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A b s t r a c t 

Industr ia l process plants such as chemical re­
fineries and electric power generation are ex­
amples of continuous-variable dynamic systems 
(CVDS) whose operat ion is continuously mon­
itored for abnormal behavior. CVDSs pose a 
challenging diagnostic problem in which values 
are continuous (not discrete), relat ively few pa­
rameters are observable, parameter values keep 
changing, and diagnosis must be performed 
while the system operates. 
We present a novel method for mon i to r ing 
CVDSs which exploits the system's dynamic 
behavior for diagnostic clues. The key tech­
niques are: model ing the physical system w i t h 
dynamic qua l i ta t i ve /quant i ta t i ve models, in ­
ducing diagnostic knowledge f rom qual i tat ive 
simulat ions, continuously comparing observa­
tions against faul t -model predict ions, and in ­
crementally creating and testing mul t ip le- faul t 
hypotheses. The impor tan t result is that the 
diagnosis is refined as the physical system's dy­
namic behavior is revealed over t ime. 

1 I n t r o d u c t i o n 

Process monitoring is a continuous real-t ime task of rec­
ognizing anomalies in the behavior of a dynamic system 
and ident i fy ing the under ly ing faults. Th is task is com­
mon in many industries (e.g., electric power generation, 
chemical processing, etc.) and in medicine (e.g., cardiac 
moni tor ing) . In contrast to earlier work on diagnosis, 
process moni to r ing poses three special diff icult ies: 

1. Diagnosis must be performed while the system oper­
ates. Process systems are designed for continuous 
operation and are capable of operat ing w i th mul­
t iple minor faults. Shutdown for diagnosis and re­
pair is either costly ( in industry) or impossible ( in 
medicine). 
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2. Few system parameters are observable. A l l measure­
ments come f rom sensors, which can be expensive 
and/or unreliable and/or invasive. Mon i to r ing is 
typ ical ly based on a small subset of the system pa­
rameters, w i th l im i ted oppor tun i ty to probe other 
parameters. 

The systems are dynamic. The system exhibits 
t ime-vary ing behavior, parameter values vary over 
a continuous range, the system has state (i.e., has 
integrated quanti t ies), and feedback is common. 

Automated process moni tor ing systems typical ly pro­
vide a set of alarms which are triggered whenever fixed 
thresholds are exceeded. A nuclear power plant , for ex­
ample, can have over a thousand dist inct alarms, and 
hundreds of them can be activated w i t h i n a minute, as in 
a loss-of-coolant accident. In such si tuat ions, process op­
erators may overlook relevant in format ion, respond too 
slowly, panic when the rate of in format ion flow is too 
great, and form incorrect mental models [Perrow, 1984]. 
The moni to r ing method described here is intended as an 
aid to help overcome these problems. 

2 M o d e l - b a s e d M o n i t o r i n g 
This paper describes M I M I C , a model-based method for 
moni tor ing dynamic systems in which the condit ion of 
the physical system is represented (and repeatedly up­
dated) in a dynamic qual i tat ive model . The intent is to 
mimic the condit ion of the physical system in the model. 
Two tasks mainta in the model , as shown in Figure 1. 
The tracking task advances the state of the model in step 
w i th observations f rom the physical system. The diag­
nosis task, upon ident i fy ing a part icular faul t , injects 
that faul t in to the current model so that the predictions 
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of the model wi l l continue to agree w i th actual observa­
tions. To be precise, MlMIC maintains a set of candidate 
models since a given behavior may be caused by one of 
several faults. Each candidate model represents a possi­
ble condit ion of the system (state and faults). 

The purpose of moni tor ing is to determine the possi­
ble conditions of the physical system. The role of the 
advising task is to present this informat ion to the oper­
ator and assist in interpret ing it and making decisions 
about control actions. Since the models are predictive, 
they can be used to predict the effect of proposed con­
tro l actions and forewarn of trends leading to undesir­
able conditions. This paper focuses on the tracking and 
diagnosis aspects, not on the advising aspect. 

