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Abs t rac t 

Ideally skeptical inheritance supports exactly 
those inferences t rue in every credulous ex
tension of an inheri tance hierarchy. We pro
vide a formal def in i t ion of ideally skeptical in
heritance. We show tha t two path-based ap
proaches fa i l to capture ideal ly skeptical inher
i tance, and tha t there are inheritance hierar
chies for which there are more always-true in
ferences than always-supported paths. We de
scribe an ATMS- l i ke scheme tha t computes ide 
al ly skeptical inheri tance and represents hier
archical dependencies using a l im i ted form of 
Boolean sat isf iabi l i ty. F inal ly , we demonstrate 
a preempt ion (specif ici ty) strategy for which 
ideally skeptical inheri tance is po lynomia l t ime 
computable. 

1 I n t r o d u c t i o n 
Inher i tance, l ike other forms of defeasible reasoning, 
sanctions uncertain conclusions. In unambiguous con
texts, these conclusions are only as reliable as the general 
rules f rom which they are derived: concluding that a par
t icu lar b i rd can fly is reasonable only if birds generally 
f ly . Amb igu i t y introduces another k ind of uncertainty: 
if we have evidence tha t Char l ie is a b i rd , and other evi
dence tha t he is not , our reasoning is st i l l more uncertain 
because our assumptions are questionable. 

of these conclusions, however, we can reason further: if 
we assume that Nixon is a pacifist, we can conclude that , 
like a typical pacifist, he is ant i -mi l i ta ry . Credulous in
heritance permits us to believe that Nixon is not a paci
fist, or is a pacifist, and therefore is an t i -mi l i ta ry , but 
either way our beliefs must be internally consistent. 

Whi le credulous inheritance offers many alternatives, 
skeptical inheritance yields a single, unambiguous set of 
conclusions for any inheritance hierarchy. Ideally skep
tical inheritance supports exactly those conclusions true 
in every credulous extension. In the next section, we 
provide formal definit ions of ambigui ty , credulous exten
sions, and ideally skeptical inheritance. We then present 
two approximate approaches to skeptical inheritance, 
ambigui ty blocking and ambigui ty propagat ing inheri
tance. The fai lure of these path-based approaches to be 
both sound and complete for ideally skeptical inheritance 
indicates the importance of reasoning about conclusions, 
or inferences, rather than about their suppor t ing paths, 
or arguments. In section 5, we demonstrate an ATMS-
like labeling scheme for inheritance hierarchies, based 
on a l imi ted form of Boolean satisf iabi l i ty. Th is label
ing gives a precise description of dependencies in the 
hierarchy, including an exact representation of ideally 
skeptical inheritance. Final ly, in section 6, we present 
a definit ion of preemption, or specificity, and provide a 
polynomial- t ime a lgor i thm for comput ing the results of 
specificity. A l though the def ini t ion of specificity itself is 
neither skeptical nor credulous, the ou tput of the speci
ficity a lgor i thm can be used as input to the ideally skep
tical inheritance a lgor i thm to yield a po lynomia l - t ime al
gor i thm for comput ing ideally skeptical inheritance with 
specificity. 

2 A m b i g u i t y and c redu lous ex tens ions 

An inheritance hierarchy T = ( V T , E T ) is a directed 
acyclic graph w i th positive and negative edges, intended 
to denote "is-a" and " is-not-a" respectively. We wr i te a 
positive edge f rom a to x as a • x, and a negative edge 
a.¬x.. We call a sequence of posit ive edges a .s1 .... sn . x 
(n > 0) a positive path, and a sequence of posit ive edges 
followed by a single negative edge a. s1....sn ¬ (n > 0) a 
negative path} We use lower case Greek letters to stand 

*The approach described in this paper is upwards rea
soning. That is, inheritance works from the focus node up-
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Credulous reasoning involves this second k ind of un
certainty. A credulous reasoner sanctions any internal ly 
consistent state of the wor ld . For example, in f igure 1, 
credulous inher i tance allows either the conclusion that 
N ixon is a pacif ist , or tha t N ixon is not a pacifist. In 
either case, the choice is arb i t rary . Once we accept one 

*The author is supported by an IBM Graduate Fellowship. 



for sequences of posit ive edges, so these posit ive and neg
at ive paths m igh t be abbreviated a α. x and a α . x. 
We takes * to be a variable ranging over the set {., .¬}: 

stands for any edge f rom s to x (s . x or s ¬x) and 
to stand for the edge of opposite sign (s .¬x or s. x, 

respectively). 
A pa th , or argument, a.α*x supports the inference "a 

is (not ) an x . " We use the no ta t ion to stand 
for this inference, or conclusion, independently of the 
pa th th rough which i t is derived. One inference—e.g., 
a—>x—may have many suppor t ing arguments—a α.x, 
a . r . x, etc. We use ~> in much the same way as *, as a 
variable ranging over the set and say tha t a~>x 
i f either a—>x or a-/+x. Th roughou t much of this paper, 
paths and inferences w i l l be used interchangeably; in sec
t ion 4, however, the d is t inc t ion w i l l become impor tan t . 

An inheri tance hierarchy F supports a pa th a • a * x, 
w r i t t en T \> a a * x , if the path as\ • • s n * x is in Ep and it 
is admissible:, T supports an inference a~~>x if it supports 
some corresponding pa th . In i t i a l l y , we w i l l take "admis
sible" to be vacuous: any pa th actual ly in T is supported. 
Th is is credulous inheri tance at i ts most general, so tha t 
any conf l ic t ing paths are potent ia l ly ambiguous and re
sult in corresponding credulous extensions. In section 6, 
we extend this def in i t ion to include a specif icity cr i ter ion 
analogous to T o u r e t z k y ^ [1986] inferent ial distance. 

A br ief aside on semantics is relevant here. If every 
confl ict is taken to be ambiguous, preempt ion strate
gies may be viewed as ambigui ty- resolv ing heuristics -
preferences as to how these ambigui t ies should be re
solved. Th i s results in a preference-based semantics for 
inheri tance, where credulous extensions play a role anal
ogous to models in ShohanVs [1988] model-preference se
mantics for nonmonotonic logics. Th is is precisely the 
view we are espousing here; a more complete explorat ion 
of the approach may be found in [Stein, 1990]. 

