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Abstract 

We review a neuroplanner architecture for use in 
constructing subcognitive controllers and new 
application that uses it. These controllers have wo 
important properties: (1) the ability to learn the 
topology of three continuous spaces: a steering 
space, a control space, and an observation space, 
and (2) the ability to integrate the three spaces so 
that initial and goal steering conditions can suggest 
a sequence of control states that lead the controlled 
system to the goal in the presence of obstacles. The 
result is a rudimentary planner or guidance system 
that can be used for such subcognitive tasks as 
robot manipulator control, head/eye coordination, 
and task sequencing. In this paper, we consider the 
second domain. The term neuroplanner is intended 
to convey the impression that the planner is 
implemented neurally and is more rudimentary than 
the conventional symbolic planners typical of 
artificial intelligence research. 

1 Introduction 

Much recent work is concerned with extending our 
understanding of neural mechanisms as they relate to 
subcognitive tasks such as vision [Fischler and Firschein, 
1987], head/eye coordination [Grossberg and Kuperstein, 
1986], speech processing [Kohonen, 1986, Lippmann and 
Gold, 1987], and motor control [Poizner et al.t 1987]. Most 
approaches develop domain specific solutions that focus 
either on neuron-like devices as building blocks or on 
individual networks such as backpropagation nets 
[Rumelhart and McClelland, 1986], Hopfield nets [Hopfield, 
1982], and Kohonen nets [Kohonen, 1984] to name a few. 

* This research has been supported by NSERC. 

Our efforts are concerned with developing slightly more 
complex building blocks that might be used for 
architectural-level design of neural mechanisms. We review 
[LaLonde and Graf, 1988] a preliminary design for such a 
building block by (1) postulating the requirements that we 
would like it to satisfy, (2) suggesting an implementation 
that would satisfy those requirements, and (3) providing a 
new example of its use. In particular, we focus on a class of 
building blocks that can be used for subcognitive planning 
and control. We refer to these devices as neuroplanners. 
Unlike traditional rule-based mechanisms, neuroplanners 
distribute knowledge within separate self-organizing 
networks and between the networks in patterns of 
connections. 

2 Neuroplanners 

Neuroplanners integrate three vector spaces: a steering 
space, a control space, and an observation space. 
We refer to vectors in these spaces as steering states, control 
states, and observation points respectively. Intuitively, the 
steering space is used to guide the system being controlled, 
the control space represents the control states of the system 
being steered, and the observation space is a constraint space 
that dictates illegal control states. For a legged vehicle, the 
steering space might be represented by the angles of a pilot's 
steering wheel, the control space by the status of the servo-
machinery that actually makes the legs move, and the 
observation space by terrain data about holes and hillocks 
that constrain the leg positions. 

Our neuroplanner currently works with continuous 
vector spaces. Each vector represents a system state. It does 
not store all points in the states but uses a self-organizing 
algorithm to create a quantized representation of the space. 
Neuroplanners are intended to be used in domains where (1) 
there is a natural correlation between steering and control 
spaces, (2) where the observation space can be used to 
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constrain the control space, and (3) where these spaces and 
correlations can be learned. There are two operational phases: 
a learning phase where the topology of the spaces are 
learned and correlated and a planning phase where a 
simple plan is generated. In this context, a plan is an 
ordered sequence of legal control states that satisfies a goal 
by moving the controlled system from an initial control 
state to a desired control state without violating the 
observation space constraints. 