2 .1 D y n a m i c Q u a l i t a t i v e M o d e l s 

Two main properties are required of the simulation tech­
nique used in M I M I C — it must reveal the t ime-varying 
(i.e., dynamic) behavior of the system, and it must make 
explicit the behavioral distinctions impor tant in diagno­
sis. We use the QSIM [Kuipers, 1986] method for qualita­
tive simulat ion of dynamic systems. Just as modern con­
trol theory represents a dynamic system as a set of cou­
pled first-order differential equations, QSIM represents a 
dynamic system as a set of coupled first-order qualita­
tive differential equations. Simulated dynamic behav­
ior is represented as a sequence of states, w i th alternate 
states representing a t ime point or t ime interval in the 
dynamic behavior. 

By using a qual i tat ive model rather than a numeric 
model, an inf ini te number of infmitesimally close nu­
meric behaviors is reduced to a small number of qualita­
t ively dist inct behaviors. A l though QSIM is fundamen­
tal ly qual i tat ive, i t can exploit available quanti tat ive in­
format ion to refine its predictions [Kuipers and Berleant, 
1987]. This capabil i ty proves to be very important in 
process moni tor ing because many sensors provide quan­
t i ta t ive values and some faults can only be diagnosed by 
their subtle-but-quanti tat ively-noticeable effects. 

2.2 Bas ic C y c l e 

M I M I C accomplishes tracking and diagnosis in a 
hypothesize-and-match cycle that combines associative 
and model-based reasoning. In effect, the associative 
component proposes faul t hypotheses and the model-
based component disposes of them. The cycle has four 
main steps, as shown in Figure 2: 

1. Hypothesis Generation. Observations f rom the 
physical system may evoke faul t hypotheses v ia a 
decision tree (the decision tree is generated before­
hand, as described in section 3). The faul t hypothe­
ses are in the form of specific failure modes (such as 
a stuck pressure regulator or an abnormal setpoint) 
and are ordered by l ikel ihood. 

2. Model Building. Given a combination of one or 
more fault hypotheses, the corresponding QSIM 
fault model is instantiated by in i t ia l iz ing setpoint 
variables and mode variables. 

3. Qualitative Simulation. Each new fault model is 
first init ial ized f rom the observations that evoked 
its construction, thus establishing the in i t ia l state of 
the model. The model is then simulated incremen­
tal ly as observations change, predicting the imme­
diate successor states. QSIM generates quali tat ive 
values and quanti tat ive ranges for each parameter. 
The ranges may be very precise (e.g., [98.5 98.7]) or 
imprecise (e.g., [0 oo]) depending on the available 
quantitat ive knowledge. 

4. Matching. A simi lar i ty function computes the sim­
i lar i ty between the observations and a state of the 
model. The comparison is based on both qualita­
tive and quantitat ive values. For similarit ies above 
a threshold, the model is retained as a plausible re­
flection of the physical system's condit ion. Below 
the threshold, the model is discarded. 

3 Learning Diagnostic Knowledge 
The knowledge used in M I M I C ' S hypothesis generation 
step is mechanically derived from the model of the 
dynamic system. The basic technique, as described 
in [Bratko et al, 1986], induces fault diagnosis rules 
from the results of simulating quali tat ive fault mod­
els. This technique has been extended to the domain 
of continuous-variable dynamic systems, as detailed in 
[Lee and Dvorak, 1989]. Briefly, diagnostic knowledge is 
derived through five steps: 

1. Model Definition. A model of the physical system is 
defined in terms of qualitative differential equations 
(QDEs), w i th some QDEs condit ional on the oper­
ating mode of the component whose behavior they 
model. For example, a pump wi l l have one set of 
constraints associated wi th its normal mode of op­
eration and another set associated wi th a "broken" 
mode. 

2. Model Building. Using this model definit ion, a 
model-building program instantiates the normal 
(fault-free) model, all single-fault models, and se­
lected combination-fault models. The issue of which 
combination-faults to model is discussed in sec­
t ion 4. 

3. Qualitative Simulation. Using QSIM, each model is 
simulated start ing f rom each possible in i t ia l state, 
producing a total envisionment for each model. 

4. Construction of Training Set. Tra in ing instances 
are formed from the states of the to ta l envision-
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ment using the qual i tat ive magnitude and qual i ta­
tive direction-of-change of each observable param­
eter. Each instance is tagged w i th the faul t com­
binat ion embodied in the model that generated the 
state. Collectively, these instances fo rm the t ra in ing 
set. 

