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A b s t r a c t 

Industr ia l process plants such as chemical re
fineries and electric power generation are ex
amples of continuous-variable dynamic systems 
(CVDS) whose operat ion is continuously mon
itored for abnormal behavior. CVDSs pose a 
challenging diagnostic problem in which values 
are continuous (not discrete), relat ively few pa
rameters are observable, parameter values keep 
changing, and diagnosis must be performed 
while the system operates. 
We present a novel method for mon i to r ing 
CVDSs which exploits the system's dynamic 
behavior for diagnostic clues. The key tech
niques are: model ing the physical system w i t h 
dynamic qua l i ta t i ve /quant i ta t i ve models, in 
ducing diagnostic knowledge f rom qual i tat ive 
simulat ions, continuously comparing observa
tions against faul t -model predict ions, and in 
crementally creating and testing mul t ip le- faul t 
hypotheses. The impor tan t result is that the 
diagnosis is refined as the physical system's dy
namic behavior is revealed over t ime. 

1 I n t r o d u c t i o n 

Process monitoring is a continuous real-t ime task of rec
ognizing anomalies in the behavior of a dynamic system 
and ident i fy ing the under ly ing faults. Th is task is com
mon in many industries (e.g., electric power generation, 
chemical processing, etc.) and in medicine (e.g., cardiac 
moni tor ing) . In contrast to earlier work on diagnosis, 
process moni to r ing poses three special diff icult ies: 

1. Diagnosis must be performed while the system oper
ates. Process systems are designed for continuous 
operation and are capable of operat ing w i th mul
t iple minor faults. Shutdown for diagnosis and re
pair is either costly ( in industry) or impossible ( in 
medicine). 
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2. Few system parameters are observable. A l l measure
ments come f rom sensors, which can be expensive 
and/or unreliable and/or invasive. Mon i to r ing is 
typ ical ly based on a small subset of the system pa
rameters, w i th l im i ted oppor tun i ty to probe other 
parameters. 

The systems are dynamic. The system exhibits 
t ime-vary ing behavior, parameter values vary over 
a continuous range, the system has state (i.e., has 
integrated quanti t ies), and feedback is common. 

Automated process moni tor ing systems typical ly pro
vide a set of alarms which are triggered whenever fixed 
thresholds are exceeded. A nuclear power plant , for ex
ample, can have over a thousand dist inct alarms, and 
hundreds of them can be activated w i t h i n a minute, as in 
a loss-of-coolant accident. In such si tuat ions, process op
erators may overlook relevant in format ion, respond too 
slowly, panic when the rate of in format ion flow is too 
great, and form incorrect mental models [Perrow, 1984]. 
The moni to r ing method described here is intended as an 
aid to help overcome these problems. 

2 M o d e l - b a s e d M o n i t o r i n g 
This paper describes M I M I C , a model-based method for 
moni tor ing dynamic systems in which the condit ion of 
the physical system is represented (and repeatedly up
dated) in a dynamic qual i tat ive model . The intent is to 
mimic the condit ion of the physical system in the model. 
Two tasks mainta in the model , as shown in Figure 1. 
The tracking task advances the state of the model in step 
w i th observations f rom the physical system. The diag
nosis task, upon ident i fy ing a part icular faul t , injects 
that faul t in to the current model so that the predictions 
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of the model wi l l continue to agree w i th actual observa
tions. To be precise, MlMIC maintains a set of candidate 
models since a given behavior may be caused by one of 
several faults. Each candidate model represents a possi
ble condit ion of the system (state and faults). 

The purpose of moni tor ing is to determine the possi
ble conditions of the physical system. The role of the 
advising task is to present this informat ion to the oper
ator and assist in interpret ing it and making decisions 
about control actions. Since the models are predictive, 
they can be used to predict the effect of proposed con
tro l actions and forewarn of trends leading to undesir
able conditions. This paper focuses on the tracking and 
diagnosis aspects, not on the advising aspect. 

