
Measure-free conditioning, probability and 
non-monotonic reasoning 

Didier Dubois Henri Prade 
Laboratoire Langages et Systemes Informatiques 

Institut de Recherche en Informatique de Toulouse 
Universite Paul Sabatier, 118 route de Narbonne 

31062 TOULOUSE Cedex (FRANCE) 

Abstract 

Recent results in the foundations of probability theory 
indicate that a conditional probability can be viewed as a 
probability attached to a mathematical entity called a 
measure-free condit ional. Such a measure-free 
conditional can receive a semantics in terms of a 
trivalent logic and logical operations are defined on 
conditionals in terms of truth-tables. It is shown that 
these results can be useful to justify Cox's axiomatic 
framework for probability as well as its application to 
other theories of uncertainty (Shafer's plausibility 
functions and Zadeh's possibility measures). Moreover 
it is shown that measure-free conditionals have the 
properties of well-behaved non-monotonic inference 
rules. 

1 Introduction 

Some analogy has been recently observed between 
Bayesian approaches to automated reasoning, and non­
monotonic logics [Pearl, 1988, chap. 10]. Independently, the 
question of representing conditionals in accordance with 
conditional probability, that has puzzled philosophers in the 
seventies [Harper et al. , 1981) is currently revived by 
mathematicians [Calabrese, 1987 ; Goodman and Nguyen, 
1988] ; they have proposed an algebraic solution that contrasts 
with earlier attempts relying on possible world semantics and 
modal logics. At the same time, the debate between various 
numerical approaches to uncertainty in automated reasoning is 
sti l l raging (see [Cheeseman, 1988] and the appended 
comments); the main defense of probabilistic orthodoxy seems 
to be founded on Cox [1946|'s axiomatic approach to 
conditional probability. This paper aims to put together these 
research trends and make the fol lowing observations : i) 
measure-free conditioning may be a good approach to the 
representation of inference rules (such as production rules in 
expert systems) which allow to capture non-monotonic features 
of commonsense reasoning ; basically, a conditional 'if b then 
a' denoted by alb, can be true, false or inapplicable in the 
proposed approach ; i i) Cox's system of conditional probability 
axioms is an example of homomorphism between a Boolean 
algebra augmented with measure-free conditionals and the unit 
interval ; however this homomorphism is not unique, and there 
is room for other non-additive measures of uncertainty, contrary 
to what is claimed by probability theory tenants ; i i i) viewed as 
inference rules, measure-free conditionals satisfy the properties 
suggested by Gabbay [1985], as basic ones for non-monotonic 
reasoning systems ; these properties were already put forward 
by Adams [1975] ten years before in a probabilistic logic as 
recently advocated by Pearl [1988]. The three sections of this 

paper reflect these three points. What they suggest is that it may 
become possible to envisage a conjoint development of 
categorical and numerical approaches to reasoning under 
uncertainty, the latter being only a refinement of the former. 

2 A logical, Measure-Free View of 
Conditioning 

The starting motivations of many models of conditionals 
which have been proposed do not refer to the notion of 
conditional probability and often these models are not fully 
compatible with probabilities. By contrast, Calabrese 11987], 
Goodman and Nguyen [1988] have tried to give a meaning to 
alb when the probability is removed. In the fol lowing, the 
symbol alb is informally interpreted as representing a production 
rule " i f b then a", which means "when b is true then a can be 
added to the set of true facts otherwise the rule is not 
applicable". 

V iewing alb as l inking two propositions a and b of 
prepositional logic, semantics can be given to it under the form 
of an incomplete truth table, namely denoting t the truth-
assignment function, t(alb) = 1 when a and b are both true, 
t(alb) = 0 when a is false and b is true. When b is false, alb is 
considered as inapplicable, which is denoted as t(alb) = ?. This 
symbol means that any truth value in {0,1 ] can be assigned to 
alb. Such semantics are in accordance with the usual meaning of 
production rules ; this proposal turns out to be exactly 
equivalent to a definition used by Schay [1968] twenty years 
ago and also explicitly appears in De Finetti's main paper on 
subjective probability [De Finetti, 1964]. The difference 
between b —> a and alb is easily expressed by means of their 
truth-tables : namely t(b —> a) = t(alb) when t(b) = 1 only. 
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Table 1 : Material implication versus conditioning symbol 