5. Induction. The t ra in ing set is compressed by an 
inductive learning program to a smaller body of op­
erational diagnostic knowledge in the fo rm of a de­
cision tree. The induct ion a lgor i thm is similar to 
ID3 [Quinlan, 1986], but exploits three addi t ional 
sources of knowledge: the observabil i ty of each pa­
rameter, the a priori probabil i t ies of faults, and the 
historical probabil i t ies of behaviors. 

The resulting decision tree is used to classify observa­
tions f rom the monitored system, yielding faul t hypothe­
ses. The classification procedure ranks the result ing faul t 
hypotheses by l ikel ihood, thus al lowing M I M I C to focus 
attention on the most probable faults. The procedure 
also produces a ranked set of manual ly measurable pa­
rameters whose values, if measured, could reduce the 
number of hypotheses. M I M I C presents this in format ion 
to the system operator. 

The learning procedure described above can consume 
a large amount of computer t ime, but it is performed 
only once, outside of the real-t ime moni tor ing cycle. 
As Pearce [1988] has demonstrated, this approach to 
knowledge acquisit ion provides more complete coverage 
of faults than the t radi t ional knowledge engineering ap­
proach. 

4 M u l t i p l e - F a u l t Diagnosis 

The number of faul t models that need to be constructed 
depends on the characteristics of the system being mod­
eled and the importance of detecting mul t ip le faults. 
In some domains, single-fault diagnosis is adequate, 
but in general, mul t ip le faults are common in com­
plex continuous-running systems. However, complete 
mult ip le-faul t diagnosis is combinator ial ly explosive and 
therefore unrealistic for real-t ime moni tor ing of large sys­
tems. As a middle approach, M I M I C uses a method for 
incrementally constructing and testing mult ip le- faul t hy­
potheses. The key ideas are described below. 

1. M I M I C does continuous moni tor ing, repeatedly 
reading the sensors. We assume that faults usually 
occur one-at-a-time w i th respect to the sampling 
rate, so any unpredicated behavior w i l l normal ly be 
due to a single addit ional faul t (or a single repair). 
Thus, M I M I C usually only needs to deal w i th one 
new faul t at a t ime. 

2. Single-fault diagnostic knowledge triggers faul t hy­
potheses whenever any of the manifestations of a 
single fault are present. Many faults don't interact, 
so they can be recognized even in the presence of 
other faults. 

3. Double-fault diagnostic knowledge captures the 
manifestations peculiar to every pair of interacting 
faults. So, if a pair of faults interact in a way that 
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obscures either or both of the ind iv idual faults, this 
knowledge can detect both faults. 

4. The hypothesize-and-match a lgor i thm described 
earlier is capable of inject ing any number of faults 
in to a model. When a faul t is hypothesized it may 
be injected into models that already embody one 
or more faults. Thus, mul t ip le- faul t hypotheses are 
incrementally constructed and tested. 

5. Hypotheses are combined in a beam search based 
on the simi lar i ty funct ion described earlier. Let N 
be the max imum number of models to be tracked, 
T be the set of models currently being tracked, and 
F be the newly proposed faul t hypotheses. At each 
cycle then, M I M I C retains the N best models f rom 
TU (T x F), ranked by s imi lar i ty value. 

5 Track ing a M o d e l 

Figure 3: Tracking through a behavior graph. 

When a faul t model is first constructed, an at tempt is 
made to init ial ize i t f rom current observations. I f the 
observations are not consistent w i th any state of the fault 
model, then the model is discarded. If there is at least 
one consistent in i t ia l izat ion then the model becomes a 
member of the set of candidate models, and all of its 
consistent ini t ial izat ions (there may be more than one) 
are added to the " tracking set". The tracking set is a 
set of models, each in a state consistent w i th the most 
recent observations. 