Amb igu i t y arises when two supported paths confl ict. 
Formal ly, an inheri tance hierarchy V is ambiguous w. r . t . 
a node a if there is some node such tha t 
and In this case, we say tha t the ambigu i ty 
is at x. Amb igu i t y is always relat ive to a node: for 
example, the hierarchy in figure 2 is unambiguous w. r . t . 
a, but ambiguous w. r . t . b (at e). Credulous inheri tance 
is a means of resolving these ambigui t ies. 

A credulous extension of an inheri tance hierarchy F 
w i t h respect to a node a is a max ima l unambiguous sub-
hierarchy of F w i t h respect to a: if Xr,a is a credulous 
extension of F w. r . t . a, then there is no unambiguous 
subgraph of T suppor t ing a proper superset of the paths 

wards, rather than from the root downwards. The ramifica
tions of upwards versus downwards reasoning are discussed 
in [Touretzky et a/., 1987]; some complexity concerns are de
scribed in [Selman and Levesque, 1990]. 

tha t supports. An example of a network w i t h sev
eral credulous extensions—and some non-extensions—is 
given in figure 3. If is a credulous extension of T 
w.r . t . a, a is called the focus node of If an exten-

is true in s imi lar ly and 

In general, there may be many credulous extensions of 
T. If F is ambiguous w.r . t . a, there w i l l be several exten
sions of F w. r . t . a. denotes the set of credulous 
extensions of F w. r . t . a. Further, —the set of 
credulous extensions w. r . t . a—may differ f rom 
ambigui t ies which arise in determin ing what a is may 
never arise in determin ing what b is. However, comput
ing the credulous extensions of a hierarchy w. r . t . mul 
t ip le foci is independent of the order in which they are 
considered.2 

Choosing a credulous extension involves mak ing an 
arb i t ra ry choice. Skeptical inheri tance is intended to se
lect only those inferences tha t are not arb i t rary. These 
are precisely the inferences which hold in any credulous 
extension, or possible state of the wor ld . Formal ly, an 
inheri tance hierarchy F skeptical ly permi ts an inference 

if for every credulous extension 
defines ideally skepti

cal inheritance. 
Unfor tunate ly , there is no "skeptical extension" cor

responding to the def in i t ion of ideally skeptical in 
heritance. The closest we can come is , 
the subgraph of T conta in ing those edges that 
are in every credulous extension of F w.r . t . a:3 

supports ex
act ly those arguments, or sequences of edges, tha t are 
in every credulous extension. However, there may be 
inferences that are supported in every credulous 

2 I t might therefore seem logical to define a credulous ex
tension independently of any particular node; this would sim
ply be a maximal subgraph with no ambiguity w.r.t. any 
node. Unfortunately, this is not terribly useful, as disam
biguating one node (say, b in figure 2) can require eliminating 
perfectly good paths for another node (e.g. the path a—>e). 

3Throughout this paper, we use the notation 
where stands for upper case Greek letter, to refer to a 
uniquely determined subhierarchy of T w.r.t. o: for example, 
the skeptical extension the ambiguity blocking ex
tension the ambiguity propagating extension n(P,a) ; 
the specificity extension 
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extension of T w . r . t . a, but have different support ing ar
guments in different extensions: some extensions may 
contain one sequence of edges while other ex
tensions contain a different sequence of edges— 
Hierarchies w i t h this property are discussed in section 4. 
Th is means tha t , —and any other path-based 
"skeptical extension"—can support at most a subset of 
the inferences ideal ly skeptical inheritance admits; cap
tu r ing the complete set of inferences requires reasoning 
about cases. 

3 Ambiguity blocking inheritance 

The first a t tempt at skeptical inheritance was taken by 
Hor ty et al. [1987].4 They argue that an ambiguous 
l ine of reasoning should not be allowed to interfere w i th 
other potent ia l conclusions. Because this approach dis
continues a l ine of reasoning as soon as an ambigui ty 
has been reached, we refer to it as ambiguity block
ing inheri tance. A l though Hor ty ct. al. describe one 
specific theory—inc lud ing , e.g., a part icular preemption 
s t ra tegy—ambigu i ty b locking inheritance defines a gen
eral approach: 

Starting from the focus node a, if a node x is 
ambiguous w.r.t. a in I\ eliminate all edges into 
and out of x. When the entire hierarchy has been 
scanned, the remaining edges form a new network, 
B ( r , a ) , which is unambiguous w.r.t. a. This is the 
ambiguity blocking skeptical extension of T; ambi
guity blocking inheritance concludes that a network 
T admits a~>x exactly when B(T, a) |> a . a * x. 

Figure 4: App l y i ng ambigu i ty blocking inheritance to F 
w. r . t . a yields B ( F , a ) . 

Wh i l e ambigu i ty b locking inheritance seems reason
able, it results in some anomalous conclusions. Consider, 
for example, f igure 4. Amb igu i t y blocking inheritance on 
F w i t h focus node a determines that e is ambiguous w.r . t . 
a, so it el iminates all edges to and f rom e. In part icular, 
it el iminates the edge e • / , mak ing / unambiguous w.r . t . 
a: Th i s is certainly one possibil i ty. Bu t 
it is also possible that a—>e; and if a—>e, it is ambiguous 
whether a—> f — t h a t is, a m igh t not be an /. It is cer
ta in ly not safe to assume f rom the ambigui ty at e that 

4According to Horty (personal communication), a "skep
t ical" approach to inheritance is one which offers a unique, 
unambiguous set of conclusions for any inheritance hierar
chy. This differs wi th our intuit ion that "skeptical" means 
"unwil l ing to believe uncertain conclusions." In Horty's view, 
computing the intersection of the credulous extensions is only 
one way to reason "skeptically." 

the path a. b.d. f is always true. But this is precisely 
what ambigui ty blocking inheritance does.5 

A more severe anomaly follows f rom this first. Amb i 
guity blocking inheritance computes a k ind of "par i ty " 
on the number of ambiguit ies in a pa th . According to 
Horty et. al., the network in figure 5 is skeptical as to 
whether a is-a e or an i, but supports the conclusions 
that a is-a g and a j. Simi lar ly, this net is skeptical 
about whether b or / is-a j, but allows the paths f rom 
a and d to j . More than the f irst anomaly, this result 
calls into question the intuitiveness of ambigui ty block
ing inheritance. In any case, ambigui ty blocking inher
itance is promiscuous: there are inferences a~>x such 
that 

4 Ambiguity propagating inheritance 
Unlike ambigui ty blocking inheritance, ambiguity prop
agating inheritance allows ambiguous lines of reasoning 
to proceed. An argument thus cannot be certain unless 
there are no counterarguments; in contrast, ambigui ty 
blocking inheritance considers only unambiguous coun
terarguments. Like ambigui ty blocking inheritance, am
biguity propagation defines a fami ly of algor i thms. One 
such a lgor i thm is out l ined here; a complete definit ion 
and discussion may be found in [Stein, 1989]. Th is al
gor i thm computes the ambigui ty propagating 
skeptical extension of F w.r . t . a, in t ime O ( E p ) : 

Starting from the focus node a, if a node x is am
biguous w.r.t. a in T, rather than eliminating all 
edges to and from x, retain x but mark it as am
biguous, and continue inheriting. Although paths 
to and from x wil l not be in they can stil l 
act as counterarguments and prevent other nodes 
from being u n a m b i g u o u s . i s the subgraph 
of T with those edges x * such that x and 
y are both unambiguous w.r.t. a. 