This truth-functional definition separates interpretations (or 
possible worlds) into three classes : examples for the rule 
(t(alb) = 1), exceptions to the rule (t(alb) = 0) and irrelevant 
interpretations (t(alb) = ?). In [Dubois and Prade, 1985] we 
notice that t(alb) can be implicit ly defined by means of the 
equation : 

t(a A b) = t(alb) * t(b) (1) 
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which means that if the rule alb holds, any more imprecise 
conclusion a v c can be also produced. But, 

there is no universal ordering between al(b A C) and alb (7) 

More precisely, the rule alb may be true or may be false while 
the rule is not applicable. This contrasts with the 
material impl icat ion. Thus we capture a form of non-
monotonicity in this framework. 

The problem of extending operations such as negation, 
intersection and union to has been addressed by Schay 
[1968], Calabrese [1987], and Goodman and Nguyen [1988] 
sometimes in different ways. There is a consensus about 
negation, i.e. 

(8) 

In terms of truth-values, it corresponds to extend the negation 
operation by postulating that That is to say 

corresponds to the converse rule " i f b then not a". This 
is quite different from what happens with the material 
implication where 

There exist three different proposals for def ining the 
conjunction of (alb) and (eld), which may appear under various 
equivalent forms, since due to (4) there are at least four ways of 
describing the same rule. 

In terms of truth-values it is pointed out in [Dubois and 
Prade, 1988) that these three definitions correspond to three 
possible extensions of the binary conjunction operation which 
preserve the symmetry and which take into account the symbol ? 
introduced in Table 1. Namely, the three different conjunctions, 
denoted by are defined by 

The first conjunction is such that the combination of something 
true (resp. false) with something inapplicable is true (resp. 
false). The second conjunction is defined in agreement with the 
ordering Note that these conjunction operations were 
first considered in the framework of trivalent logics, by 
Sobocinski, Lukasiewicz and Bochvar respectively ; see 
Rescher [1969]. Using the same notation for combining 
piopositions or their truth values, the first conjunction is 
equivalent to the fo l lowing definit ion considered by Schay 
[1968| and Calabrese [1987] (under other equivalent forms due 
to (4)) 

(10) 

From the point of view of rule-based systems, ^ means that 
the two rules alb and eld are available and form a rule base. It is 
natural to define the applicability of a rule base 
to a factual base whenever at least one rule i is applicable to 
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so as the three conjunctions differ only when b # d. (11) and 
(12) are not very natural when alb is viewed as a rule. For 
instance (12) assumes that a rule base containing alb and eld is 
applicable when both rules are applicable.(10), (11) and (12) 
basically differ by the conditions in which they are applicable, 
and the advantage of (10) is that it is the least demanding in that 
respect. 

Three disjunction operations can be derived by duality using 
De Morgan laws. Lastly, the conditioning process can be 
iterated in such a way that remains closed under this 
process. Calabrese [1987] has proposed the fo l lowing 
definition : ; it corresponds to the convention 
?I0 = ? = ?ll (using the same symbol T for propositions and for 
values of the truth function). Two meanings can be envisaged 
for the companion expression al(blc) namely i) al(blc) = 
al(b A c) stating 11? = ? = 01?, or ii) a l(blc) = al(c -> b) (this is 
Calabrese's definition) and corresponds to set 1I? = 1 and 01? = 
0. See [Dubois and Prade, 1988] for other results and 
discussions. 

Schay [1968] indicates that and its dual are not 
distributive with respect to each other so that 
is no longer a Boolean algebra. See also Calabrese [1987]. 

3 About Cox's Axioms 

As recalled by Cheeseman [1988], Cox [1946] has 
postulated the fol lowing axioms that degrees of "reasonable 
expectation" valued on the unit interval should satisfy : 

A3 : S is stricdy decreasing ; F is strictly increasing in each 
place ; S and F are continuous. 

Using these assumptions only, it is possible to prove that S(x) = 
1 - x up to an isomorphism, that F is associative (due to the 
Boolean structure of the set of propositions a, b...), and is a 
product up to an isomorphism ; so that the set function P is a 
probability measure. See also Aleliunas [1988] for a slightly 
different approach to the same question. 

