stage), 
3. word wise forward checking. 

In the experiment we have generated random sets of 30 
courses and then tried all three algorithms with the 
minimum number of courses (Min) varying between 30 and 
1. For each algorithm, we measured the time in seconds it 
took to solve the problem. We have generated about 3000 
problems and have computed the average time it took for 
each algorithm to solve a problem for each value of Min. 

From the results shown in Figure 1, we see that the word 
wise algorithm clearly appears to be better than the other 
two and regular backtracking is the worst. If we will look 
at Figure 2, however, we will see that when Min is low 
enough (e.g., <19), then the regular backtracking is the 
best. This phenomenon is caused by the overhead we have 
in both the word-wise and the forward checking algorithms. 
The overhead of the word-wise algorithm is larger than that 
of the forward checking algorithm. So we may conclude 
that when Min is low it is best to use the simple back­
tracking algorithm because the problem is so simple we do 
not need such a "weapon" like the word-wise algorithm. 
But when the problems become more complicated, word-
wise can be 5 times better than regular backtracking. 

4. Instantiation Order 

4.1 Heuristic techniques 

It is well known that the instantiation order of the variables 
affects the time it takes to find a solution to a CSP. There­
fore, if we can find a method which can help in determining 
a good order for our problem, it will save us a substantial 
amount of computing effort in the search. But, this method 
must be computationally easy enough so as not to forfeit 
the benefits. 



Intuitively, it would appear that the variable most difficult 
to be instantiated ought to be instantiated first, the second 
most difficult next, and so forth in decreasing order of diffi­
culty. This criterion is called "most promising to fail first" 
in some of the literature. The justification of such a crite­
rion is that the sooner we fail, the sooner we can stop an 
unproductive search and backtrack, thus avoiding unneces­
sary and unfruitful checks. Haralick [9J has proved that 
under a suitably defined mathematical notion of "difficulty", 
this strategy will be optimal for the standard backtracking 
algorithm. Unfortunately, it is usually impossible to find 
such a parameter which fully captures "difficulty". 

So our aim would be to select which variable is the most 
"difficult" to instantiate using a heuristic approach. The 
most obvious heuristic is to choose the variable with the 
smallest domain. We call this domain-size sorting and it is 
carried out a priori immediately following filtering by unary 
constraints (variable consistency). This well known crite­
rion was found to be useful in (8) because of its simplicity 
and efficiency in providing substantial benefit over random 
orderings. In general, however, it is not a good estimate of 
the optimal order, apparently because it uses very little 
information about the problem itself. For example, no use 
is made of the relationships and interconnection between 
offerings. 

A dynamic approach, determining the instantiation order as 
the search proceeds, was proposed for standard back­
tracking in [1] and analyzed in [13]. Ideally, we might wish 
to apply such a dynamic approach to the forward checking 
algorithms (as described here in section 3.2) by always 
choosing the uninstantiatcd variable whose current domain 
is smallest. As attractive as this may seem for cutting the 
search space, in some applications the computational com­
plexity of constantly updating the domains in forward 
checking can make it infeasible. 

4.3 Probabilistic analysis of the instantiation order 

Nudel [12] has studied other criteria for measuring the dif 
ficulty of the variables by estimating the number of required 
consistency checks in the forward checking algorithms. In 
particular, he analyzed the influence of the inter-variable 
compatibility for choosing an instantiation order in arbi­
trary CSPs with binary constraints. 

In our investigations, we have compared various strategies, 
including those of Nudel, as they apply to the SSP. In [4] 
we describe these approaches for selecting the most difficult 
variable, including our own approach, analyze their 
expected behavior and present our basic experimental 
findings. We will summarize this briefly here. 

Nudel's investigations are based on the transition probabili­
ties which are computed or approximated from information 
on the particular problem. He advocates using 2 levels of 
information. The first level (called level-1) uses the com­
patibility probabilities Rij; between the variables Vj and v 
and the initial sizes m; of the domains. The second level 

(level-?) assumes that you also use, for each two variables, 
the number of pairwise compatible instantiations IJ: 
between them. The main difference between the levels is 
the statistical model we are adopting. For level-1 we have 
the binomic distribution model and for level-2 the 
hypergeometric distribution model. The level-2 model 
declares a finer partition of the CSPs than the level-1 
model. (The partition is the classes of CSP's that have 
according to the model a common ordering scheme, i.e., all 
the relevant details of the problems are identical.) 

If we want to use level-1 and level-2 for the general SSP 
when the groups are not strict, a few changes must be 
made since we do not schedule all the variables. This can 
be done using probability theory and yields a formula that 
is very complicated and lengthy to compute, (see [4]). 
Therefore, we have developed and used methods which 
require a much more simple calculation based on the same 
set of probabilities. Our hill climb past (HC-p) (resp., hill 
climb future (HC-f)) algorithm uses the information about 
the inter-relation between the candidate and the past (resp., 
future) variables. 