For example, the cascading ambiguit ies of figures 4 
and 5, which gave ambigui ty blocking inheritance dif-

5Horty et. al. originally pointed out this difference be
tween ambiguity blocking inheritance and ideally skeptical in
heritance in [Horty et a/., 1987] and [Touretzky et a/., 1987]. 
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Figure 6: A m b i g u i t y propagat ing inheri tance draws no 
conclusions about whether a is-a e or g or i or j. 

Figure 7: Whether a seedless grape vine is a f ru i t p lant , 
or an arbor p lan t , it is certainly a p lant ! 

For example, consider the hierarchy in figure 7.6 Every 
credulous extension w . r . t . seedless grape vine supports 
the inference seedless grape vine —> plant, so ideal ly skep
t ical inheri tance concludes tha t seedless grape vines are 
plants. Suppose, for example, tha t a seedless grape vine 
is a fruit p lant; then it is a plant. Suppose tha t it is not 
a fruit plant; then it is unambiguously an arbor plant, 
and therefore a plant. In any state of the wor ld , no mat 
ter how we resolve the ambigui t ies of the taxonomy, a 
seedless grape vine is a plant. 

I f we wish to determine what is true in al l possible 
worlds, we cannot avoid this k ind of reasoning. There 
are facts which are t rue in al l credulous extensions, bu t 
which have no jus t i f i ca t ion in the intersection of those 
extensions. Th i s is why we cannot generate a "skeptical 
extension"—no particular set of edges of T f rom seedless 
grape vine to plant is in every credulous extension, so 
no such pa th can be in the "skeptical extension." Thus 
every path-based approach to skeptical inheri tance w i l l 
always be either unsound or incomplete w i t h respect to 

Apparently, Mat t Ginsberg independently proposed a hi
erarchy with similar properties, in which Nixon is always po
litically motivated. 
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Figure 8 gives the skeptical label ing of the hierarchy of 
figure 7. 

Th is label ing corresponds roughly to an " A T M S label
i ng " of the h ierarchy—the label of a node is its just i f i 
cat ion. We can use the label ing for incremental update 
of the hierarchy. Consider, for example, the hierarchy 
of figure 1. If we later discover tha t Nixon is a pacifist, 
the label ing automat ica l ly tells us that he is an t imi l i -
ta ry as well (since [anti-military} = [pacifist}, and now 
[paci f is t ] = [ T ] ) . In fact , we can incorporate all sorts 
of ambigu i ty resolving i n fo rma t i on—f rom specificity, to 
domain-specif ic knowledge, to updated beliefs—into this 
label ing s imply by adding further constraints. 

The complex i ty of this extended label ing a lgor i thm, 
inc lud ing fur ther constraints, is unknown. Since it is a 
special case of boolean sat isf iabi l i ty, the problem may be 
NP-hard. However, for the l im i ted case of determining 
tha t a label is falsi f iable—i.e. tha t there is some cred
ulous extension tha t does not include the node—Kautz 
and Selman [1989] provide a po lynomia l a lgor i thm. This 
means tha t we can compute the exact intersection of 
credulous extensions—ideally skeptical inheri tance—in 
po lynomia l t ime. 

6 Specificity 
In the discussion of skeptical inheri tance above, we as
sumed tha t al l paths in the hierarchy were equally ac
ceptable. In th is section, we describe a specificity crite
rion, or preempt ion strategy, tha t makes choices among 
certain compet ing paths. The idea of a specificity 
cr i ter ion dates f r om [Ether ington and Reiter, 1983] 
and [Touretzky, 1986]. Since then, many definit ions of 

A l though the definit ions of supported and redundant 
are mutual ly dependent, they are not circular. Because 
the hierarchy is acyclic, it can be ordered topologically, 
and the definit ion of support for a path f rom a to x 
depends only on the redundancy of nodes str ic t ly topo
logically earlier than x. 

The difficulties caused by redundant l inks were noted 
by Touretzky [1986] : in the second hierarchy (T ' ) in f ig
ure 9, the edge f rom king penguin to bird is redundant— 
king penguins are typical ly birds even w i thout that l ink. 
However, if that edge is not excluded, there w i l l be a 
path Tweety . king penguin bird . flies for which no in
termediate node has an edge to ¬flies. Clearly, this is 
not the intended meaning here (or, indeed, in any net
work of this form, since the "penguin" node is always 
more specific than the "b i r d " node). 

This definit ion of specificity is on-path and upwards. 
On-path means that a path is preempted only if one 
of its member nodes is involved in a counterargument. 
In contrast, some preemption strategies also allow a 
path to be preempted by a counterargument or iginat
ing wi th a node off the path . Upwards inheritance rea
sons about the properties of a part icular object, rather 
than the objects possessing a part icular property. Our 
dafinit ion most closely resembles an upwards version 
of [Touretzky, 1986]. 

If we examine a hierarchy, T, f rom the perspective of a 
part icular node, a, specificity provides a means of prun
ing the hierarchy- removing those edges that have been 
preempted. We call this subhierarchy the speci
ficity extension of F w.r . t . a. For example, the speci
ficity extensions of the hierarchies in figure 9 w.r . t . king 
penguin are shown in figure 10. The def ini t ion of speci
f ici ty above always yields a unique specificity extension 
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specificity have appeared in the l i terature, but al l op
erate on the same under ly ing pr inciple: more specific 
in format ion is likely to be more accurate. For example, 
in figure 9, in format ion about penguins is more specific 
to Tweety than in format ion about birds, so we can infer 
that Tweety does not fly. 

We define specificity recursively. Certainly, if 
ET, then T supports that is, both 
the path , and the inference "a is (not) an x" But what 
about compound paths? 



