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A b s t r a c t 

The creation of abstract models of physical sys­
tems is an impor tan t AI research area. I de­
scribe a program which can automat ical ly con­
struct such models for machines like mechanical 
clocks or watches. The program finds an appro­
pr iate set of state variables and determines how 
they change as t ime passes. The abstract model 
of the mechanical device may be used to numer­
ical ly simulate i ts behavior. My program uses 
short, control led simulat ions to ident i fy repet 
i t ive behavior patterns which can be used for 
long-term behavior predict ion. 

1 I n t r o d u c t i o n 

Reasoning about physical systems generally involves the 
creation and manipu la t ion of abstract models, normal ly 
constructed by the person s tudy ing the system. 1 wi l l 
discuss the automat ic generation of such models, as well 
as their manipu la t ion and analysis. The physical sys­
tems I w i l l focus on are mechanical devices. 

An abstract model of a physical system is usually 
based on a set of state variables. A set of part icular val­
ues for the state variables represents a part icular state of 
the system. The model must also include a description 
how the state variables are related and how they change. 

The values taken by state variables may be either nu­
merical quanti t ies or qual i ta t ive symbols. The abstract 
models used in engineering and the physical sciences nor­
mal ly use state variables which take numerical values. 
Much of the work by art i f ic ia l intelligence researchers on 
reasoning about physical systems has focused on mod­
els in which state variables take only qual i tat ive values. 
See, e.g., [Bobrow, 1985]. 

Qual i ta t ive models of physical systems are often useful 
for reasoning in si tuat ions where the in format ion avail­
able about the system is l im i ted or imprecise. However, 
many physical systems cannot be adequately represented 
by qual i ta t ive models. Geometry is especially diff icult to 
deal w i t h qual i ta t ive ly . Geometry plays a central role in 
the behavior of mechanical devices, so they cannot be de­
scribed by purely qual i ta t ive models, al though work has 
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been done wi th mixed quant i ta t ive/qual i ta t ive models 
for such machines. [Forbus ct a/., 1987, Faltings, 1987, 
Joskowicz, 1988, Nielsen, 1988] 

In this paper I w i l l focus on models w i th numerical 
state variables. It is often assumed that such quanti­
tative models are not relevant to art i f icial intelligence 
because 

1. We already know how to use quant i tat ive models. 
Open problems are highly technical and of interest 
only to mathematicians. 

2. The analysis of quant i tat ive models doesn't yield 
results at the level needed for art i f ic ial intelligence. 

3. People reason about physical situations qual i ta­
tively. 

In fact, quanti tat ive models are quite worthy of consid­
eration by AI researchers. Let us consider the objections 
listed above. 

1. There are many open AI questions about quant i ta­
tive models. For example, "Where do they come 
f rom?", which is the question this paper addresses. 
Whi le mathematicians and physical scientists have 
accumulated a wide variety of techniques for sys­
tematical ly analyzing such models, model creation 
has received l i t t le at tent ion, probably because the 
techniques required are the very ones that AI spe­
cializes in . Model bui ld ing is a very human activ­
ity, and involves questions like "Wha t factors shall 
I neglect?", which don' t have the sort of absolutely 
correct answer favored by the systematic, techniques 
of the mathematical sciences. 

2. In Section 7 I describe the a lgor i thm used by my 
program to find a concise summary of a machine's 
repetit ive behavior patterns. These summaries can 
then be used to predict the machine's long-term be-
havier. Thus the use of quant i tat ive models and 
numerical simulations does not prevent the forma­
t ion of concise, qual i tat ive output of the sort one 
would expect f rom an AI program. 

3. The fact that people can talk about physical s i tu­
ations wi thout using numbers does not jus t i fy the 
conclusion that their internal reasoning methods are 
purely qual i tat ive. If there is one th ing AI research 
has taught us, it is that there is much more to hu­
man th ink ing than what we perceive on the surface. 
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the mechanism are paral lel and therefore may be pro­
jected onto a plane. The pro ject ion consists of three 
points which determine a t r iangle which may be ana­
lyzed w i t h basic t r igonometry . Th is analysis shows that 
for any posi t ion of the crankshaft , only one posit ion is 
possible for each of the other parts. Thus the state of the 
device can be represented w i t h only two state variables: 
the posi t ion and velocity of the crankshaft . 

My p rogram used the results of k inemat ic analysis to 
pa r t i t i on the components of a mechanism into kinematic 
subsystems hav ing the proper ty tha t the positions of all 
the components of a subsystem are determined by a sin­
gle pos i t ion state var iable. Therefore, the to ta l number 
of state variables for a mechanism w i l l be twice the num­
ber of k inemat ic subsystems, since there w i l l be one po­
s i t ion state variable and one velocity state variable for 
each subsystem. 