An alternate approach is to use the inter-relations between 
the candidate and both the past variables and the future 
variables. The past variables are responsible for reducing 
the domain of the candidate, and the inter-relations 
between the candidate and the future variables are a good 
estimate for reducing the domains of the future variables' 
domains. Thus, our second criterion, using both of these 
factors, called the inter-relations or JR algorithm, and 
requires even less computation effort than either HC-p or 
HC-f. 

4.4 Comparison between instantiation order algorithms — 
experimental results 

Experiments have been performed to investigate the per­
formance of the various methodologies presented here, 
comparing the algorithms for finding the optimal 
instantiation order of random SSP's. 

4.4.1 The backtracking algorithms: Three backtracking 
algorithms are compared. 

N The naive algorithm (increasing domain size) 
HC-p The hill climb past algorithm 
IR The IR algorithm. 

We generated sets of 30 randomly chosen courses and then 
applied each of the 3 algorithms with Min varying from 1 
to 30. Having gotten the instantiation order according to 
each one of the algorithms, we activated the regular back­
tracking algorithm on each one of requirements (where the 
courses are ordered according to the order obtained before) 
and the number of instantiation was counted. Figure 3 
shows the average results on a set of 1218 problems. 

The conclusion drawn is that the hill climb past algorithm 
is perhaps slightly better than the IR algorithm but both 

Feldman and Golumbic 1013 



clearly outperform the naive algorithm, i.e., HC-p ~ IR < 
N. The graph shows that there are problems where IR is 
better and problems where the hill climb past is better. Ihe 
advantage of the IR algorithm is that it takes less time than 
the hill climb past algorithm. 

4.4.2 The forward checking algorithms: Five forward 
checking algorithm are compared. 

N The naive algorithm (increasing domain size) 
HC-f The hill climb future algorithm 
IR The IR algorithm 
LI The level-1 hill climbing algorithm 
L2 The level-2 hill climbing algorithm. 

The same method was used as for the backtracking algo­
rithms but the size of the sets was 20. This is because the 
level-I and level-2 based algorithms are very memory con­
suming. From Figure 4, we can order the algorithms by 
descending order of performance for 13 < Min < 20 (the 
best algorithm is first) as follows: 

HC-f < I R < N < L I < L2 

In Figure 5 we can see a magnification of the results where 
Min is between 1 and 12. Here the difference in perform­
ance of the algorithms is much less significant but does give 
a different ordering: 

IR < HC-f< L2< LI~N 

Finally, in order to check the performance on larger sets of 
up to 30 courses, we ran another experiment only with the 
3 algorithms IR, Hill climb future, and Naive. The results 
arc shown in Figure 6 and suggest mat the performance 
order of the algorithms for larger values is HC-f < IR < IN 
where here Hill climb future significantly beats IR. In 
Figure 7 we sec a magnification of the results when Min is 
between 1 and 16 showing a slight preference for the order 
1R< HC-f< N. 

5. Getting the optimal schedule 
Until this point we have presented algorithms for finding a 
schedule that will satisfy all the constraints, but have not 
dealt at all with the notion of priorities. Recall from 
section 2 that the fixed and non-fixed time constraints may 
be assigned priorities: those constraints which have priority 
of P or P and must be satisfied (the restrictive constraints), 
and all others (the non-restrictive constraints) which may be 
relaxed. In addition, courses within a group may also be 
assigned a priority. The priorities will allow us to define a 
measure for the quality of a schedule, which we will call its 
mark. Thus, a schedule will be valid if it satisfies all restric­
tive constraints and will be optimal if its mark is maximum 
over all valid schedules. 

1014 Planning, Scheduling, Reasoning About Actions 

Although our aim is to find the schedule with the highest 
mark, this problem is easily seen to be NP-hard. Since the 
brute force method of generating all possible schedules and 
then picking the one with the highest mark is generally 
impractical, we will need a more direct approach that will 
not pass through all valid schedules, probably at the 
expense of optimality. 

Three groups of algorithms for finding a schedule have 
been investigated: (I) hill climbing algorithms, (2) option 
ordering algorithms, and (3) time table based algorithms. 
All the algorithms have been implemented and tested 
against a large number of typical student scheduling prob­
lems randomly generated. The results of these tests were 
collected and analyzed for the quality of the solution and 
the efficiency of search. In order to compare the schedule 
produced by each of the algorithms with the best schedule, 
the brute force algorithm was run separately in order to 
determine all the different marks for all valid schedules. 
The marks were then ordered from highest to lowest and 
the closeness of a schedule to the best schedule was mcas 
ured in terms of its rank in the ordered set of marks. A full 
discussion of our optimization algorithms and techniques 
for relaxing constraints can be found in |3, 5). 