Figure 10: Speci f ic i ty extensions for the hierarchies of 
figure 9 w . r . t . king penguin. 

for a hierarchy w. r . t . a focus node. Figure 11 gives a 
po lynomia l - t ime a lgo r i thm for calculat ing the specificity 
extension of an inheri tance hierarchy. 

Not al l of the ambigui t ies in an inheri tance hierarchy 
are susceptible to specificity. For example, "d iamond" 
ambigui t ies such as the N ixon d iamond of figure 1 can
not be resolved using any preempt ion technique. For 
this reason, Σ ( T , a ) may s t i l l contain ambigui t ies, and 
may y ie ld several credulous extensions w. r . t . a. These 
credulous extensions are the possible world-states con
sistent w i t h the specif icity cr i ter ion, and are a subset of 
the possible world-states de l imi ted by T—the credulous 
extensions of T w . r . t . a. In par t icu lar , the credulous ex
tensions of E ( T , a) are the -preferred extensions of T w. r . t . 
a, according to the preference induced by specif icity: 

7 Discussion 
Hierarchies l ike figure 7 demonstrate tha t determin
ing universal t ru ths requires reasoning about inferences 
rather than paths. I t fol lows tha t any purely path-based 
approach to inheri tance must be either unsound or i n 
complete for ideal ly skeptical inheri tance. Some addi 
t iona l bookkeeping mechanism, such as the " A T M S la
be l ing" introduced here, must be added to inheri tance 
systems tha t per form this type of reasoning. 

The framework for skeptical inheri tance, and the 
preference-based semantics of [Stein, 1990], are bo th 
independent of a par t icu lar def in i t ion of speci
f ic i ty. However, the t rac tab i l i t y of the specif icity 
cr i ter ion in section 6 makes it par t i cu la r ly use
fu l here. Recent results [Kautz and Selman, 1989, 
Selman and Levesque, 1990] indicate the in t rac tab i l i t y 
of many basic inheri tance problems. Our specif icity cr i 
ter ion provides a t ractable basis for bo th credulous and 
skeptical inheritance reasoning. 

Proofs of several results described in this paper, 
and fur ther explorat ion of these ideas, may be found 
in [Stein, 1989]. 

We could insist that agree on all nodes 
that precede x in any topological sort. It turns out that 
the minimal elements under this definition of preference are 
equivalent to the minimal elements under the definition given 
here. 
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A b s t r a c t 
We int roduce a new probabi l is t ic approach to 
deal ing w i t h uncerta inty, based on the obser
vat ion tha t p robab i l i t y theory does not require 
tha t every event be assigned a probabi l i ty . For 
a nonmeasurable event (one to which we do 
not assign a p robab i l i t y ) , we can ta lk about 
only the inner measure and outer measure of 
the event. Thus , the measure of belief in an 
event can be represented by an interval (de
fined by the inner and outer measure), rather 
than by a single number. Fur ther , this ap
proach allows us to assign a belief ( inner mea
sure) to an event E w i thou t commi t t i ng to a 
belief about its negation ¬E (since the inner 
measure of an event plus the inner measure of 
i ts negation is not necessarily one). Interest
ingly enough, inner measures induced by proba
b i l i t y measures tu rn out to correspond in a pre
cise sense to Dempster-Shafer bel ief funct ions. 
Hence, in addi t ion to p rov id ing promis ing new 
conceptual tools for deal ing w i t h uncertainty, 
our approach shows that a key par t of the im
portant Dempster-Shafer theory of evidence is 
f i rm ly rooted in classical p robab i l i t y theory. 

1 I n t r o d u c t i o n 
Dealing w i t h uncer ta inty is a fundamenta l issue for A l . 
The most widely-used approach to deal ing w i t h uncer
ta in ty is undoubted ly the Bayesian approach. It has the 
advantage of re ly ing on wel l -understood techniques f rom 
probab i l i t y theory, as well as some phi losophical j us t i f i 
cat ion on the grounds tha t a "rat ional '* agent must as
sign uncerta int ies to events in a way that satisfies the ax
ioms of p robab i l i t y [Cox46, Sav54]. On the other hand, 
the Bayesian approach has been widely cr i t ic ized for re
qu i r ing an agent to assign a subject ive probab i l i t y to 
every event. Wh i l e th is can be done in pr inc ip le by hav
ing the agent play a sui table be t t i ng game [Jef83],1 i t 
does have a number of drawbacks. Among others, there 
is the computa t iona l d i f f icu l ty of a r r i v ing at the proba
b i l i ty . There is also the issue of whether it is reasonable 

'This idea is due to Ramsey [Ram3l] and was rediscovered 
by von Neumann and Morgenstern [vNM47]; a clear exposi
tion can be found in [LR57]. 

to describe confidence by a single po in t rather t han a 
range. Whi le an agent might be prepared to agree tha t 
the probabi l i ty of an event lies w i th in a given range, say 
between 1/3 and 1/2, he might not be prepared to say 
that it is precisely .435. 

Not surprisingly, there has been a great deal of 
debate regarding the Bayesian approach (see [Che85] 
and [Sha76] for some of the arguments) . Numerous 
other approaches to dealing w i t h uncer ta inty have been 
proposed, inc luding Demp>ster-Shafer theory [Dem68, 
Sha76], Cohen's model of endorsements [Coh85], and 
various nonstandard, moda l , and fuzzy logics (for ex
ample, [HR87, Zad75]). A recent overview of the field 
can be found in [Saf88]. Of par t icu lar interest to us here 
is the Dempster-Shafer approach, which uses belief {unc
tions and plausibility functions to at tach numerical lower 
and upper bounds on the l ikel ihoods of events. 

A l though the Bayesian approach requires an agent to 
assign a probabi l i ty to every event, probabi l i ty theory 
does not. The usual reason tha t mathemat ic ians deal 
w i th nonmeasurable events (those tha t are not assigned 
a probabi l i ty ) is out of mathemat ica l necessity. For ex
ample, it is well known that if the sample space of the 
probabi l i ty space consists of all numbers in the real in
terval [0, 1], then we cannot allow every set to be mea
surable if ( l ike Lebesgue measure) the measure is to be 
translat ion- invar iant (see [Boy64, page 54]). However, in 
this paper we allow nonmeasurable events out of choice, 
rather than out of mathemat ica l necessity. An event E 
for which an agent has insufficient in format ion to assign 
a probabi l i ty is modelled as a nonmeasurable set. The 
agent is not forced to assign a probabi l i ty to E in our 
approach. We can provide meaningful lower and upper 
bounds on our degree of belief in E by using the standard 
mathemat ica l notions of inner measun and outer mea
sure induced by the probab i l i t y measure [Hal50], wh ich , 
roughly speaking, are the probabi l i ty of the largest mea
surable event contained in E and the smallest measur
able event contain ing E, respectively. 