Tracking is the process of using the observations to 
follow a path through the behavior graph of a model (a 
"par t ia l envisionment"). Consider the fragment of be­
havior graph in Figure 3. If a model is currently in state 
E, then a new set of observations is compared (using the 
s imi lar i ty funct ion) to the parameter values of state E. If 
the match is above a threshold, then the model remains 
in state E. Otherwise, the immediate successor states of 
state E are generated (via incremental s imulat ion) and 
each of these states is compared w i t h the observations. 
If, say, the match w i th state G was above the threshold, 
then the model is retained w i t h its state now set to G If 
none of the successor states match (up to some l imi ted 
"distance" f rom E), then the model is discarded. The 
l imi ted distance is needed to j u m p over instantaneous 
states in the envisionment that fa l l between consecutive 
observations. 

Observations may include independent parameters, 
i.e., parameters which are under external control and 
whose values thus cannot be predicted. When an inde­
pendent parameter changes value, t racking must reini­
tialize the states in the tracking set using the current 
observations and values of history variables (rather than 
looking in vain for a compatible successor state). 



I t is possible t h a t t rack ing could discard all the can­
didate models. Th is condi t ion could arise i f either: (1) 
some type of fau l t was overlooked in the descript ion of 
possible fau l ts , or (2) the diagnostic knowledge fai led 
to propose one or more faul ts of a combinat ion fau l t . 
In such a case M I M I C (1) alerts the operator that the 
physical system is behaving abnormal ly but cannot be 
diagnosed, and (2) displays the fau l t hypotheses evoked 
by the current observations. 

6 Example 
To i l lus t ra te M I M I C at work , let 's consider the electric 
water heater shown in Figure 4. It has a single thermo­
stat which controls whether or not power is applied to 
the two heat ing elements (on-ofT contro l ) . Raw sensor 
i n fo rmat ion conies f r om a temperature sensor near the 
thermosta t , f r o m a flow-rate sensor on the cold-water 
in let , and f r om the electric terminals of the heating el­
ements. In a real mon i t o r i ng s i tua t ion we would want 
to diagnose a var iety of possible faul ts such as defective 
heat ing elements, a stuck thermosta t , a fau l ty flow-rate 
sensor, and loss of electr ical power. However, to keep 
th is example s imple, we' l l consider only the possibi l i ty 
of defective heat ing elements. 

The water heater is modeled in QSIM according to 
the laws of thermodynamics tha t relate heat capacity, 
heat f low, therma l resistance, and temperature. In the 
norma l ( faul t- f ree) model al l the components of the wa­
ter heater ( tank , heat ing elements, thermostat , f low-rate 
sensor) operate according to their intended design. In a 
fau l t mode l , a fau l ty component operates according to a 
fa i lure mode (such as a heat ing element tha t generates 
no heat when power is appl ied) . 

Table 1 summarizes an example of mon i to r ing the wa­
ter heater, showing how mon i to r i ng progresses over eight 
moments in a series of observat ions1 . For each moment, 
the table shows the quant i ta t i ve sensor readings and 
three sets main ta ined inside M lM IC . The water heater 
begins in a state where the water in the tank is hot , the 
heat ing elements are off, no water is flowing, and there is 
a slow temperature loss. These readings are consistent 
w i t h the no rma l mode l . Now, someone starts to draw 

1The numeric values shown in Table 1 are from a numeric 
simulation of the water heater in which the lower heater is 
burned out. 

water for a ba th . A high flow rate is measured bu t al l 
other readings remain the same. Since water flow is an 
independent variable, M I M I C reinit ial izes every tracked 
model ( just the normal model in th is case) to reflect the 
change. Since the normal model is consistent w i t h the 
new values, it is retained. 

As t ime continues, the temperature inside the tank 
drops because of the cooler inlet water. These readings 
are consistent w i t h the current state of the normal model 
and evoke no faul t hypotheses, so no change occurs to the 
tracking set. At moment 3 the temperature drops to the 
point where the heating elements t u rn on (as observed on 
a voltage sensor), These readings are also consistent w i t h 
the normal model , so the state of the model is updated 
accordingly. 

At moment 4 the temperature continues to drop. A l ­
though this observation is qualitatively consistent w i t h 
the normal model , i t is inconsistent w i t h the associated 
quantitative ranges. In effect, the model is saying that 
for this f low rate, tank capacity, heat ing rate, and inlet 
temperature, the water temperature should not be drop­
ping so fast. Thus, the t rack ing task discards the nor­
mal model. At the same t ime, the readings are classified 
by the decision tree as being suggestive of three possi­
ble faults — a bad upper heat ing element, a bad lower 
heating element, or both heating elements bad (denoted 
b a d - H l , bad-H2, and b a d - H l , H 2 ) 2 . Th is causes three 
faul t models to be bu i l t . Each model is successfully in i ­
t ia l ized, so M I M I C is now t rack ing three models. 