4 Neglect 
When a person creates an abstract model of a physical 
system, perhaps the most impor tan t issue is which as­
pects of the system should be included in the model , and 
which ones should be neglected. Different choices result 
in different abstract models. As a concrete example of 
such a choice, consider the clock or watch escapement 
mechanism displayed in Figures 2 through 5. 

Th is mechanism forces the mainspr ing of the watch to 
unw ind at a constant speed by a l lowing the escape wheel 
to advance by only one too th for each swing of the bal­
ance, which is a harmonic osci l lator [Cuss, 1952]. The 
cycle begins in Figure 2 w i t h the mot ion of the escape 

wheel, which is attached to the mainspr ing, blocked by 
the lever, and the balance motionless at the top of i ts 
swing about to start moving towards the lever. In Fig­
ure 3 the balance has swung down to h i t the lever. The 
momentum of the balance pushes the lever far enough 
to free the escape wheel, which then pushes bo th lever 
and balance as in Figure 4. Final ly , in Figure 5, escape 
wheel and lever are once again locked, and the balance 
is at the top of its swing on the opposite side. 

The in i t ia l k inematic analysis of this mechanism finds 
that each of the three moving parts forms a revolute pair 
w i th the frame. No kinematic constraints on the relative 
motions of these pairs are found. Thus by the meth­
ods of the previous section there are six state variables; 
three positions and three velocities. The interesting be­
havior of the mechanism occurs when the moving parts 
collide and push each other. These interact ions are not 
predicted by the in i t ia l k inematic analysis and thus must 
be modeled in terms of forces between the parts due to 
(very small) elastic deformations of parts, which there­
fore can lo t be treated as perfectly r ig id bodies. 

A different but also val id model of the mechanism re­
sults f rom a decision to neglect elastic properties of the 
mechanism and treat each par t as a r ig id body. In this 
k inematic analysis must be used to predict the behav­
ior of the machine, but since the pairs of mov ing parts 
are only in contact part of the t ime, temporary kine­
mat ic pairs are formed and dissolved dynamica l ly as the 
escapement moves. Therefore, the number of state var i ­
ables changes as the mechanism runs. 

My model ing program can automat ica l ly f o rm either 
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of these models f rom the same inpu t (described in Sec­
t ion 2). They bo th predict the same behavior of the 
escapement as displayed graphical ly in Figure 6. 

5 C o m p u t i n g T i m e Der iva t i ves of State 
Var iables 

Ident i fy ing state variables is only the f irst step in creat­
ing an abstract model of a physical system. The other 
essential component of the model is a descript ion of how 
the values of the state variables change. The abstract 
models my program generates represents th is in forma­
t ion in the f o rm of a recipe for comput ing the t ime 
derivat ive of every state variable in the model . The fu l l 
details of the a lgor i thms used to f ind these "recipes" are 
given in [Gelsey, 1989]. On ly an out l ine of the methods 
w i l l be given here. 

Let x i be the posi t ion state variable for k inemat ic sub­
system i, and let vi be i ts velocity state variable. The 
t ime derivat ive of xi is j us t vi, so the only non- t r i v ia l 
recipes we need to f ind are those for the t ime derivatives 
of the Vi. 

To s impl i fy the exposi t ion in th is paper I w i l l assume 
that each k inemat ic subsystem consists of a single kine­
mat ic pair. Th i s assumption is satisfied by the f irst 
model of the escapement mechanism described in Sec­
t ion 4. However, neither the second escapement model 
nor the mechanism in Figure 1 satisfies the assumpt ion. 
They do satisfy the more general assumptions made in 
[Gelsey, 1989], which cover a wide selection of common 
machines. The general t reatment , whi le more complex, 
is essentially s imi lar to the one given here. 

W i t h this assumpt ion, 

(1) 

where fi is the net force on subsystem i in the di rect ion 
of mo t i on , and mi is the mass. ( In the case of revolute 
pairs l ike those in the escapement, fi, is the net torque 
around the axis of ro ta t ion , and mi is the moment of 
iner t ia about tha t axis.) 

The to ta l force f i on subsystem i is 

(2) 

where k i is the spr ing constant of the spr ing, i f any, at­
tached to subsystem i, hi is the coefficient of l inear fric­
t ion of subsystem i, lk is the contact force (described 
below) between the two parts in contact at contact k, 
and aik is the geometric force mu l t ip l ie r tak ing the con­
tact force lk in to a force on subsystem i. (aik is zero if 
subsystem i is not involved in contact k.) 

Coll isions and pushing are handled in a single un i fo rm 
way. Contact forces between bodies are elastic and plas­
t ic forces due to the d is tor t ion of the bodies in contact. 
My program uses a model of contact forces which great ly 
simplif ies the physics involved bu t is s t i l l qui te useful. 
Bodies are modeled as being r ig id , but their volumes are 
allowed to overlap in space, and this overlap gives rise 
to a force. If o is the depth of overlap, the magni tude / 

The contact force is basically being modeled as a l i n ­
ear spr ing w i t h l inear damping , where E is the spr ing 
constant and D is the damp ing coefficient. The addi ­
t iona l factor Mo in the second te rm on the r ight is there 
to make the force funct ion cont inuous. The direct ion 
of the force is taken to be perpendicular to the surface 
normal at the po in t of contact. 