Figure 1 depicts a neuroplanner interface. It consists of 
a mode switch, four inputs, and one output. The planning-
mode switch determines the mode to be used during the 
planning stage; it indicates cither a hypothetical initial 
condition or an actual initial condition. In hypothetical 
mode, the initial steering signal is used; otherwise, the 
initial control signal is used. The observation data is a 
quantized representation of the observation space. The 
maximum bandwidth of this channel is determined by the 
number of cells in the representation. An n-dimensional 
space with r grid divisions per dimension would have rn 

cells, for example. The initial control signal consists 
of a control state and an indication as to whether or not it is 
legal. During learning, it is used as training data; during the 
planning stage, it is used as the initial control state when 
not in hypothetical mode (in that case, the legal indication is 
ignored). The initial steering signal is a steering state. 
During learning, it is used as training data; during the 
planning stage, it is used as the initial steering state when in 
hypothetical mode. The final steering signal is a 
steering state that represents a goal. It is used only in the 
planning stage. Finally, the output plan is the planned 
sequence of control states. 

2.1 The Control Space 

To be effective, the neuroplanner must learn something 
about its domain of application. In particular, it must 
understand which states are included in the control space. For 
example, an automated vehicle would never have both the 
power and braking systems fully activated. To limit its 
choice of states, the neuroplanner must learn where the 
boundaries are for legal and illegal control states and what 
the typical control states are. 

Illegal states can occur for two reasons: (1) they 
represent some impossible situation such as a state beyond 
the physical limits of a joint or a situation that is to be 
permanently avoided such as a meltdown region in a nuclear 
plant or (2) they represent some situation that is illegal only 
in special circumstances; e.g., the front legs in a legged 
vehicle being prevented from being fully extended because 
they are resting on a hillock. Permanently illegal states are 
associated with the control space. Temporarily illegal states 
are associated with the observation space — they will be 
considered later. 

Figure 2 presents an intuitive 2-dimensional 
representation of a control space with legal and illegal 
regions. The control space in this case consists of 2-vectors 
with x and y components. In the automated vehicle example, 
they could be braking pressure and fuel injection rate 
respectively. 

Figure 2: The Control Space 

A plan is a path passing through the legal control states 
the control space. We consider acceptable any plan that 
ccessfully moves the system from the initial state to any 
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Figure 3: A Plan is a Path Through Control 
Space 

one of the legal final states (see Figure 3). Normally, we 
choose a path that is minimal or near-minimal. For the 
approach to work, some mechanism is needed to temporarily 
make illegal all of those control states that violate the 
obstacle constraints. We discuss this in more detail in the 
implementation section. 

2.2 The Steering Space 

It may not be convenient to represent goals by listing 
individual control states. Often, there are many — possibly 
an infinite number of — final control states that satisfy a 
given goal. It is much simpler to represent a goal as a state 
in a steering space. The steering space is defined by a set 
of steering states whose values are provided through 
steering sensors. In fact, it is quite natural to think of 
the entire steering space as a goal space. 

In a road-following vehicle, for example, the steering 
sensors would provide a self-relative coordinate indicating 
where the autopilot should go. This coordinate might be the 
result of specially processed vision data from stereo cameras. 
When properly correlated with the control space, the steering 
state can activate a large number of control states all 
satisfying the same goal. 

To learn the correlations between the steering and 
control spaces, the user of the system must ensure that the 
steering sensors can be aligned with an observable that 
results from each control state. This alignment provides the 
correlations between the steering and control spaces during 
learning. During the planning phase, the goal is specified 
with a steering state; the neuroplanner can then find final 
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control states that are correlated with the steering state for 
use in the planning process. 

Distinct control states can of course be associated with 
the same steering state; i.e., there is a one-to-many mapping 
from the steering space to the control space. Since illegal 
goals are not needed, it is not necessary to distinguish 
between legal and illegal steering states. 

2.3 The Observation Space 

As we have seen, additional constraints are often imposed on 
the planning process. Sensory information regarding states 
that interfere with the planning process further constrains the 
shapes of valid plans. One must plan to navigate around 
obstacles, not through them. We refer to observables that are 
illegal or undesirable as obstacles. Obstacles may 
represent either physical objects or abstract situations to be 
avoided. For example, an autopilot is constrained to avoid 
situations where the control state of a vehicle leads to an 
observable collision with another vehicle. Similarly, a 
nuclear power plant might be constrained to avoid 
observable excesses of heat, radiation, and power output that 
can be controlled by its damping rods. 