A l low ing nonmeasurable events has its advantages. 
The uncertainty of event E is no longer given by a single 
number, but rather by an interval defined by the inner 
and outer measures. Fur thermore, it is possible for the 
belief (i.e., inner measure) of event E to be a w i t h o u t 
the belief of -^E being 1 — a. Rather than nonnieasura-
b i l i ty being a mathemat ica l nuisance, we have tu rned it 
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here into a desirable feature! 
We feel that this paper makes three major contr ibu

tions. The first is conceptual: In certain situations, our 
approach gives a useful way to th ink about and reason 
about uncertainty. In part icular, the use of nonmeasur-
able sets seems to provide a useful way to capture our 
uncertainty about the probabi l i ty of an event. The sec
ond is technical: We prove that , in a precise sense, inner 
measures induced by probabi l i ty measures are equivalent 
to Shafer's belief functions (and so outer measures in
duced by probabi l i ty measures are equivalent to Shafer's 
plausibi l i ty funct ions). The impl icat ions of this equiv
alence are significant. A l though some, such as Cheese-
man [Che85], consider the theory of belief functions as 
ad hoc and essentially nonprobabil ist ic (see discussion by 
Shafer [Sha86]), our results help show that a key part of 
the Dempster-Shafer theory of evidence is firmly rooted 
in classical probabi l i ty theory. The last contr ibut ion is 
also technical: by combining our results here w i th those 
of a companion paper [FHM88] , we are able to obtain 
a sound and complete axiomatizat ion for a rich propo-
sit ional logic of evidence, and provide a decision proce
dure for the satisfiabil i ty problem, which we show is no 
harder than that of proposit ional logic (NP-complete). 
Our techniques may provide a means for automatical ly 
deducing the consequences of a body of evidence. 

2 Probab i l i t y theory 
To make our discussion precise, it is helpful to re
call some basic definit ions f rom probabi l i ty theory (see 
[Fel57] for more details). A probability space (S, X,µ,) 
consists of a set S (called the sample space), a a-algebra 
X of subsets of S (i.e., a set of subsets of S contain
ing S and closed under complementation and countable 
union, but not necessarily consisting of all subsets of S) 
whose elements are called measurable sets, and a proba
bility measure //: X —> [0, 1] satisfying the fol lowing prop-
erties: 
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If there are only finitely many measurable sets ( in par
t icular , if S is finite), then it is easy to see that the 
inner measure of A is the measure of the largest mea
surable set contained in A, while the outer measure of 
A is the measure of the smallest measurable set contain
ing A. In any case, it is not hard to show by countable 
add i t i v i tv that for each set .4, there are measurable sets 

Actually, the use of possible worlds in giving semantics 
to probability formulas goes back to Carnap [Car50]. 



true at s if = t r u e ; otherwise, we say that p is 
false at s. 

We th ink of S as consisting of the possible states of 
the world. We can associate w i th each state s in 5 a 
unique atom describing the t r u t h values of the pr imi t ive 
propositions in s. For example, if = {p1,p2), and if 

= t r u e and = fa lse, then we associate 
w i th s the atom It is perfectly all r ight for 
there to be several states associated w i t h the same atom 
(indeed, there may be an inf ini te number, since we allow 
S to be inf ini te, even though is finite). This si tuat ion 
may occur if a state is not completely characterized by 
the events that are true there. This is the case, for exam
ple, if there are features of worlds that are not captured 
by the pr imi t ive proposit ions. 

We can easily extend to a t r u t h assignment on 
all formulas by taking the usual rules of proposit ional 
logic. Then if M is a probabi l i ty structure, we can 
associate w i th every formula the set consisting 
of all the states in M where is true (i.e., the set 

Of course, we assume that n 
is defined so that trueM — S. If pM is measurable for 
every pr imi t ive proposit ion then is also mea
surable for every for inula (since the set X of measur
able sets is closed under complementation and countable 
union). We say M is a measurable probability structure 
if is measurable for every formula 

It makes sense to talk about the probabi l i ty of <p in 
M only if is measurable; we can then take the prob
abil i ty of which we denote to be If 
(fXi is not measurable, then we cannot talk about its 
probabi l i ty. However, we can st i l l talk about its inner 
measure and outer measure, since these are defined for 
all subsets. Intui t ively, the inner and outer measure pro
vide lower and upper bounds on the probabi l i ty of In 
general, if is not measurable, then we take 
to be i.e., the inner measure of in M. 

We define a probabi l i ty structure M and a Nilsson 
structure N to be equivalent if = for 
every formula Intui t ively, a probabi l i ty structure and 
a Nilsson structure are equivalent if they assign the same 
probabi l i ty to every formula. The next theorem shows 
that there is a natural correspondence between Nilsson 
structures and measurable probabi l i ty structures.3 

T h e o r e m 2 . 1 : 

/. For every Nilsson structure there is an equivalent 
measurable probability structure. 

2. For every measurable probability structure there is 
an equivalent Nilsson structure. 

Why should we even allow nonmeasurable sets? As 
the fol lowing example shows (as do others given in the 
ful l paper), using nonmeasurabil i ty allows us to avoid 
assigning probabil i t ies to those events for which we have 
insufficient informat ion to assign a probabi l i ty. 

E x a m p l e 2 . 2 : Ron has two blue suits and two gray 
suits. He has a very simple method for deciding what 
color suit to wear on any part icular day: he simply 

tosses a ( fair) coin: if it lands heads he wears a blue 
sui t , and if i t lands tai ls he wears a gray sui t . Once 
he's decided what color sui t to wear, he jus t chooses the 
r ightmost suit of tha t color on the rack. Bo th of Ron's 
blue suits are single-breasted, whi le one of Ron's gray 
suits is single-breasted and the other is double-breasted. 
Ron's wife Susan is ( for tunate ly for Ron) a l i t t le more 
fashion-conscious than he is. She also knows how Ron 
makes his sartor ia l choices. So, f r om t ime to t ime , she 
makes sure tha t the gray suit she considers preferable is 
to the r ight (which it is depends on current fashions and 
perhaps on other whims of Susan).4 Suppose we don ' t 
know about the current fashions (or about Susan's cur
rent wh ims) . W h a t can we say about the p robab i l i t y of 
Ron's wearing a single-breasted suit on Monday? 