A contact force contr ibutes to vi for two different sub­
systems. / w i l l be the same for bo th subsystems since 
the force acts equally though in opposite directions on 
each of t hem, but the factors a w i l l be different. 

The f irst step in comput ing the contact force between 
two bodies is to determine whether their posit ions over­
lap in space, and if so what is their depth of overlap. Th is 
computa t ion is done by the "overlap rou t ine" , which 
computes the depth of overlap by app ly ing elementary 
principles of geometry to p r im i t i ve solids. See [Gelsey, 
1989] for details. To apply Equat ion 3 we also need the 
rate of change of overlap, which has the (instantaneous) 
value 

(4) 
where vi, and v j are the velocities of the k inemat ic sub­
systems involved in contact k. The factors aik and ajk 
are the same as those tha t appear in Equat ion 2.2 The 
geometric a factors are also computed by the overlap 
rout ine. 

So the f inal "recipe" for f ind ing t ime derivatives of 
velocity state variables is: 

1. For each k inemat ic subsystem i, in i t ia l ize the cur­
rent value of vi to (—kixi—hiui)/rr i i using the known 
constant values ki ,hi , and mi, and the known cur­
rent values of the state variables xi and vi. 

2. Ca l l the overlap rout ine on each pair of potent ia l ly 
in teract ing p r im i t i ve solids. I f they overlap then 

(a) Use Equat ion 4 to compute the rate of change 
of overlap o, using aik and ajk computed by the 
overlap rout ine and the known current values of 
state variables vi and vj. 

(b) Use Equat ion 3 to compute the contact force ln 
using the value of b j us t computed, the value 
of o computed by the overlap rout ine, and the 
known constant values E, D, and M. 

(c) A d d —(ocikh)/rni to V{ for each of the two in ­
teract ing subsystems (as required by equations 
2 and 1). 

6 Numerical Simulation 
Section 4 mentions two different abstract models of the 
escapement mechanism, and Section 5 gives a fa i r ly de­
tai led description of one of them. Bo th models describe 

That the factors are the same is basically the principle of 
the lever. A force at one end of a lever appears at the other 
end multiplied by a certain factor, and the velocity appears 
divided by exactly the same factor. 
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the mechanism abstract ly as a set of ord inary differential 
equations. These equations can be used to numerical ly 
s imulate the behavior of the mechanism over an arbi­
t ra ry t ime per iod. Figure 6 shows a p lo t of the results 
of such a s imula t ion for the escapement mechanism. 

7 Behav io r P r e d i c t i o n 
The abstract models my program generates allow the 
s imula t ion of the behavior of a physical system arbi­
t ra r i l y far in the fu ture. However, straight s imulat ion 
is an inefficient way to do long- term behavior predict ion 
for the many physical systems, inc lud ing most machines, 
which exhib i t repet i t ive behavior, since s imulat ion does 
not take advantage of th is repet i t ion. My program uses 
short , careful ly control led numerical s imulat ions to at­
tempt to ident i fy repet i t ive behavior patterns which can 
then be used to do long- term behavior predict ion. 

Instead of look ing for repet i t ion direct ly in state vari­
able behavior l ike tha t shown in Figure 6, my program 
looks at the k inet ic energy of the system as a funct ion of 
t ime. If the system has a regular behavior then so w i l l 
i ts k inet ic energy. In par t icu lar the number of global 
m i n i m a of the kinet ic energy should be the same in each 
behavioral cycle, and these m i n i m a should appear in the 
same places. 

The program generates and tests hypotheses about 
the system's behavioral repet i t ion . The hypothesis data 
structure has the fo l lowing elements: 

1. The dura t ion of the system's basic behavioral pat­
tern ( loop) . 

2. The number of global kinet ic energy m in ima dur ing 
each loop. 

3. The displacement of each state variable f rom one 
loop to the next. For example, in the behavior of 
the escapement mechanism as show in Figure 6, the 
balance and lever have the same positions in each 
loop, but the escape wheel posi t ion is offset by a 
f ixed amount f r om one loop to the next. 

Hypotheses are generated by examining the states gen­
erated by a numerical s imula t ion which have globally 
m i n i m a l k inet ic energy. These are s imply states whose 

kinetic energy is bo th local ly m in ima l and near the bot­
tom of the observed range of kinetic energy values. The 
fu l l long-term behavior predict ion a lgor i thm is: 

1. Numerical ly simulate the behavior of the system. 
As each new state is generated, ident i fy global m in ­
ima of the kinetic energy. 