Shafer [1988] has criticized A2 as being natural only for 
someone who is familiar with the usual definition of conditional 
probability. For instance conditional probability can also be 
defined as 

1112 Commonsense Reasoning 

only, since it reflects the relative strength of a and -a in the 
environment where b is true. It would lead to an axiom 

which explicit ly defines P(alb) while A2 only provides an 
implicit definition. It is hard to choose between A2 and A '2 as to 
which is the most natural axiom ! 

It turns out that A1 and A2 take ful l meaning not only as 
axioms postulated from pure commonsense, but as expressing 
an homomorphism between the structure described in 
section 1 and the unit interval. Indeed, measure-free conditionals 
satisfy the following property, which is easy to prove from (10) 
and (4). 

(13) 

A similar identity holds with the conjunction defined by (11) but 
not with the one defined by (12). So that A2 becomes natural as 
a compositionality assumption with respect to the extended 
conjunction of conditionals of the form ale and bl(a A C). 

Ax iom Al clearly requires the negation of a measure-free 
conditional as it appears in (8). However this axiom also 
presupposes that the meaning of the extreme values of P(alb) 
(i.e. 0 and 1) is well-understood. This is clearly a matter of 
convention. Cox's convention is that 1 means certainty 
(Probability = 1) and 0 means impossibility (Probability = 0). 
Axiom Al becomes very natural since it means (along with A3) 
the more probable a, the less probable - a . However, another 
convention is reasonable as well , namely 1 means possibility 
(i.e. consistency with available knowledge) and 0 means 
impossibility. Under this new convention, A1 does not sound 
reasonable at all, since it would mean, along with A3 : the more 
possible a, the less possible —.a. But in case of incomplete 
Knowledge, one may find that a and -a are equally and totally 
possible. A more natural substitute to Al would be : the more 
impossible —>a, the more certain a. In other words, when 
P(a lb) ranges from impossibil i ty (0) to possibility (1), 
S(P(alb)) = P ( - a l b ) does not qualify -a in the same way : 
P(->alb) = 1 means that -a is certain while P(-alb) = 0 means 
that —a is totally uncertain (i.e. it corresponds to a state of 
ignorance). Hence changing the meaning of the end-points of 
the unit interval may lead to drop axiom A l , and to consider two 
set-functions, one for possibility, say II, one for certainty say 
C, that exchange via the duality property 

(14) 
and it that may act as a substitute to A1 . 

Axiom A3 is technical, and was stated in a stronger form by 
Cox [1946], originally. It is remarkable that only probability 
measures emerge as the unique solution to A1-A3. However one 
must be aware that if A3 is further relaxed by requiring that F be 
strictly isotonic only, i.e. 

then, A1-A3 have solutions which are not probability measures. 
Indeed F = minimum is isotonic, and there exist set-functions g 
such that g(alb) = 1 - g ( -a lb ) , g(a A b) = min(g(alb), g(b)), 

such as the fol lowing one on a 4-element set Ω = 
{1,2,3,4} 

and they have been considered by Goodman and Nguyen [1988] 
and by Schay [1968] respectively. Note that 

is true. The two other conjunctions 
correspond to different points of view ; see [Dubois and Prade, 
19881. Their expressions are 

and it may look natural to start with the "natural" requirement 
that P(alb) be defined as a function of 



[1988] for more discussions on this point, g is monotonia under 
inclusion, but not decomposable through disjunctions of 
mutually exclusive propositions. 

Another important issue is the compatibility between 
conditional probability and the entailment relation < between 
rules alb. The following result can be established [Dubois and 
Prade, 1988) : 

Proposition 1 : alb < eld implies P(alb) < P(cld), when P is a 
probability measure. 

This result can be extended to Shafer [1976]'s plausibility 
measures, as well as possibility measures [Zadeh, 1978), 
[Dubois and Prade, 1988b]. Indeed let us assume that II is a 
plausibility measure, and that II satisfies A2 and A3. Note that 
F = product is once again the unique operation for the definition 
of conditioning, up to an isomorphism (e.g. Aczel [1966]). A2 
corresponds to Shafer [19761's definit ion of conditional 
plausibility, in accordance with Demspter rule of conditioning. 
Now the extension of proposition 1 writes : 

As a consequence, plausibil ity and possibility measures, 
although violating axiom Al (due to a matter of convention) 
define homomorphisms between and the unit interval. 
Since the dual measure of certainty 
(belief measure or necessity measure) also satisfies Proposition 
2, namely Proposition 2 is an 
algebraic justif ication of Dempster's rule of conditioning. 
However several problems are still pending such as the 
extension of proposition 2 to more general upper and lower 
probability functions, and more generally the independence 
between axioms A2, A3 and the compatibil i ty property 
expressed by proposition 2, when Al is dropped. 