2 .1 D y n a m i c Q u a l i t a t i v e M o d e l s 

Two main properties are required of the simulation tech
nique used in M I M I C — it must reveal the t ime-varying 
(i.e., dynamic) behavior of the system, and it must make 
explicit the behavioral distinctions impor tant in diagno
sis. We use the QSIM [Kuipers, 1986] method for qualita
tive simulat ion of dynamic systems. Just as modern con
trol theory represents a dynamic system as a set of cou
pled first-order differential equations, QSIM represents a 
dynamic system as a set of coupled first-order qualita
tive differential equations. Simulated dynamic behav
ior is represented as a sequence of states, w i th alternate 
states representing a t ime point or t ime interval in the 
dynamic behavior. 

By using a qual i tat ive model rather than a numeric 
model, an inf ini te number of infmitesimally close nu
meric behaviors is reduced to a small number of qualita
t ively dist inct behaviors. A l though QSIM is fundamen
tal ly qual i tat ive, i t can exploit available quanti tat ive in
format ion to refine its predictions [Kuipers and Berleant, 
1987]. This capabil i ty proves to be very important in 
process moni tor ing because many sensors provide quan
t i ta t ive values and some faults can only be diagnosed by 
their subtle-but-quanti tat ively-noticeable effects. 

2.2 Bas ic C y c l e 

M I M I C accomplishes tracking and diagnosis in a 
hypothesize-and-match cycle that combines associative 
and model-based reasoning. In effect, the associative 
component proposes faul t hypotheses and the model-
based component disposes of them. The cycle has four 
main steps, as shown in Figure 2: 

1. Hypothesis Generation. Observations f rom the 
physical system may evoke faul t hypotheses v ia a 
decision tree (the decision tree is generated before
hand, as described in section 3). The faul t hypothe
ses are in the form of specific failure modes (such as 
a stuck pressure regulator or an abnormal setpoint) 
and are ordered by l ikel ihood. 

2. Model Building. Given a combination of one or 
more fault hypotheses, the corresponding QSIM 
fault model is instantiated by in i t ia l iz ing setpoint 
variables and mode variables. 

3. Qualitative Simulation. Each new fault model is 
first init ial ized f rom the observations that evoked 
its construction, thus establishing the in i t ia l state of 
the model. The model is then simulated incremen
tal ly as observations change, predicting the imme
diate successor states. QSIM generates quali tat ive 
values and quanti tat ive ranges for each parameter. 
The ranges may be very precise (e.g., [98.5 98.7]) or 
imprecise (e.g., [0 oo]) depending on the available 
quantitat ive knowledge. 

4. Matching. A simi lar i ty function computes the sim
i lar i ty between the observations and a state of the 
model. The comparison is based on both qualita
tive and quantitat ive values. For similarit ies above 
a threshold, the model is retained as a plausible re
flection of the physical system's condit ion. Below 
the threshold, the model is discarded. 

3 Learning Diagnostic Knowledge 
The knowledge used in M I M I C ' S hypothesis generation 
step is mechanically derived from the model of the 
dynamic system. The basic technique, as described 
in [Bratko et al, 1986], induces fault diagnosis rules 
from the results of simulating quali tat ive fault mod
els. This technique has been extended to the domain 
of continuous-variable dynamic systems, as detailed in 
[Lee and Dvorak, 1989]. Briefly, diagnostic knowledge is 
derived through five steps: 

1. Model Definition. A model of the physical system is 
defined in terms of qualitative differential equations 
(QDEs), w i th some QDEs condit ional on the oper
ating mode of the component whose behavior they 
model. For example, a pump wi l l have one set of 
constraints associated wi th its normal mode of op
eration and another set associated wi th a "broken" 
mode. 

2. Model Building. Using this model definit ion, a 
model-building program instantiates the normal 
(fault-free) model, all single-fault models, and se
lected combination-fault models. The issue of which 
combination-faults to model is discussed in sec
t ion 4. 

3. Qualitative Simulation. Using QSIM, each model is 
simulated start ing f rom each possible in i t ia l state, 
producing a total envisionment for each model. 

4. Construction of Training Set. Tra in ing instances 
are formed from the states of the to ta l envision-
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ment using the qual i tat ive magnitude and qual i ta
tive direction-of-change of each observable param
eter. Each instance is tagged w i th the faul t com
binat ion embodied in the model that generated the 
state. Collectively, these instances fo rm the t ra in ing 
set. 