2. Ignore the first few m in ima , le t t ing the system set­
t le down. Then fo rm a hypothesis consistent w i t h 
the t ime and state variable values of the next two 
min ima: the durat ion is the difference in their t ime 
values, the number of m in ima is one, and the dis­
placements are the differences in the state variable 
values. When the next m in ima is found, test the 
hypothesis. If it fai ls, fo rm a new hypothesis consis­
tent w i t h the new in format ion. Repeat this process 
unt i l a successful hypothesis is found. 

3. Use the successful hypothesis to j u m p the system 
forward in t ime, say to a t ime when hal f i ts to ta l 
energy has been dissipated. The number of loops to 
j u m p forward by is computed f rom the current to ta l 
energy of the system and the to ta l energy dissipated 
in each loop. The j u m p is accomplished by apply­
ing the hypothesized displacements to the state of 
the system the appropriate number of t imes. The 
numerical s imulat ion is then continued in this new 
s i tuat ion, and the hypothesis is tested again and 
modif ied if necessary. 

Th is a lgor i thm has been implemented and successfully 
applied to the behavior shown in Figure 6. It finds a loop 
w i th two global kinetic energy m in ima . 

8 Rela ted W o r k 
Whi le there has been considerable investigation of dif­
ferent types of abstract models for physical systems 
[Gentner and Stevens, 1983], the problem of automat­
ically generating such models has received l i t t le atten­
t ion. However, work has been done which is related to 
port ions of my model generation process. 

A great deal has been wr i t ten about k inematic analysis 
as a human act iv i ty by people engaged in creating ab­
stract models of mechanical systems. The classic work 
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is [Reuleaux, 1876], and a recent example is [Suh and 
Radcliffe, 1978]. The problem of recognizing kinematic 
pairs has been generally ignored in this work, since it is 
a relatively easy act iv i ty for humans even though it is 
diff icult to formalize. 

Several art i f icial intelligence researchers have inves­
tigated kinematic analysis, including Stanfill[1983] and 
Gelsey[l987]. Faltings[1987] and Joskowicz[1988] have 
attempted to formalize the problem of kinematic pair 
recognition by analysis of the configuration space of a 
mechanism. 

A number of software tools exist to help mechanical 
engineer bui ld abstract models of machines. A typical 
example is A D A M S [Dawson, 1985]. A survey of such 
software may be found in [Haug, 1984]. 

9 Conc lus ion 
1 have described a method for the automated construc­
t ion of abstract models of mechanical devices. The state-
variable based models that are generated are used exten­
sively in the physical sciences, and apply to a much wider 
variety of physical systems than those that my program 
currently handles. The part icular algorithms my pro­
gram uses to find recipes for t ime derivatives of state 
variables are specific to mechanics, but the central idea, 
the application of basic laws of physics relating state 
variables to their t ime derivatives, should make possible 
similar algorithms covering a considerably more varied 
range of physical phenomena. 

Automated modeling of physical systems is an impor­
tant contr ibut ion to art i f icial intelligence research con­
cerning reasoning about physical systems, because any 
reasoning about a physical system involves an abstract 
model, and as long as these models are "handmade", we 
can't be sure how much of the reasoning which should 
be done by the program that manipulates the model is 
actually being done by the person who builds the model. 
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Abstract 

We address two issues which arise in the task of detect­
ing anomalous behavior in complex systems with nu­
merous sensor channels: how to adjust alarm thresholds 
dynamically, within the changing operating context of 
the system, and how to utilize sensors selectively, so that 
nominal operation can be verified reliably without pro­
cessing a prohibitive amount of sensor data. Our ap­
proach involves simulation of a causal model of the sys­
tem, which provides information on expected sensor val­
ues, and on dependencies between predicted events, use­
ful in assessing the relative importance of events so that 
sensor resources can be allocated effectively. 

1. The Monitoring Problem 

Timely detection of anomalous behavior is essential for 
the continuous safe operation and longevity of aerospace 
systems. The pilot of a jet aircraft must be aware of any 
conditions which may affect thrust during the critical 
moments of takeoff. The thermal environment onboard 
Space Station Freedom must be carefully controlled to 
provide uninterrupted life support for the crew. The 
Mars Rover must react quickly to an unpredictable envi­
ronment or the mission may come to an abrupt conclu­
sion. 

Monitoring a physical system involves a number of 
problem-solving tasks. Dvorak, in his survey of work on 
expert systems for monitoring and control [Dvorak 87], 
lists among these tasks recognizing abnormal conditions, 
combining sensory information into a picture of the glo­
bal state of a system, isolating faults, predicting both 
normal and faulted behavior, and maintaining safe oper­
ation in the presence of faults. In addition, decisions 

must often be made in limited time, and with partial in­
formation. 