In terms of possible wor lds, i t is clear tha t there 
are four possible worlds, one corresponding to each of 
the suits tha t Ron could choose. For definiteness, sup
pose states $i and s<> correspond to the two blue sui ts, 
.s3 corresponds to the single-breasted gray su i t , and 
S4 corresponds to the double-breasted gray sui t . Let 
S = {.s1, s2, S3, S 4 } . There are two features of interest 
about a suit : its color and whether it is single-breasted 
or double-breasted. Let the p r im i t i ve proposi t ion g de
note "the suit is gray" and let db denote " the suit is 
double-breasted", and define the t r u t h assignment n in 
the obvious way. Note that the a tom ¬g /\ ¬db is asso
ciated w i th both states s1 and s2. Since the two blue 
suits are both single-breasted, these two states cannot 
be dist inguished by the formulas in our language. 

W h a t are the measurable events? Besides S i tself and 
the empty set, the only other candidates are {s1,s2} 
( "Ron chooses a blue su i t " ) and {.S3, s4} ( "Ron chooses 
a gray su i t " ) . However, SB — { s 1 , .s2, .S3} ( "Ron chooses 
a single-breasted su i t " ) is nonmeasurable. The reason 
is tha t we do not have a probabi l i ty on the event "Ron 
chooses a single-breasted sui t , given tha t Ron chooses a 
gray su i t " , since this in tu rn depends on the probab i l i t y 
tha t Susan put the single-breasted suit to the r ight of the 
other gray sui t , which we do not know. Susan's choice 
might be characterizable by a probabi l i ty d i s t r i bu t i on ; it 
might also be determinist ic , based on some complex al
go r i t hm which even she might not be able to describe; or 
i t might be completely nondeterminist ic , in which case it 
is not technical ly meaningful to ta lk about the "p robab i l 
i t y " of Susan's actions! Our ignorance here is captured 
by nonmeasurabi l i ty. In formal ly , we can say tha t the 
probabi l i ty of Ron choosing a single-breasted sui t lies 
somewhere in the interval [ 1 /2 ,1 ] , since it is bounded 
below by the probabi l i ty of Ron choosing a blue sui t . 
Th is is an informal statement because formal ly it does 
not make sense to ta lk about the probab i l i t y of a non-
measurable event. The fo rma l analogue is s imply tha t 
the inner measure of SB is 1/2, whi le its outer measure 
is 1. I 

The proof of this and all other theorems mentioned here 
can be found in the full paper [FH88], 

4Anv similarity between the characters in this example 
and the first author of this paper and his wife Susan is not 
totally accidental. 
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3 T h e Dempste r -Sha fe r t h e o r y o f 
evidence 

The Dernpster-Shafer theory of evidence [Sha76] pro
vides another approach to attaching l ikelihoods to 
events. This theory starts out w i th a belief function 
(sometimes called a support function). For every event 
(i.e., set) A, the belief in A, denoted Bel(A), is a 
number in the interval [0,1] that places a lower bound 
on l ikelihood of A. We have a corresponding number 
Pl(A) = 1 — Bel(A), called the plausibility of A, which 
places an upper bound on the l ikel ihood of A. Thus, to 
every event A we can attach the interval [Bel(A), P1(A)]. 
Like a probabi l i ty measure, a belief funct ion assigns a 
"weight" to subsets of a set 5, but unlike a probabi l 
i ty measure, the domain of a belief funct ion is always 
taken to be all subsets of S. Just as we defined prob
abil i ty structures, we can define a DS structure (where, 
of course, "DS" stands for Dempster-Shafer) to be a t u 
ple (S, Bel, TT), where S and are as before, and where 
Bei.2s —> [0, 1] is a funct ion satisfying: 

A belief funct ion is typical ly defined on a frame of dis
cernment, consisting of mutual ly exclusive and exhaus
tive propositions describing the domain of interest. We 
th ink of the set S of states in a belief structure as be
ing this frame of discernment. We could always choose 
S to be some subset of At, the set of atoms, so that 
its elements are in fact propositions in the language. In 
general, given a DS structure D = and for
mula we define the weight to be Bel 
where is the set of states where (p is t rue. Thus 
we can talk about an agent's degree of belief in <p in 
D, described by by ident i fy ing <p w i th the set 

and considering the belief in . As before, we de
fine a probabi l i ty structure M (resp., a Nilsson struc
ture N, a DS structure D') and a DS structure D to be 
equivalent if WM — (resp., = 

= for every formula 
Property B3 may seem unmot ivated. Perhaps the best 

way to understand it is as an analogue to the usual 
inclusion-exclusion rule for probabi l i t ies [Fel57, p. 89], 
which is obtained by replacing the inequal i ty by equal
i ty (and the belief function Bel by a probabi l i ty measure). In part icular, B3 holds for probabi l i ty measures (we 
prove a more general result, namely that it holds for 
all inner measures induced by probabi l i ty measures, in 
Proposition 3.1 below). Hence, if (S, X, µ) is a probabi l 
i ty space and X = 2s (making every subset of 5 mea
surable), then µ is a belief funct ion. (This fact has been 
observed frequently before; see, for example, [Sha76].) It 
follows that every Nilsson structure is a DS structure. 

It is easy to see that the converse does not hold. For 
example, suppose there is only one pr imi t ive proposi
t ion , say p, in the language, so that At = {p , - p } , and 
let D0 = (At, Bel, be such that Bel({p}) = 1/2, 

= 0, and is defined in the obvious way. 
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In tu i t ive ly , there is weight of evidence 1/2 for p, and no 
evidence for - p . Thus Wp 0 (p ) = 1/2 and Wpo(p) = 0. 
D0 is not equivalent to any Nilsson structure, since if N 
is a Nilsson structure such tha t WN(P) = 1/2, then we 
must have WN(¬P) = 1/2. 