5. Induction. The t ra in ing set is compressed by an 
inductive learning program to a smaller body of op
erational diagnostic knowledge in the fo rm of a de
cision tree. The induct ion a lgor i thm is similar to 
ID3 [Quinlan, 1986], but exploits three addi t ional 
sources of knowledge: the observabil i ty of each pa
rameter, the a priori probabil i t ies of faults, and the 
historical probabil i t ies of behaviors. 

The resulting decision tree is used to classify observa
tions f rom the monitored system, yielding faul t hypothe
ses. The classification procedure ranks the result ing faul t 
hypotheses by l ikel ihood, thus al lowing M I M I C to focus 
attention on the most probable faults. The procedure 
also produces a ranked set of manual ly measurable pa
rameters whose values, if measured, could reduce the 
number of hypotheses. M I M I C presents this in format ion 
to the system operator. 

The learning procedure described above can consume 
a large amount of computer t ime, but it is performed 
only once, outside of the real-t ime moni tor ing cycle. 
As Pearce [1988] has demonstrated, this approach to 
knowledge acquisit ion provides more complete coverage 
of faults than the t radi t ional knowledge engineering ap
proach. 

4 M u l t i p l e - F a u l t Diagnosis 

The number of faul t models that need to be constructed 
depends on the characteristics of the system being mod
eled and the importance of detecting mul t ip le faults. 
In some domains, single-fault diagnosis is adequate, 
but in general, mul t ip le faults are common in com
plex continuous-running systems. However, complete 
mult ip le-faul t diagnosis is combinator ial ly explosive and 
therefore unrealistic for real-t ime moni tor ing of large sys
tems. As a middle approach, M I M I C uses a method for 
incrementally constructing and testing mult ip le- faul t hy
potheses. The key ideas are described below. 

1. M I M I C does continuous moni tor ing, repeatedly 
reading the sensors. We assume that faults usually 
occur one-at-a-time w i th respect to the sampling 
rate, so any unpredicated behavior w i l l normal ly be 
due to a single addit ional faul t (or a single repair). 
Thus, M I M I C usually only needs to deal w i th one 
new faul t at a t ime. 

2. Single-fault diagnostic knowledge triggers faul t hy
potheses whenever any of the manifestations of a 
single fault are present. Many faults don't interact, 
so they can be recognized even in the presence of 
other faults. 

3. Double-fault diagnostic knowledge captures the 
manifestations peculiar to every pair of interacting 
faults. So, if a pair of faults interact in a way that 
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obscures either or both of the ind iv idual faults, this 
knowledge can detect both faults. 

4. The hypothesize-and-match a lgor i thm described 
earlier is capable of inject ing any number of faults 
in to a model. When a faul t is hypothesized it may 
be injected into models that already embody one 
or more faults. Thus, mul t ip le- faul t hypotheses are 
incrementally constructed and tested. 

5. Hypotheses are combined in a beam search based 
on the simi lar i ty funct ion described earlier. Let N 
be the max imum number of models to be tracked, 
T be the set of models currently being tracked, and 
F be the newly proposed faul t hypotheses. At each 
cycle then, M I M I C retains the N best models f rom 
TU (T x F), ranked by s imi lar i ty value. 

5 Track ing a M o d e l 

Figure 3: Tracking through a behavior graph. 

When a faul t model is first constructed, an at tempt is 
made to init ial ize i t f rom current observations. I f the 
observations are not consistent w i th any state of the fault 
model, then the model is discarded. If there is at least 
one consistent in i t ia l izat ion then the model becomes a 
member of the set of candidate models, and all of its 
consistent ini t ial izat ions (there may be more than one) 
are added to the " tracking set". The tracking set is a 
set of models, each in a state consistent w i th the most 
recent observations. 

Tracking is the process of using the observations to 
follow a path through the behavior graph of a model (a 
"par t ia l envisionment"). Consider the fragment of be
havior graph in Figure 3. If a model is currently in state 
E, then a new set of observations is compared (using the 
s imi lar i ty funct ion) to the parameter values of state E. If 
the match is above a threshold, then the model remains 
in state E. Otherwise, the immediate successor states of 
state E are generated (via incremental s imulat ion) and 
each of these states is compared w i t h the observations. 
If, say, the match w i th state G was above the threshold, 
then the model is retained w i t h its state now set to G If 
none of the successor states match (up to some l imi ted 
"distance" f rom E), then the model is discarded. The 
l imi ted distance is needed to j u m p over instantaneous 
states in the envisionment that fa l l between consecutive 
observations. 