The monitoring problem becomes more difficult when 
the behavior of a physical system involves interactions 
among components or interaction with an environment. 
Under these conditions, correct operation becomes con­
text-dependent; it is not possible to determine a priori a 
set of sensor values which always imply nominal opera­
tion. Moreover, when the number of sensors in a physi­
cal system becomes very large, the ability to combine 
sensor data into a picture of the global state of a system 
becomes compromised. Studies of plant catastrophes 
have revealed that information which might have been 
useful in preventing disaster was typically available but 
was not prominent enough within the overwhelming mo­
rass of data presented to operators. 

In this paper, we concentrate on the initial step in the 
monitoring process—detecting anomalous behavior 
quickly and reliably. We do not address here the equally 
important steps of tracking faulted behavior and deter­
mining control actions to continue operation in the pres­
ence of faults. Within this focus, we address two impor­
tant issues: (1) how to adjust nominal sensor value ex­
pectations dynamically, taking into account the changing 
operating context of the system, and (2) how to utilize 
sensors selectively, determining which subset of the 
available sensors to use at any given time to verify nomi­
nal operation efficiently, without processing a prohibi­
tive amount of data. 

2. Two Issues 

The traditional approach to verifying the correct opera­
tion of a system being monitored involves associating 
alarm thresholds with sensors. Fixed threshold values 
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for each sensor are determined ahead of time by analyz­
ing the designed nominal behavior for the system. 
Whenever a sensor value crosses a threshold during op­
eration, an alarm is raised. 

The problem with this approach is that the nominal be­
havior of even moderately complex systems often de­
pends on context. For example, an earth-orbiting space­
craft periodically enters and emerges from the Earth's 
shadow. Impingent solar radiation changes the thermal 
profile of the spacecraft, as does the configuration of 
currently active and consequently, heat-generating sub­
systems on board. Thresholds on temperature sensors 
should be adjusted accordingly. A particular tempera­
ture value may be indicative of a problem when the 
spacecraft is in shadow or mostly inactive, but may be 
within acceptable limits when the spacecraft is in sun­
light or many on-board systems are operating. 

Fixed alarm thresholds are useful for defining the operat­
ing limits of a physical system, such as the point of over­
balance of a rover, or the temperature at which, say, the 
onboard computer of a spacecraft is at risk. 
Nonetheless, they are woefully inadequate for verifying 
the nominal operation of a system with many operating 
modes, or one which interacts with an environment The 
problem is that fixed alarm thresholds are derived from 
an over-summarized model of the behavior of a system. 
If the thresholds are chosen conservatively, then false 
alarms occur. If they are chosen boldly, then undetected 
anomalies occur. What is needed is a capability for ad­
justing alarm thresholds dynamically. Alarm thresholds 
should be chosen according to expectations about the 
nominal behavior of a system as it changes in different 
operating contexts. Later on in this paper, we present 
our approach to dynamic alarm threshold adjustment 
based on causal simulation of the device. 

Another issue which arises in monitoring concerns how 
to best utilize available sensors to efficiently and reli­
ably, but not necessarily comprehensively, verify the 
nominal operation of a physical system. Just as the 
nominal values in a system being monitored depend on 
context, so do the subset of sensors,which can most di­
rectly verify those values depend on context. The famil­
iar activity of driving an automobile helps to illustrate 
this idea. A variety of sensors are provided to the opera­
tor of an automobile: fuel gauge, temperature gauge, 
speedometer, several mirrors, etc. However, the driver 
does not use all of these diverse sensors all of the time. 
The speedometer may be checked periodically, or when 
a speed limit sign is passed; the right-side mirror is prob­
ably only used during lane changes. There are two 
points to be made: one concerns relevance, the other 
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concerns resources. 

Individual sensors are appropriate for verifying only 
some small, localized subset of the possible behavior of 
a system. The choice of which sensors to sample and in­
terpret at any particular time should be based on expec­
tations of what is to happen in the system and, perhaps, 
how it is to interact with an environment. However, 
even after a suitable subset of the available sensors is 
identified, there may not be the resources available, 
whether human or machine, to sample all the selected 
sensors and interpret the data within a required response 
frame. What is needed is a capability for assessing the 
importance of predicted events, so that while it may not 
be possible to comprehensively verify the expected be­
havior of a system, still the most reliable verification 
within available resources can be performed. 

An illustration of the need to focus attention in monitor­
ing comes from the jet aircraft domain. Some of the re­
cent commercial aircraft catastrophes have been attribut­
ed to insufficient thrust during the critical moments of 
takeoff. There are many possible indicators of low 
thrust available to a flight crew. For example, a low ex­
haust gas temperature in an engine may produce reduced 
thrust Also, a low turbine fan rotation speed in an en­
gine may imply reduced thrust, because fuel input is 
based partly on this parameter. The challenge is to di­
rect the attention of the flight crew towards information 
useful for planning actions in real time without over­
whelming them. 