These observations tel l us that in some sense belief 
functions are more general than probabi l i ty measures, 
provided we restrict at tent ion to probabi l i ty spaces 
where all sets are measurable. Th is fact is well known. 
Indeed, in [Sha76], Shafer makes expl ici t use of the 
greater generality of belief funct ions. Whi le he does con
sider events E such that Bel(¬E) = 1 - Bel(E) (he calls 
such events probabilistic), he also wants to allow non-
probabil ist ic events. He gives examples of events where 
the fact that we would like to assign weight .8 to our 
belief in event E does not mean that we want to assign 
weight .2 to our belief in Ì¬E. In our framework, where 
we allow nonmeasurable sets, we can view probabil ist ic 
events as corresponding to measurable sets, while non-
probabil ist ic events do not. We can push this analogy 
much further. Not only do nonmeasurable sets corre
spond to non-probabil ist ic events, but the inner mea
sures induced by probabi l i ty measures correspond to be
lief functions. 

P r o p o s i t i o n 3 . 1 : // (5 , X, p) is a probability space, 
then fjm is a belief function on 2" . 

Proposit ion 3.1 says that every inner measure is a be
lief funct ion (and thus generalizes the statement that 
every probabi l i ty measure is a belief funct ion) . The con
verse does not quite hold. For example, consider the DS 
space D0 defined above. There is no probabi l i ty mea
sure // that we can define on {p , ~~>p) such that = Be I. 
However, it is easy to define a probabi l i ty structure M 
such that Tha t is, we 
can find a probabi l i ty structure equivalent to Do- The 
next theorem generalizes this observation. 

T h e o r e m 3.2: 

/. For every DS structure there is an equivalent prob
ability structure. 

2. For every probability structure there is an equivalent 
DS structure. 

Intu i t ively, Theorem 3.2 says that belief functions and 
inner measures induced by probabi l i ty measures are pre
cisely the same if their domains are considered to be 
formulas rather than sets. As we shall see, this result 
has impor tant implications regarding complete axioma-
t izations and decision procedures. 

4 Reason ing abou t be l ie f a n d 
p r o b a b i l i t y 

We are often interested in the inferences we can make 
about probabil i t ies or beliefs given some in format ion. 
In order to do this, we need a language for doing 
such reasoning. Such a language is given in [FHM88] . 
A term in this language is an expression of the fo rm 

where a\,..., a* are inte
gers and are proposit ional formulas. A basic 
weight formula is one of the form where t is a 



te rm and b is an integer. A weight formula is a Boolean 
combination of basic weight formulas. We sometimes use 
obvious abbreviations w i thout further comment, such as 

We give semantics to the formulas in our language wi th 
respect to all the structures we have been considering. 
Let A' be either a Nilsson structure, a probabi l i ty struc
ture, or a DS structure, and let / be a weight formula. 
We now define what it means for K to satisfy /, wr i t ten 

For a basic weight formula, 

We then extend in the obvious way to conjunctions 
and negations. The interpretat ion of is either "the 
probabi l i ty of (for Nilsson structures or measurable 
probabi l i ty structures), " the inner measure o f ( f o r 
general probabi l i ty structures), or "the belief in (for 
DS structures). 

Let K be a class of structures (in the cases of inter
est to us, K is the class of either probabi l i ty structures, 
measurable probabi l i ty structures, Nilsson structures, or 
DS structures). As usual, we define a weight formula 
/ to be satisfialet with nsptct to for some 

Similarly, / is valid with respect to 
for all 

In [FHM88], an axiom system AX ME AS FOR reason
ing about measurable probabi l i ty structures is provided. 
The system has three parts, which deal respectively with 
proposit ional reasoning, reasoning about linear inequal
ities, and reasoning about probabi l i ty. For example, a 
typical axiom for reasoning about linear inequalities is 

which says that both sides of an inequality can be mul
t ipl ied by a positive constant. (The remaining axioms 
for reasoning about inequalities are described in the full 
paper.) 

For reasoning about probabi l i ty, we have the following 
axioms. The first three correspond to the usual laws of 
probabi l i ty, except that W3 corresponds to finite addi-
t iv i ty , not countable addi t iv i ty . 

As is shown in [FHM88] , AXMEAS characterizes the 
valid formulas for measurable probabi l i ty structures. 

T h e o r e m 4 . 1 : ( [FHM88]) A X M E A S is a sound and 
complete axiomatization for weight formulas with respect 
to measurable probability structures. 

This result, together w i th Theorem 2.1, immediately 
gives us 

C o r o l l a r y 4 . 2 : AXMEAS IS A sound and complete ar-
lomatizatwn for weight formulas with respect to Nilsson 
structures. 

T h e o r e m 4 .3 : ( [FHM88] ) AX is a sound and complete 
axiomatization for weight formulas with respect to prob
ability structures. 

App l y i ng Theorem 3.2, we immediate ly get 

C o r o l l a r y 4 . 4 : AX is a sound and complete automati
zation for weight formulas with respect to DS structures. 

Thus, using A X , we can derive all consequences of a 
collection of beliefs. 

Combin ing the preceding results w i t h results of 
[FHM88] , we can also characterize the complex i ty of rea
soning about probabi l i ty and belief. 

T h e o r e m 4 . 5 : The complexity of deciding whether a 
weight formula is satisfiable with respect to probabil
ity structures (respectively, measurable probability struc
tures, Nilsson structures, DS structures) is NP-complete. 

(Th is result in the ca.se of Nilsson structures was ob
tained independently in [GKP88] . ) Note that Theo
rem 4.5 says that reasoning about probab i l i t y and belief 
is, in a precise sense, exact ly as diff icult as proposi t ional 
reasoning. Th is is the best we could expect, since it is 
easy to see that reasoning about p robab i l i t y and belief 
is at least as hard as proposi t ional reasoning ( the propo
si t ional formula is satisfiable iff the weight formula 

is satisf iable). 

5 Combin ing evidence 
An impor tant issue for belief funct ions, each of which can 
be viewed as representing a dist inct body of evidence, is 
how to combine them to obta in a new belief funct ion tha t 
somehow reflects the combined evidence. A way of doing 
so is provided by Dempster 's rule of combination, which 
was int roduced by Dempster [Dem68] and was fur ther 
developed and studied in an elegant and rather complete 
manner by Shafer [Sha76]. 

In the ful l paper [FH88], we show tha t there is a nat
ural way ( in the spir i t of Dempster 's rule) to define the 
combinat ion Dx D2 of two DS structures D1 and D 2 , 
and a natura l way to define the combinat ion M1 ® M2 

of two probabi l i ty structures M1 and M2, such tha t the 
fo l lowing theorem holds. 

T h e o r e m 5 . 1 : Let D1 and D2 bt DS structures. There 
are probability structures M1 and M2 such that (a) D\ 
is equivalent to M1, (b) D2 is equivalent to M 2 , and (c) 
D\ D'2 is equivalent to M\ A/ 2 . 