The observation space is a sensory space that 
dynamically tracks the observable state of the domain. 
Obstacles and a representation of the control state appear in 
the observation space as regions of points — we will refer 
to these as the obstacle regions and the self-image 
regions respectively. For planning purposes, we need to 
constrain the controlled system to avoid obstacles. In the 
observation space, this corresponds to preventing obstacle 
regions from intersecting with the self-image regions. The 
self-image is not allowed to simultaneously be its own 
obstacle. In order to do this efficiently, it is sufficient to 
correlate the points in the self-image regions with their 
associated control states. Later, when obstacles are observed, 
it not necessary to intersect these with the self-image 
regions. Instead, it is sufficient to insure that the plan 
solution does not include control states associated with 
obstacle region points. This is achieved by correlating the 
control states with their own self-image region points during 
a learning phase. 

In the case of the above nuclear reactor example, the 
observation space might encode heat versus radiation versus 
power. For a given control state, the self-image region 
would contain a set of points which represent the amount of 



heat, radiation, and power produced by the reactor (blurred by 
a margin of error). In the learning phase, the self-image 
region points are correlated with their associated control 
state. In the application, phase, only the obstacle regions 
need be represented because these points are sufficient to 
deactivate the correlated undesirable control states. 

3 A Neuroplanner Implementation 

Neuroplanners can be implemented using a pixelated map for 
the observation space and two Kohonen maps for the control 
and steering spaces as shown in Figure 4. Each map is 
implemented with a network of neurons that effectively 
quantize the space. Obstacle regions and self-image regions 
in the pixelated map are represented by neurons in the 
active state; all others are inactive. Figure 4 actually 

illustrates the internal structure of a neuroplanner used for 
non-hypothetical reasoning. For simplicity and space 
reasons, we will avoid a formal mathematical treatment of 
the implementation. Such a treatment can be found in [Graf 
and LaLonde, 1988]. 

In the planning phase, the current control state activates 
one neuron in the control map using the standard Kohonen 
algorithm [Kohonen, 1984]. Similarly, the steering state 
activates a neuron in the steering map. Correlated with each 
neuron in the steering map is a set of neurons in the control 
map. The activated neuron in the steering map causes these 
correlated control neurons to be activated. At the same time, 
the observation map has a number (usually fairly large) of 
neurons that are activated — these are observation neurons. 

These deactivate the correlated control neurons preventing 
them from being activated. Note that only two time steps 
are needed to accomplish the above since most of the 
activity occurs in parallel. A standard path planning 
algorithm can then be used to find a minimal path from the 
current control state neuron to any one of the active goal 
control state neurons. If each neuron is a processor in a 
systolic array, a parallel algorithm similar to the algorithm 
described by [Miller and Stout, 1985] could be used to find a 

minimal path in time where n is the number of 
neurons in the map. The control states associated with the 
neurons in the path can then be used to construct the 
corresponding plan. Actually, the control states are not 
stored with the neurons but they can be reconstructed from 
the weights stored in the Kohonen map. 

In the learning phase, two stages are used: (1) the 
topology learning stage where Kohonen's self-organizing 
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algorithm is independently applied to the control and 
steering maps and (2) the correlation stage which correlates 
both the observation and steering maps with the control map 
as follows. As the control space is sampled, a set of 
observation states and a steering state is associated with the 
corresponding control state by growing connections from the 
observation and steering neurons to the control neuron. By 
an observation neuron, we mean an active neuron in the 
observation map. Connections need not be grown if they 
already exist Because all three maps are quantizations of the 
spaces they represent, distinct states might be quantized to 
the same value. Note that the observation and steering 
information associated with a specific control state is 
arbitrary. The same observation and steering data might later 
become associated with a different control state. Once the 
correlation stage is over, it should be clear that a specific 
observation state is correlated with an arbitrary number of 
control states. Similarly, a steering state is correlated with 
some arbitrary number of control states. In other words, 
there is a one-to-many mapping from the observation and 
steering maps to the control map. 