A monitoring strategy must take into account the reality 
that not all sensors should or can be checked all of the 
time. As the operating context of the physical system 
being monitored changes, the collection of sensors 
which provide the most immediate information on the 
state of the system also changes. Further on in this 
paper, we present our approach to sensor planning in 
monitoring. We describe a method for assessing the im­
portance of predicted events in a system, based on rea­
soning about causal dependencies among events, and 
about how events relate to intended goals of the design­
ers or operators of a system. 

3. Other Work 

Within NASA, there are other projects underway in 
which the goal is to develop a monitoring and a diagno­
sis capability for aerospace systems. Among these is the 
KATE project at the Kennedy Space Center, whose do­
main is the Shuttle Liquid Oxygen Loading system 
[Scarl et al 88]. In this project, causal models are used 
to support sensor validation, fault diagnosis, and the 



planning of control actions. 

The goal of the FAULTFINDER project at Langley 
Research Center [AbboU 88] is to develop an inflight 
monitoring and diagnosis capability for jet aircraft 
These investigators have explored the use of multiple 
representations and multiple levels of abstraction to be 
able to reason about diverse faults, to focus attention 
during reasoning, and to provide accessible information 
to a flight crew. 

Outside of NASA, there have been a number of efforts 
aimed at developing knowledge-based expert systems 
for monitoring and control. ESCORT [Sachs et al 86] is a 
shell for developing real-time expert systems to filter 
and focus information during plant emergency situa­
tions, REACTOR [Nelson 82] is an expert system for 
monitoring nuclear power plants which detects anoma­
lous behavior, assesses the seriousness of the situation, 
and recommends appropriate actions. REALM [Touchton 
and Casella 86] is an advisory system which detects and 
classifies emergencies in nuclear power plants and is 
able to predict further consequences of those emergen­
cies. 

Numerous other examples exist of efforts to develop 
monitoring and control systems. The reader is referred 
to Dvorak's excellent survey of the area [Dvorak 87] and 
to the survey of real-time knowledge-based systems in 
[Laffey e t a l 88]. 

The causal reasoning paradigm, which is at the core of 
our approach to the monitoring problem, is now a well-
established area of investigation within Artificial 
Intelligence. The advantages of the causal approach, 
which involves modeling a system at the level of compo­
nents and mechanisms, include the ability to reason 
about unforeseen interactions, the ability to reason about 
dependencies among events, and the ability to generate 
accessible explanations. The seminal efforts in this area 
include Forbus' process-centered approach [Forbus 85], 
de Kleer and Brown's device-centered approach [de 
Kleer and Brown 85], and Kuipers' qualitative mathe­
matics approach [Kuipers 86]. 

In the specific area of monitoring, Dvorak's MIMIC 
project stands out as the most comprehensive current re­
search effort [Dvorak and Kuipers 89]. Dvorak creates a 
component-connection model of a system and employs 
the QSIM qualitative simulator [Kuipers 86] to generate 
expectations about the system's nominal behavior. An 
inductive learning method is used to create a set of 
symptom-fault rules for known faults, and these rules 
support the formation of fault hypotheses whenever sen­

sor data does not match predictions from the causal 
model. When anomalous behavior exists, several fault 
models can be tracked in parallel until one emerges as 
the hypothesis with the most explanatory power. The 
ability to continue tracking a faulted system is important 
because large, complex systems almost always contain 
faults and the challenge is to maintain safe operation in 
the presence of faults. 

4. The Approach 

At the center of our approach to addressing the two is­
sues of dynamic alarm thresholds and sensor selection is 
a causal model of the system being monitored and possi­
bly, its environment. Simulation of this model directly 
solves the problem of alarm threshold adjustment. 
Predicted values and their time tags indicate how and 
when to alter the alarm thresholds associated with sen­
sors so that they reflect expectations about the nominal 
operation of the system in changing contexts. 

Another result of simulation is information about causal 
dependencies among predicted events of a system. This 
information is used to assess the importance of individu­
al events. Briefly, the most important events are taken to 
be those which either cause or are caused by the greatest 
number of other events. An ordering on predicted events 
reflecting this causal notion of importance serves as the 
basis for allocating sensor resources to selectively verify 
the expected behavior of a system [Doyle et al 87]. 

In the remainder of this section, we describe (1) the ar­
chitecture of our predictive monitoring system, called 
PREMON, (2) what our causal models of physical systems 
look like, and how they are simulated, and finally, (3) 
our approach to sensor planning, based on analyzing 
causal dependencies. 

4.1 Architecture 

There arc three modules in the PREMON system: a causal 
simulator, a sensor planner, and a sensor interpreter. Sec 
Figure 1. 

The causal simulator takes as input a causal model of the 
system to be monitored, and a set of events describing 
the initial state of the system and perhaps some future 
scheduled events. The causal simulator produces as out­
put a set of predicted events, and a graph of causal de­
pendencies among those events. 