Observations may include independent parameters, 
i.e., parameters which are under external control and 
whose values thus cannot be predicted. When an inde
pendent parameter changes value, t racking must reini
tialize the states in the tracking set using the current 
observations and values of history variables (rather than 
looking in vain for a compatible successor state). 



I t is possible t h a t t rack ing could discard all the can
didate models. Th is condi t ion could arise i f either: (1) 
some type of fau l t was overlooked in the descript ion of 
possible fau l ts , or (2) the diagnostic knowledge fai led 
to propose one or more faul ts of a combinat ion fau l t . 
In such a case M I M I C (1) alerts the operator that the 
physical system is behaving abnormal ly but cannot be 
diagnosed, and (2) displays the fau l t hypotheses evoked 
by the current observations. 

6 Example 
To i l lus t ra te M I M I C at work , let 's consider the electric 
water heater shown in Figure 4. It has a single thermo
stat which controls whether or not power is applied to 
the two heat ing elements (on-ofT contro l ) . Raw sensor 
i n fo rmat ion conies f r om a temperature sensor near the 
thermosta t , f r o m a flow-rate sensor on the cold-water 
in let , and f r om the electric terminals of the heating el
ements. In a real mon i t o r i ng s i tua t ion we would want 
to diagnose a var iety of possible faul ts such as defective 
heat ing elements, a stuck thermosta t , a fau l ty flow-rate 
sensor, and loss of electr ical power. However, to keep 
th is example s imple, we' l l consider only the possibi l i ty 
of defective heat ing elements. 

The water heater is modeled in QSIM according to 
the laws of thermodynamics tha t relate heat capacity, 
heat f low, therma l resistance, and temperature. In the 
norma l ( faul t- f ree) model al l the components of the wa
ter heater ( tank , heat ing elements, thermostat , f low-rate 
sensor) operate according to their intended design. In a 
fau l t mode l , a fau l ty component operates according to a 
fa i lure mode (such as a heat ing element tha t generates 
no heat when power is appl ied) . 

Table 1 summarizes an example of mon i to r ing the wa
ter heater, showing how mon i to r i ng progresses over eight 
moments in a series of observat ions1 . For each moment, 
the table shows the quant i ta t i ve sensor readings and 
three sets main ta ined inside M lM IC . The water heater 
begins in a state where the water in the tank is hot , the 
heat ing elements are off, no water is flowing, and there is 
a slow temperature loss. These readings are consistent 
w i t h the no rma l mode l . Now, someone starts to draw 

1The numeric values shown in Table 1 are from a numeric 
simulation of the water heater in which the lower heater is 
burned out. 

water for a ba th . A high flow rate is measured bu t al l 
other readings remain the same. Since water flow is an 
independent variable, M I M I C reinit ial izes every tracked 
model ( just the normal model in th is case) to reflect the 
change. Since the normal model is consistent w i t h the 
new values, it is retained. 

As t ime continues, the temperature inside the tank 
drops because of the cooler inlet water. These readings 
are consistent w i t h the current state of the normal model 
and evoke no faul t hypotheses, so no change occurs to the 
tracking set. At moment 3 the temperature drops to the 
point where the heating elements t u rn on (as observed on 
a voltage sensor), These readings are also consistent w i t h 
the normal model , so the state of the model is updated 
accordingly. 

At moment 4 the temperature continues to drop. A l 
though this observation is qualitatively consistent w i t h 
the normal model , i t is inconsistent w i t h the associated 
quantitative ranges. In effect, the model is saying that 
for this f low rate, tank capacity, heat ing rate, and inlet 
temperature, the water temperature should not be drop
ping so fast. Thus, the t rack ing task discards the nor
mal model. At the same t ime, the readings are classified 
by the decision tree as being suggestive of three possi
ble faults — a bad upper heat ing element, a bad lower 
heating element, or both heating elements bad (denoted 
b a d - H l , bad-H2, and b a d - H l , H 2 ) 2 . Th is causes three 
faul t models to be bu i l t . Each model is successfully in i 
t ia l ized, so M I M I C is now t rack ing three models. 