This summarizes the operation of the neuroplanner in 
non-hypothetical mode; i.e., in the mode where the current 
control state is a meaningful starting point for solutions to 
the steering goal. The hypothetical mode is used when the 
initial control state is unknown but an initial steering state 
is available instead. Given an initial and goal steering state, 
the neuroplanner finds a sequence of control states leading 
from any one of the control states associated with the initial 
steering state to any one of the control states associated with 
the goal steering state. 

4 An Example Using Neuroplanners 

In [Graf and LaLonde, 1988], we presented an application 
dealing with a robot arm — the system could be described as 
solving the "move the arm to where you look" 
problem in the presence of obstacles. Simulation results 
using a 2 degree of freedom arm were presented. In this 
section, we consider the inverse problem — that of 
controlling a simplified eyes/head/neck (EHN) system. 
Although the approach can be generalized to 3-d, we focus 
on the 2-dimensional model depicted in Figure 5 for 
simplicity. The problem might colloquially be described as 
the "look at your finger" problem; i.e., assuming that 
the arm has been moved to some arbitrary position in a 
workspace, the goal is to have the EHN system look at the 
tip of the arm. We assume the robot can already control its 
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arm. Our task here is to provide it with the additional 
capability of controlling the EHN system. As depicted, the 
system has more degrees of freedom than necessary (if no 
obstacles are allowed). In particular, the eyes can rotate, the 
head can rotate, and the neck can rotate and stretch/shrink. 
There is a limit to the movement permitted by each 
component; e.g., 45° for the eyes, 30° for the head, 20° for 
the neck and a neck length of between one and two head 
widths. 

Figure 5: The EHN (Eyes/Head/Neck) System 
Coupled Wi th An Arm 

The EHN system is separate from the arm system and 
has access only to a vector which represents an arm 
configuration. The meaning of this vector is unknown to the 
EHN system; i.e., whether or not it consists of joint angles, 
polar coordinates, or cartesian coordinates of the arm tip is 
not germane. However, the system wi l l have to learn the 
associations between arm configurations and the actual 
position of the tip of the arm. 

To complicate the problem, we permit obstacles to be 
in the way so that the EHN system may have to "look 

Figure 6: The EHN System Looking At Its 
Finger 



around" the obstacles that are blocking the view (see 
Figure 6). If it isn't possible for the EHN system to look at 
the tip of the arm, no movement is initiated. Otherwise, the 
EHN system looks around whatever obstacles are blocking 
the view. The EHN system includes the dotted lines from 
the eyes to the point of focus. To have a clear line of sight, 
obstacles must not intersect either of these lines. 

The EHN system goes through a learning phase without 
obstacles where it learns two things: associations between 
(1) EHN configurations and arm configurations and (2) 
obstacle constraints. After learning, obstacles can be added 
arbitrarily and the EHN system will endeavour to look at the 
tip of the arm where possible. Changing the obstacles does 
not require any additional learning. In fact, if the system is 
fast enough, it should be possible to track the tip of the arm 
as the obstacles change dynamically. However, we will not 
consider this aspect in this paper. 

4.1 Mapping 
Neuroplanner 

The Problem Onto 

The neuroplanner control space consists of E H N 
configurations while the steering space consists of arm 
configurations. The arm is used to steer the EHN 
system. The arm configuration can be used to find an EHN 
configuration that focusses on the tip of the arm in the 
presence of obstacles. In general, the observation space is a 
2-d pixclated map of the workspace which could be generated 
from a 3-d depth map such as might be produced by a 
sophisticated vision system. The self-image of the EHN 
system includes the workspace area taken up by the neck, 
head, eyes, and lines of sight up to the point of focus. It 
could be produced by the current EHN system if it is 
controlled and time-shared by some higher level system. For 

our simplified problem, the observation map can be 
produced by a high-contrast image (see Figure 7b) 
obtainable from a camera suspended above the robot 
workspace. Although we can easily obtain the image from a 
camera, we must keep in mind that it is really an internal 
mental image since such a camera defeats the purpose of the 
eyes/head/neck system in the first place; e.g., why peer 
around an obstacle if you can sec the arm tip from above. 