The sensor planner takes as input the causal dependency 
graph generated by the causal simulator and determines 
which subset of the predicted events should be verified. 
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These events are passed on to the sensor interpreter. 

The sensor interpreter compares expected values as pre­
dicted by the causal simulator with actual values from 
sensors. Alarms are raised here when there are discrep­
ancies. Finally, the most recent sensed data is passed 
back to the causal simulator to contribute to another pre-
dict-plan-sense cycle of monitoring. 

4.2 Causal Models and Causal Simulation 

We represent physical systems as a collection of quanti­
ties and mechanisms. Quantities are continuous parame­
ters such as temperature, position, and amount-of-stuff. 
Quantities are specified by a physical object, a type, and 
an order. Examples of quantities are {HEATER TEMPER­
ATURE RATE} and {SWITCH POSITION AMOUNT}. 

A causal model then, consists of a set of quantities and a 
set of mechanisms between those quantities. A causal 
model can be represented by a graph where the nodes are 
quantities and the arcs are mechanisms. Simulation of a 
causal model involves predicting new events, via mecha­
nisms, from known or previously predicted events. The 
simulation method outlined in the next few paragraphs is 
described more fully in [Doyle 88, 89]. 

When the quantity named in an event appears as the 
cause quantity in a mechanism, a new event is predicted 
as follows: (1) the quantity of the new event is the effect 
quantity of the mechanism, (2) the value of the new 
event is computed from the value of the given event and 
the sign and efficiency of the mechanism, (3) the mo­
ment of the new event is computed from the moment of 
the given event and the time constant and distance of the 
mechanism, and (4) the new event occurs only when 
constraints specified in the bias, alignment, and medium 
of the mechanism are satisfied. The bias of a mecha­
nism specifies constraints on directions of change. For 
example, current through a wire can cause it to heat up, 
but not to cool down. The alignment of a mechanism 
specifies constraints expressed as inequalities. For ex­
ample, heat flow is from the warmer to the cooler site. 
The medium of a mechanism is a physical connection 
such as a wire, a pipe, a linkage, etc. The predicted ef­
fect occurs only when the specified physical connection 
is in place. 

In Figure 2, a typical event is shown, this one describing 
a temperature change. The HEAT FLOW mechanism is 
used to predict another temperature change event. 

QUANTITY Chiller Temperature Rate 
VALUE Negative 
MOMENT 60 

Events describe discontinuous changes in the value of a 
quantity. Events are specified by a quantity, a value, and 
a moment. Examples of events are { HEATER TEMPERA­
TURE RATE POSITIVE 61} and {VALVE-17 POSITION 
AMOUNT OPEN0}. 

Mechanisms capture causal relations between quantities. 
More specifically, they describe how a change in one 
quantity results in a change in another quantity. 
Examples of mechanisms are HEAT FLOW, THERMAL EX­
PANSION, LATCH, and GRAVITY. A mechanism is speci­
fied by a time constant, a distance, a sign, an efficiency, 
a bias, an alignment, and a medium. Figure 2 shows the 
representation of a HEAT FLOW mechanism. 
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Simulation would be straightforward if physical systems 
could be modeled exclusively as simple mechanism 
chains between input and output quantities. However, 
some mechanisms serve to enable or disable other mech­
anisms, such as a valve controlling a fluid flow, or a 
latch inhibiting the transmission of motion through a me­
chanical coupling. In these cases, the contributions of 
the separate mechanisms combine multiplicatively. The 
contributions of separate mechanisms also can combine 
additively, as when two fluid lines empty into the same 
container, or two opposed forces produce an equilibrium 
state. The details of our simulation method for interact­
ing mechanisms are described in [Doyle 88,89]. 

4.3 Sensor Planning 

The output of the causal simulator is a trace of predicted 
events and the dependencies among them. The depen­
dencies are derived from the mechanism structure of the 
system. A dependency between two events is a record 
that there is a mechanism in the system which causally 
relates the events. 

Analysis of the causal dependencies in a simulation trace 
supports decisions about which events to monitor. In 
our approach, the importance of events is assessed by 
determining how many other events are effects or causes 
of a given event. In other words, the importance of an 
event is related to the amount of subsequent activity it 
supports and the amount of activity which supports its 
occurrence. Critical events which lie on several causal 
paths between inputs and outputs should be verified with 
care, perhaps with a battery of sensors. On the other 
hand, events which are side effects and do not support 
further activity in the system may be ignored complete­
ly. See Figure 3. 

This analysis method weights all dependencies in a caus­
al graph equally. Several criteria might form the basis of 
a non-uniform weighting scheme. For example, a priori 
or empirical knowledge about probabilities of failure 
might bias the allocation of sensor resources towards 
those components in a system known to be unreliable. 
Similarly, parts of a system where redundancy has been 
built in might be given less careful attention than other 
parts. 