The water flow stops at moment 5 (somebody turned 
off the faucet). W i t h this change in an independent pa
rameter, M I M I C reinit ializes the three models. A t mo
ment 6, the temperature is observed to be r is ing. Th is 
observation is qual i tat ively inconsistent w i t h the bad-
H l , H 2 model , so this model is discarded. The observed 
temperature is then compared to the quant i ta t ive predic
t ions of the two remaining models. Because the observed 
temperature exceeds the range predicted by the bad -H l 
model , that model is discarded. The predict ions of the 
one remaining model , bad-H2, are compat ib le w i t h the 
observations, so the model is retained. Th is model con
tinues to track future readings, thus emerging as the sole 
faul t hypothesis. 

7 Discussion 
The water heater example shows how, w i t h few observ
able parameters, MlMIC can diagnose a system by ob
serving its dynamic behavior. In general, the speed at 
which a diagnosis can be narrowed depends on the num
ber of monitored parameters and the dynamic act iv i ty of 
the system. W i t h more moni tored parameters and more 
system act iv i ty , there are more oppor tun i t ies to falsify 
hypotheses. 

As a diagnostic method, M lMIC can generate bo th 
false positives and false negatives. False positives are 
common because the relat ively smal l number of ob
served parameters cannot, in a single reading, discrirn-

2 In a more detailed example, other hypotheses would also 
be proposed, such as a faulty temperature sensor and a faulty 
flow meter. 
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inate among al l the possible faul ts. Thus , al l bu t one 
of the candidates w i l l be a false posit ive. However, w i t h 
add i t iona l readings tha t reveal the system's dynamic be
havior, the set of candidates can be reduced, sometimes 
to a single candidate. 

False negatives can arise either because some type of 
fa i lure was overlooked in the knowledge acquis i t ion phase 
or because a combinat ion of three or more faul ts inter
acted in a way tha t obscured one or more of the ind i 
v idual faul ts. The former case is solved by adding the 
new fai lure type and rerunn ing the diagnostic learning 
procedure. The la t ter case is more d i f f icu l t . One ap
proach is to learn diagnostic knowledge for more than 
just single and double faul ts . In the general case th is 
is impract ica l since the number of fau l t combinat ions is 
exponential in the number of concurrent faul ts . How
ever, in some domains (such as in medicine) the number 
of realistic combinat ion faul ts may be t ractable because 
many of the combinat ions are physiological ly impossible 
or medical ly uninterest ing [Bratko et a/., 1986]. 

8 Limitations 
M I M I C assumes tha t faul ts occur one-at-a- t ime w i t h re
spect to i ts sampl ing rate. Th is assumption may be 
violated in the case of a catastrophic event (such as 
an explosion) or cascading faul ts; these are real condi
t ions tha t M I M I C does not address. Also, M I M I C cannot 
guarantee tha t i t w i l l recognize any combinat ion faul ts 
beyond the combinat ions included dur ing learning. In 
practice, i t w i l l diagnose many such non-learned com
b inat ion faul ts, but the faul ts may interact in a way 
tha t obscures the manifestat ions of some subset of those 
faul ts. 

9 Related Work 
Measurement in terpretat ion is a signif icant par t of the 
j ob of mon i to r i ng , and this aspect of M I M I C shares some 
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of the ideas set fo r th by Forbus [1986]. In par t icu lar , 
M I M I C ' S no t ion of tracking combines two elements of 
Forbus' approach: tha t of f ind ing tempora l ly adjacent 
states in the envisionment which correspond to tempo
ra l ly adjacent measurements, and j u m p i n g over short 
gaps where consecutive measurements have missed an 
intervening instantaneous state in the envisionment. 