We report here the results of experiments comparing the 
following hill climbing and the offering ordering algorithms 
for finding an optimal schedule: 

1. hill climbing (with local evaluation function only) 
2. hill climbing (with local and potential evaluation func­

tions) 
3. static option ordering (with the marks of the offerings 

fixed) 
4. update option ordering (with the marks of the offerings 

updated whenever necessary). 

We have generated about 1000 random problems and col 
lected the marks of the schedules generated by each of the 
algorithms. The quality of each schedule is the normaliza­
tion into percents where an optimal schedule gets a 100. 
As a measurement to the difficultness of a problem we 
have used the time it took for the brute force to find all the 
solutions. After having clustered the problems into groups 
having nearly the same total time for finding all solutions 
by brute force, we averaged the marks of each algorithm in 
each of these clusters. 

In Figure 8 we see that the performance of the update 
offering ordering algorithm is the best. In Figure 9 we sec 
a comparison of the average time it took for each algo 
rithm to solve each class of problems. We see that from 
cost effectiveness consideration the update offering ordering 
algorithm is also the best. Figure 10 shows the perform­
ance of the algorithms when the only kind of constraints 
used is fixed time constraints, and in Figure 11 we have 
used only non-fixed time constraints. 



6. Conclusions References 

In this paper, we have demonstrated the suitability of the 
CSP model for use in the student scheduling problem. In 
our research we have investigated both satisfiability and 
opt imizat ion aspects of the SSP and for each we have 
determined the algori thm with the best performance. In 
work reported in [5] we examine constraint overloading to 
f ind an approach for f inding a min imal set of constraints 
that must be removed f rom the real constraints so that at 
least one solution wi l l exist. 

Several topics are suggested for future investigation. (1) 
A l l the methods for f inding the best instantiation order were 
based on the fact that only binary constraints are involved. 
It is impor tant to enhance these methods so they can deal 
with non-binary constraints as well. (2) Since these 
methods are global, i.e., estimates are made once at the 
preprocessing phase, it would be interesting to investigate 
the cost effectiveness of determining the best order after 
each instantiat ion. (3) It seems that the methods developed 
for the SSP may be appropriate for other kinds of prob­
lems that can be viewed as CSPs. Therefore, it may be 
worthwhi le explor ing how well these methods apply to such 
problems, e.g., time-table construction. 

1 

7 

8. 

9. 

10. 

11. 

12 

13 

J. R. Bitner and E. M. Reingold, Backtrack program­
ming techniques, Comm. ACM 18 (1975) 651-655. 
M. Bruynooge, Solving combinator ia l search problems 
by intelligent backtracking, Infor. Process. Letters 12 
(1981). 
R. Feldman, Interactive Scheduling as a Constraint 
Labeling Problem, Masters thesis, Dept. of M a t h , and 
Comp. Sci., Bar-I lan University, July 1988. 
R. Feldman and M. C. Go lumbic , Interactive Sched­
uling as a Constraint Satisfiability Problem, Annals of 
Mathematics and Artificial Intelligence 1 (to appear 
1990). 
R. Feldman and M. C. Golumbic , Opt imizat ion algo­
rithms for Scheduling via Constraint Satisfiabil ity, I B M 
Israel Technical Report (Jan. 1989). 
E. C. Freuder, Synthesizing constraint expressions, 
Comm. ACM 21 (1978) 958-965. 
M. C. Golumbic, Knowledge-based techniques in an 
academic environment, Proc. Int'L Conf on 
Courseware and Design and Evaluation, Symposium on 
Artificial Intelligence and Education, Ramat Gan , 
Israel, Ap r i l 1986, pp. 355-362. 
M. C. Golumbic, M. Markov i ch , S. Tsur and U. J. 
Schild, A knowledge-based expert system for student 
advising, IEEE Trans, on Education E-29 (1986) 
120-124. 
Haral ick, R . M . and Ell iot, G.L. , Increasing tree search 
efficiency for constraint satisfaction problems, Artificial 
Intelligence 14 (1980) 263-313. 
Mackwor th , A . K . , Consistency in networks of 
relations, Artificial Intelligence 8 (1977) 99-118. 
Montanar i , U., Networks of constraints: Fundamental 
properties and applications to picture processing, 
Information Science 7 (1974) 95-132. 
Nudel , B., Consistent-labeling problems and their algo­
rithms: expected-complexities and theory-based 
heuristics, Artificial Intelligence 21 (1983) 135-178. 
Purdom, P. W. , Search rearrangement backtracking 
and polynomial average t ime, Artificial Intelligence 21 
(1983) 117-133. 

Feldman and Golumbic 1015 

5. 

6. 

2. 

3. 

4. 



1016 Planning, Scheduling, Reasoning About Actions 