Our causal analysis method for determining what subset 
of predicted events to monitor is similar to the minimum 
entropy method of [de Kleer and Williams 87) for deter­
mining the site of the most useful next measurement in 
troubleshooting. Their technique involves propagating 
observed values and failure probabilities along a causal 
dependency graph for a circuit. 

5. An Example: The JPL Space Simulator 

The JPL Space Simulator is an environmental chamber 
in which spacecraft and instruments can be subjected to 
some of the aspects of the space environment: intense 
cold, near vacuum, and solar radiation. 

A mirror is used to direct simulated solar radiation onto 
the spacecraft or instrument inside the chamber. This 
mirror must be cooled separately from the shroud which 
surrounds the chamber to compensate for the additional 
radiation falling on it. Cold gaseous nitrogen is used as 
the cooling medium and is circulated by a fan. Chilling 
is achieved by injecting liquid nitrogen into the gaseous 
nitrogen. Warming is achieved through an electrical 
heater. A causal simulation of this cooling circuit is 
shown in Figure 4. 

Using the causal analysis technique outlined above, the 
flow of gaseous nitrogen at the fan is identified as the 
single most critical event in the predicted nominal be­
havior of the circuit. This event affects gas flow around 
the entire circuit and indirectly, heat flow around the en­
tire circuit. The only events unaffected by this event are 
the source temperature changes at the chiller and heater. 
This result of causal analysis captures the intuitive no­
tion that nothing at all happens in the cooling circuit if 
the fan stops operating. Other important events in the 
predicted operation of the circuit arc the temperature 
changes at the chiller and heater. Measurements made at 
these sites also provide informative feedback about the 
nominal operation of the circuit. 
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This example has been implemented and illustrates our 
current causal simulation and sensor planning capabili­
ties. We are beginning to target our developing predic­
tive monitoring capability to other aerospace systems ex­
isting or being designed within NASA. Potential do­
mains include power and thermal distribution systems 
for planetary rovers, ground antenna control systems in 
the Deep Space Network, and subsystems onboard earth-
orbiting spacecraft. 

6. Future Work 

sources to interpret profusive sensor data, there may be 
also insufficient resources to conduct a comprehensive 
simulation of a system. Decisions about which part of a 
system to simulate also are likely to be context-depen­
dent. Selective simulation interacts with sensor plan­
ning in the following way: When simulation cycles arc 
shifted from one part of a system to another, an overhead 
of sensor reads is needed to determine current state, in 
order to bootstrap the new focus of simulation. 

6.3 How Far Ahead to Predict 

Our investigations so far have clarified and uncovered 
other research issues which also need to be addressed. 
In this section, we briefly outline these issues. 

6.1 Generation of Fault Hypotheses 

Because complex systems rarely operate completely 
fault-free, a monitoring system should include also the 
capability to generate fault hypotheses and to incorpo­
rate fault models into the current model of a system so 
that behavior can continue to be predicted and tracked in 
the presence of faults. During the diagnostic process, it 
may be necessary to track several models in parallel, 
each corresponding to a different fault hypothesis. 

6.2 Selective Si 

Another way of dealing with the problem of limited re­
sources for simulation is to constrain the number of 
events predicted in a pass through the causal simulator. 
The tradeoff is between generating enough of a causal 
dependency graph to drive sensor planning and main­
taining a real-time predict-plan-sense monitoring cycle. 
Another potential factor is ambiguity in simulation. 
Particularly when a system model is qualitative, there 
may be insufficient a priori information to determine 
which of several alternate states a system may enter. A 
direct way to counteract such branching is to suspend 
simulation and utilize explicit sensor reads to pin down 
ambiguous states. 

7. Conclusions 

We have already made a case for selective use of sen­
sors. In this vein, just as there may be insufficient re-

Detecting anomalies in the operation of a system is a dif­
ficult problem when the behavior of the system is com-
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plex or involves interaction with an environment, and 
when the number of sensor channels is large. Under 
these conditions, nominal values and the most informa­
tive sensor data change according to context. We have 
addressed two specific issues in monitoring: how to ad­
just alarm thresholds dynamically, and how to verify be­
havior selectively but reliably. At the center of our ap­
proach to solving both problems is the use of a causal 
model of the system being monitored. Simulation of a 
causal model serves both to generate expectations about 
nominal sensor values, and to provide dependency infor­
mation useful in assessing the importance of predicted 
events and in allocating sensor resources accordingly. 

The key idea in this paper is letting go of the notion of 
comprehensive monitoring. More likely than not, there 
wil l be insufficient resources for predicting behavior and 
interpreting sensor data. In the face of this limitation, 
our emphasis is on verifying the operation of a system 
efficiently and reliably, by carefully focusing computa­
tional resources to gather the most informative, if incom­
plete, feedback on nominal operation within changing 
contexts. 
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