Th is theorem shows tha t the spirit of Dempster 's 
rule of combinat ion can be captured w i t h i n p robab i l 
i ty theory We are current ly invest igat ing al ternat ives 
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AX ME AS is not sound w i t h respect to a rb i t ra ry prob
ab i l i ty structures, where is in terpreted as the inner 
measure of . In par t icu lar , ax iom W3 no longer holds: 
inner measures are not f in i te ly addi t ive. Let AX be ob
tained f r om AXMEAS by replacing W 3 by the fo l lowing 
two axioms, which are obtained f rom condi t ions Bl and 
B3 for belief funct ions in an obvious way: 



to Dempster 's rule of combinat ion for revising beliefs 
about uncerta inty in the presence of new in fo rma t ion . 
The idea is to consider what it means to take a condi
t ional probabi l i ty w i t h respect to a nonmeasurable set. 
We plan to report on th is work in a fu ture paper. 

6 Re la ted w o r k 

Al though we believe we are the first to propose using 
inner and outer measures as a way of deal ing w i t h un
certainty, there are a number of other works w i t h s imi lar 
themes. We brief ly discuss t hem here. 

A number of authors have argued tha t we should 
th ink in terms of an interval in which the p robab i l i t y 
lies, rather than a unique numer ical p robab i l i t y (see, for 
example, [ K y b 6 1 , Kyb88] ) . Good [Goo62], Koopman 
[Koo40a, Koo40b] , and Smi th [Smi61] t ry to derive rea
sonable propert ies for the in tu i t i ve not ions of lower and 
upper probabi l i ty , which are somehow meant to capture 
lower and upper bounds on an agent's bel ief in a propo
s i t ion. Good observes tha t "The analogy [between lower 
and upper probab i l i t y and] inner and outer measure is 
obvious. B u t the axioms for upper and lower probab i l 
i ty do not all follow7 f r om the theory of inner and outer 
measure." 

Dempster [Dem66, Dem68] gives a fo rma l mathemat
ical def in i t ion of lower and upper p robab i l i t y in terms 
of a tuple ( ,S ,µ ,T ,T ) , which we call a Dempsler strvc-
tare. (S, 2s ,µ is a p robab i l i t y space (Dempster assumes 
for s impl ic i ty that every subset of S is measurable). T 
is another set, and F is a mul t i -va lued mapp ing S to T. 
Thus, T(s) is a subset of T for each s S. Given 
we define subsets A, and A* of S as fol lows: 
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all propos i t iona l formulas, and we de
fine F ( A ) to consist of al l formulas such tha t is t rue 
at some po in t in .4 ( in the s t ruc tu re A / ) . Thus T is a 
mu l t i va lued mapp ing f r om X' to T. It is easy to check 
t ha t and for all 
formulas 

Ruspin i [R.us87] also considers g iv ing semantics to 
p robab i l i t y formulas by using possible wor lds, but he 
includes epistemic not ions in the p ic tu re . Br ief ly, his 
approach can be described as fol lows (where have taken 
the l iber ty of convert ing some of his nota t ion to ours, to 
make the ideas easier to compare) . F ix a set {p1,.. ., pn] 
of p r im i t i ve proposi t ions. Instead of consider ing jus t 
propos i t iona l formulas, Rusp in i allows epistemic fo rmu
las; he obtains his language by closing off under the 
propos i t iona l connectives and , ¬ as well as 
the epistemic operator A". Thus , a typ ica l fo rmu la in 
his language wou ld be (A for
mu la such as should be read " the agent knows ) 
Rather than considering a rb i t ra ry sample spaces as we 
have done here, where at each po in t in the sample space 
some subset of p r im i t i ve proposi t ions is t rue , Rusp in i 
considers one f ixed sample space S (which he calls a sen
tence space) whose points consist of al l the possible t r u t h 
assignments to these formulas consistent w i t h the axioms 
of the modal logic S5. (See, for example, [HM85] for an 
in t roduc t ion to S5. We remark tha t i t can be shown tha t 
there are less than 2 r )22 consistent t r u t h assignments, 
so that 5 is f in i te. ) We can define an equivalence re
la t ion — on S by tak ing .s ~ t if s and / agree on the 
t r u t h values of all formulas of the fo rm The equiv
alence classes fo rm a basis for a ' ' of measurable 
subsets of S. Let X be th is . For any fo rmula 

, l e t c o n s i s t of all the t r u t h assignments in S t ha t 
make t rue. It is easy to check tha t the set 
of t r u t h assignments tha t make t rue , is the union 
of equivalence classes, and hence is measurable. Let // 
be any probab i l i t y measure defined on X. G iven / i , we 
can consider the probab i l i t y s t ruc ture where 
we take (Since .s is a t r u t h assignment, 
th is is well defined.) The axioms of S5 guarantee us tha t 
{F\<p)s is the largest measurable subset contained in 
thus, 

Ruspin i then considers the DS s t ruc ture 
where is defined in the obvious way on the atoms in 
,4 / , and Ruspin i 
shows that Bel defined in th is way is indeed a bel ief 
f unc t i on . Thus , Rusp in i shows a close connect ion be
tween probabi l i t ies , inner measures, and bel ief funct ions 
in the par t i cu la r s t ructures tha t he considers. He does 
not show a general re lat ionship between inner measures 
and belief funct ions; in par t i cu la r , he does not show tha t 
DS st ructures are equivalent to p robab i l i t y s t ructures, as 
we do in Theorem 3.2. 

In the fu l l paper, we explore fu r the r relat ions between 
our work and tha t of Rusp in i , as well as compar ing our 
character izat ion of bel ief funct ions w i t h those of Shafer 
[Sha79], K y b u r g [Kyb87 ] , and Pearl [Pea88]. 

6Ruspini actually defines the belief function directly on 
formulas; i.e., he defines In our notat ion, what he is 
doing is defining a weight function WD-

'A subset X' of X is said to be a basis (of X) if the mem
bers of X' are nonempty and disjoint, and if X consists pre
cisely of countable unions of members of X'. It is easy to see 
that if X is finite then it has a basis. Moreover, whenever X 
has a basis, it is unique: it consists precisely of the minimal 
elements of X (the nonempty sets none of whose nonempty 
subsets are in X). Note that if X has a basis, once we know 
the probability of every set in the basis, we can compute 
the probability of every measurable set by using countable 
additivity. 