4 Measure-Free Conditionals as Default Rules 

Several authors, and especially Pearl [1988] have suggested 
that a default rule such as "generally, b's are a's" could be 
interpreted as Probability(alb) = HIGH. It may be tempting to 
consider the measure-free conditional alb as a model of default, 
in the spirit of Reiter [1980]'s logic, i.e. without refering to any 
statistical interpretation, considering that the statistical 
component is carried by the probability attached to the 
conditional, and not by the conditional itself. 

There are two conditions under which alb represents a 
default: 

-) there exists at least one interpretation for which t(alb) = 1 
(otherwise and it makes no sense to assert alb) 

-) there may exist exceptions to the rule, i.e. interpretations for 
which t(alb) = 0 (otherwise a < b and alb is nothing but a 
standard monotonic inference rule ; particularly, for any 
probability measure P, P(alb) = 1, while here we wish to 
allow for 

Asserting "alb" can thus be interpreted as : 
; these two conditions hold if and only if so 

that alb means "there are examples of b's that are a's", i.e. the 
weakest kind of default rule one may apparently think of. 

As a next step, it seems possible to use the ordering relation 
< between defaults and the conjunction ^ for the definition of a 
consequence relation. A default elf can be deduced from 
{alb,cld} if and only if 

(15) means the following : any example of one of the rules alb 
or eld, that is not an exception to the other rule is an example of 
el f ; and any exception to elf is an exception to one of the rules 
alb, or eld. Particularly does not hold 
because an example of eld can be simply irrelevant for alb (i.e. 

and t(b) = 0 so that while 
t(alb) = ?. On the contrary a rule elf that satisfies (15) takes into 
account both rules since its examples are at least all those of each 
rule when the two rules do not contradict each other. This 
remark suggests that (15) defines elf as a weak substitute to the 
set of defaults {alb, eld) in which both rules are still acting. By 
contrast we have with the conjunction 
defined by (11). Hence using this inequality as an inference rule 
does not look proper. 

The following properties of the consequence relation < are 
noticeable, and easily checked using truth-tables : 

(16) holds with the two other conjunctions as well since 
; (17) which is a direct consequence of (13) 

and (6) holds also for the conjunction defined by (11) ; by 
contrast (18) does not hold with any of the two other 
conjunctions. These relations can serve as inference rules that 
produce new defaults from existing ones. In Adams [1975]'s 
conditional logic alb is interpreted as where e is 
arbitrarily close to 0 and denoted b a. This interpretation is 
much more demanding than ours. However Adams [1975] 
found inference rules that are exactly (16-18), namely : 

Dubois and Prade 1113 



Clearly, restricted monotonicity becomes triangularity in the 
probabilistic setting and correspond to (16), while (17), related 
to Bayes rule, is simply a transitivity property that deduction 
must satisfy. These remarks suggest that a non-monotonic logic 
where defaults are modelled by measure-free conditionals is 
l ikely to have all the properties that a well-behaved non­
monotonic logic should satisfy, especially the possibility to infer 
new defaults, and the reasoning by cases (due to (18)). In 
probabilistic terms, alb means P(alb) > e where £ is positive but 
can be arbitrarily small. Thus it is more general than Adams 
[1975]'s interpretation ; (16-18) then translate into the following 
inequalities: 

5 Conclusion 

This paper is meant to investigate some consequences of 
recent results about measure-free conditioning. Our contention is 
that measure-free conditionals could be a good way of modeling 
non-monotonic production rules in accordance with numerical 
theories of uncertainty ; in other words this approach equips 
uncertain rules in expert systems with clear semantics. However 
the use of uncertainty coefficients is not compulsory : 
propositional logic augmented with measure-free conditionals 
can be used as a formal system of non-monotonic logic. 
Properties of this system wi l l be investigated in the future. 
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disjunction 
The rules are used by Pearl [1988] to build a probabilistic-like 
default logic. Starting from purely logical assignments, Gabbay 
[1985] proposed several axioms a non-monotonic deduction 
operation should satisfy, and especially : 