The water flow stops at moment 5 (somebody turned 
off the faucet). W i t h this change in an independent pa­
rameter, M I M I C reinit ializes the three models. A t mo­
ment 6, the temperature is observed to be r is ing. Th is 
observation is qual i tat ively inconsistent w i t h the bad-
H l , H 2 model , so this model is discarded. The observed 
temperature is then compared to the quant i ta t ive predic­
t ions of the two remaining models. Because the observed 
temperature exceeds the range predicted by the bad -H l 
model , that model is discarded. The predict ions of the 
one remaining model , bad-H2, are compat ib le w i t h the 
observations, so the model is retained. Th is model con­
tinues to track future readings, thus emerging as the sole 
faul t hypothesis. 

7 Discussion 
The water heater example shows how, w i t h few observ­
able parameters, MlMIC can diagnose a system by ob­
serving its dynamic behavior. In general, the speed at 
which a diagnosis can be narrowed depends on the num­
ber of monitored parameters and the dynamic act iv i ty of 
the system. W i t h more moni tored parameters and more 
system act iv i ty , there are more oppor tun i t ies to falsify 
hypotheses. 

As a diagnostic method, M lMIC can generate bo th 
false positives and false negatives. False positives are 
common because the relat ively smal l number of ob­
served parameters cannot, in a single reading, discrirn-

2 In a more detailed example, other hypotheses would also 
be proposed, such as a faulty temperature sensor and a faulty 
flow meter. 
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inate among al l the possible faul ts. Thus , al l bu t one 
of the candidates w i l l be a false posit ive. However, w i t h 
add i t iona l readings tha t reveal the system's dynamic be­
havior, the set of candidates can be reduced, sometimes 
to a single candidate. 

False negatives can arise either because some type of 
fa i lure was overlooked in the knowledge acquis i t ion phase 
or because a combinat ion of three or more faul ts inter­
acted in a way tha t obscured one or more of the ind i ­
v idual faul ts. The former case is solved by adding the 
new fai lure type and rerunn ing the diagnostic learning 
procedure. The la t ter case is more d i f f icu l t . One ap­
proach is to learn diagnostic knowledge for more than 
just single and double faul ts . In the general case th is 
is impract ica l since the number of fau l t combinat ions is 
exponential in the number of concurrent faul ts . How­
ever, in some domains (such as in medicine) the number 
of realistic combinat ion faul ts may be t ractable because 
many of the combinat ions are physiological ly impossible 
or medical ly uninterest ing [Bratko et a/., 1986]. 

8 Limitations 
M I M I C assumes tha t faul ts occur one-at-a- t ime w i t h re­
spect to i ts sampl ing rate. Th is assumption may be 
violated in the case of a catastrophic event (such as 
an explosion) or cascading faul ts; these are real condi­
t ions tha t M I M I C does not address. Also, M I M I C cannot 
guarantee tha t i t w i l l recognize any combinat ion faul ts 
beyond the combinat ions included dur ing learning. In 
practice, i t w i l l diagnose many such non-learned com­
b inat ion faul ts, but the faul ts may interact in a way 
tha t obscures the manifestat ions of some subset of those 
faul ts. 

9 Related Work 
Measurement in terpretat ion is a signif icant par t of the 
j ob of mon i to r i ng , and this aspect of M I M I C shares some 
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of the ideas set fo r th by Forbus [1986]. In par t icu lar , 
M I M I C ' S no t ion of tracking combines two elements of 
Forbus' approach: tha t of f ind ing tempora l ly adjacent 
states in the envisionment which correspond to tempo­
ra l ly adjacent measurements, and j u m p i n g over short 
gaps where consecutive measurements have missed an 
intervening instantaneous state in the envisionment. 