M I M I C is s imi lar to P R E M O N [Doyle e.t a/., 1989] in 
tha t bo th use a qual i ta t ive model of the physical sys
tem to per form mon i to r ing . However, P R E M O N is con
cerned w i t h mon i to r ing a correct ly func t ion ing system in 
a changing environment. It uses a single fault- free model 
in a predict-plan-sense cycle for dynamic adjustment of 
a la rm thresholds and for deciding which sensors to fo
cus a t tent ion on (where the number of sensors is large). 
Th is work is complementary to M I M I C ' S focus on diagno
sis, and raises the possibi l i ty of combin ing the techniques 
to per form diagnostic mon i to r i ng on very large systems. 

M I M I C differs markedly f r om model-based t rou-
bleshooters such as G D E [de Kleer and Wi l l i ams , 1987] 
in tha t it (a) uses fau l t models and (b) does not use de
pendency t rac ing or constraint suspension [Davis, 1984]. 
Fault models are necessary in MIMIC because of the need 
to track a fau l ty system's behavior over t ime. Faults 
are specifically modeled (rather than suspending con
straints) in order to get reasonably detai led predict ions 
:>f behavior. Dependency t rac ing, a l though extremely 
useful in domains such as d ig i ta l logic c i rcui ts, provide 
l i t t le diagnostic power in a system of constraints among 
continuous variables having feedback loops. The prob
lem is tha t dependency t rac ing in such systems often 
returns all constraints as suspects because: (a) al l pa
rameters of a constraint usual ly affect the result , and (b) 
ou tpu t parameters often feed back to inpu t parameters. 

The high-level design of M I M I C is s imi lar to the "gen
erate, test and debug" ( G T D ) pa rad igm [Si mrnons and 
Davis, 1987] in tha t bo th use associational knowledge 
to generate plausible hypotheses and model-based rea-



son ing to evaluate t h e m . T h e core idea in G T D is o f 
"debugg ing a lmos t r i gh t p lans" whereas i n M I M I C i t is 
o f "debugg ing a lmos t r i gh t mode l s " . 

A number of exper t systems have been bu i l t wh ich 
share the same opera t i ona l goal as M I M I C — tha t o f re
l i ev ing some o f the bu rden o f m o n i t o r i n g f r o m process 
opera tors [Dvo rak , 1987]. M I M I C focuses solely on de
t e r m i n i n g the cond i t i on o f the phys ica l system, bu t most 
of these exper t systems have the broader scope of t r y i n g 
t o advise the opera to r on correct ive act ions. E S C O R T 

[Sachs et a/., 1986], an exemplar of th is g roup , gets i ts 
knowledge of fau l t s and anomal ies and correct ive act ions 
t h r o u g h the usual process o f cod i f y i ng h u m a n expert ise 
i n ru les; E S C O R T does no t encode a pred ic t ive mode l of 
the phys ica l sys tem as M l M l c does. 

10 Implementat ion Status 
Pro to types o f M I M I C and i ts compan ion learn ing algo
r i t h m (named D Y N A L E A R N ) are imp lemented in C o m 
m o n L isp and have been run on a Symbol ics 3670. 

11 Conclusions and Future Work 
T h i s paper has presented a technique for onl ine d iag
nosis (i.e., m o n i t o r i n g ) of cont inuous-var iab le dynamic 
systems. T h e key elements of the design are: (1) repre
senta t ion of cont inuous-var iab le dynamic systems in dy
namic q u a l i t a t i v e / q u a n t i t a t i v e models , (2) i nduc t ion o f 
d iagnost ic knowledge f r o m mode l s imu la t ions , (3) t rack
ing f a u l t - m o d e l p red ic t ions against observat ions, and (4) 
inc rementa l c reat ion o f m u l t i p l e - f a u l t hypotheses. The 
i m p o r t a n t resul t i s t h a t M l M l c exp lo i ts the system's dy
namic behavior for d iagnost ic clues. 

W o r k is progressing on a hemodynamic model of the 
h u m a n card iovascular sys tem w i t h an exper t cardiolo
gist . T h e comple te mode l w i l l have 4 state variables, 
abou t 50 parameters , and several regu la to ry mechanisms 
(negat ive feedback loops) . As a model of real ist ic com
p lex i t y and scale, th is w i l l bet ter reveal l im i ta t i ons of 
the M l M I C design and areas for improvement . 
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