4.2 Reviewing The Learning Stage 

Once the self-organization phase is complete, the second 
phase proceeds to learn the boundaries of the legal control 
regions, the correlation between the observation space and 
the control space, and the correlation between the steering 
space and the control space. Note: no obstacles are present 
during the learning phase. The system must learn that 
obstacles cannot intersect with the self-image. This is 
achieved by associating each neuron in a workspace area of a 
self-image (observation neuron) with the corresponding EHN 
configuration control neuron. After learning is complete, 
actual obstacles may be added to the workspace. Each neuron 
which is activated by such an obstacle inhibits all EHN 
configurations associated with self-images that contained 
that neuron during learning. 

The boundaries are delineated by the illegal control 
states provided when the components of the EHN 
configurations reach their limits of movement as described 
previously. The illegal control states prevent the path 
planner from planning paths that cross illegal state regions. 

When learning the correlation between the observation 
space and the control space, each active neuron in the self-
image is correlated with its associated EHN configuration 

Figure 7: The Observation Map For An Arbitrary Workarea 
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(control state) neuron. Later, when obstacles are introduced 
during the planning phase, the neurons in the obstacle 
regions will inhibit EHN configurations that intersect any 
one of these obstacles. This prevents the EHN system from 
colliding with obstacles or the arm as it moves to keep the 
tip of the end-effector in sight. 

When learning the correlation between the steering 
space and the control space, the control space (the EHN 
system) is randomly moved around. The steering space (the 
arm) is then adjusted so that the tip can be seen by focal 
center of the two eyes (where possible). In that case, the 
association is made from the steering space to the control 
space (the arm to the eyes). 

4.3 Reviewing The Planning Stage 

During the planning stage, the arm (steering sensors) is 
moved to some arbitrary point. Subsequently, each 
workspace point occupied by an obstacle (this includes the 
arm) activates a neuron in the observation map, the current 
EHN configuration activates a neuron in the control map, 
and the current arm configuration activates a neuron in the 
steering map. Each arm configuration (steering state) 
corresponds to one or more target EHN configurations 
(control states) that can see it. Therefore the active steering 
state neuron will activate a set of final control state neurons. 
Similarly, each active observation neuron deactivates any 
active control state neurons that are in collision situations. 
All remaining active and uninhibited neurons are candidates 
for the collision-free EHN system movement plan. The plan 
is found by a standard path finding algorithm as described 
previously. In this way, knowledge about all possible 
solution movements is represented simultaneously by 
uninhibited neurons. 

5 Conclusions and Future Work 

We have reviewed a preliminary design for a new class of 
neural planners and an application that is the dual of that 
presented in [LaLonde and Graf, 1988]. Neuroplanners 
possess four important characteristics. First, they are 
applicable to a wide variety of domains. Second, they are 
capable of self-organization and learning. Third, they lend 
themselves to implementations in massively parallel 
hardware and are therefore potentially very fast. Fourth, 
goals are specifiable at a higher level than the control states 
of the system — this includes the ability to specify large 
sets of final control states as a single steering state. 

The EHN system is unique in several respects. It will 
adjust itself with minimal movement to keep the tip of the 
arm in view (where possible) regardless of the obstacle 
arrangement. In particular, it will avoid colliding with 
obstacles or the arm. Changing the obstacles will simply 
cause the EHN system to re-adjust its position to maintain 
its view of the arm tip. This occurs without any additional 
learning. Although the behavior is seemingly intelligent (as 
seen from an outside observer), it nevertheless arises from a 
simple interaction among neurons in an appropriately 
organized network architecture. 
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