M I M I C is s imi lar to P R E M O N [Doyle e.t a/., 1989] in 
tha t bo th use a qual i ta t ive model of the physical sys­
tem to per form mon i to r ing . However, P R E M O N is con­
cerned w i t h mon i to r ing a correct ly func t ion ing system in 
a changing environment. It uses a single fault- free model 
in a predict-plan-sense cycle for dynamic adjustment of 
a la rm thresholds and for deciding which sensors to fo­
cus a t tent ion on (where the number of sensors is large). 
Th is work is complementary to M I M I C ' S focus on diagno­
sis, and raises the possibi l i ty of combin ing the techniques 
to per form diagnostic mon i to r i ng on very large systems. 

M I M I C differs markedly f r om model-based t rou-
bleshooters such as G D E [de Kleer and Wi l l i ams , 1987] 
in tha t it (a) uses fau l t models and (b) does not use de­
pendency t rac ing or constraint suspension [Davis, 1984]. 
Fault models are necessary in MIMIC because of the need 
to track a fau l ty system's behavior over t ime. Faults 
are specifically modeled (rather than suspending con­
straints) in order to get reasonably detai led predict ions 
:>f behavior. Dependency t rac ing, a l though extremely 
useful in domains such as d ig i ta l logic c i rcui ts, provide 
l i t t le diagnostic power in a system of constraints among 
continuous variables having feedback loops. The prob­
lem is tha t dependency t rac ing in such systems often 
returns all constraints as suspects because: (a) al l pa­
rameters of a constraint usual ly affect the result , and (b) 
ou tpu t parameters often feed back to inpu t parameters. 

The high-level design of M I M I C is s imi lar to the "gen­
erate, test and debug" ( G T D ) pa rad igm [Si mrnons and 
Davis, 1987] in tha t bo th use associational knowledge 
to generate plausible hypotheses and model-based rea-



son ing to evaluate t h e m . T h e core idea in G T D is o f 
"debugg ing a lmos t r i gh t p lans" whereas i n M I M I C i t is 
o f "debugg ing a lmos t r i gh t mode l s " . 

A number of exper t systems have been bu i l t wh ich 
share the same opera t i ona l goal as M I M I C — tha t o f re­
l i ev ing some o f the bu rden o f m o n i t o r i n g f r o m process 
opera tors [Dvo rak , 1987]. M I M I C focuses solely on de­
t e r m i n i n g the cond i t i on o f the phys ica l system, bu t most 
of these exper t systems have the broader scope of t r y i n g 
t o advise the opera to r on correct ive act ions. E S C O R T 

[Sachs et a/., 1986], an exemplar of th is g roup , gets i ts 
knowledge of fau l t s and anomal ies and correct ive act ions 
t h r o u g h the usual process o f cod i f y i ng h u m a n expert ise 
i n ru les; E S C O R T does no t encode a pred ic t ive mode l of 
the phys ica l sys tem as M l M l c does. 

10 Implementat ion Status 
Pro to types o f M I M I C and i ts compan ion learn ing algo­
r i t h m (named D Y N A L E A R N ) are imp lemented in C o m ­
m o n L isp and have been run on a Symbol ics 3670. 

11 Conclusions and Future Work 
T h i s paper has presented a technique for onl ine d iag­
nosis (i.e., m o n i t o r i n g ) of cont inuous-var iab le dynamic 
systems. T h e key elements of the design are: (1) repre­
senta t ion of cont inuous-var iab le dynamic systems in dy­
namic q u a l i t a t i v e / q u a n t i t a t i v e models , (2) i nduc t ion o f 
d iagnost ic knowledge f r o m mode l s imu la t ions , (3) t rack­
ing f a u l t - m o d e l p red ic t ions against observat ions, and (4) 
inc rementa l c reat ion o f m u l t i p l e - f a u l t hypotheses. The 
i m p o r t a n t resul t i s t h a t M l M l c exp lo i ts the system's dy­
namic behavior for d iagnost ic clues. 

W o r k is progressing on a hemodynamic model of the 
h u m a n card iovascular sys tem w i t h an exper t cardiolo­
gist . T h e comple te mode l w i l l have 4 state variables, 
abou t 50 parameters , and several regu la to ry mechanisms 
(negat ive feedback loops) . As a model of real ist ic com­
p lex i t y and scale, th is w i l l bet ter reveal l im i ta t i ons of 
the M l M I C design and areas for improvement . 
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