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ABSTRACT 

One of the problems of the recent approaches to problem 
solving based on deep knowledge is the lack of a formal 
treatment of incomplete knowledge. However, dealing 
with incomplete models is fundamental to many real-
world domains. In this paper we propose a formal theory 
of causal diagnostic reasoning, dealing with different 
forms of incompleteness both in the general causal 
knowledge (missing or abstracted knowledge) and in the 
data describing a specific case under examination. 
Different forms of nonmonotonic reasoning (hypothetical 
and circumscriptive reasoning) are used in order to draw 
and confirm conclusions from incomplete knowledge. 
Multiple fault solutions are treated in a natural way and 
parsimony criteria arc used to rank alternative solutions. 

1. INTRODUCTION 

In recent years many approaches have been proposed to 
provide problem solvers with some form of "deep 
knowledge". Most of the efforts towards the logical for­
malization of diagnostic problem solving have been based 
on "ontological approaches" [9,24] while in the machine 
learning community the use of a "domain theory" has 
gained popularity [16]. One of the critical problems in 
both cases concerns the completeness of the domain 
model. However, while some attempts to deal with 
incomplete (and imperfect) theories are being made in the 
learning community [23], the completeness of the model 
is a common assumption in first principles diagnostic sys­
tems (which have been successfully applied to the solu­
tion of problems such as electronic troubleshooting 
[8,13]). This assumption is not adequate for the applica­
tion of ontological approaches to complex problems (such 
as medical diagnosis or mechanical troubleshooting) [15] 
since in these cases a complete model is either not avail­
able or intractable. Working at multiple levels of abstrac­
tion can reduce the computational complexity of the rea­
soning process; one cannot assume, however, that the 
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lowest level of description is complete1. A further limita­
tion of ontological approaches directly concerns the 
definition of diagnosis as a set of faulty components to be 
replaced This definition can be too restrictive since we 
may want to distinguish between different faults for the 
same component, and, on the other hand, in many cases a 
faulty behavior is not due to a small set of responsible 
faulty components (consider, for example, human "sys­
temic diseases"). 

Since the early 80's, another major family of 
approaches to diagnosis has been widely adopted, espe­
cially in medical domains: the so called "causal modeling 
approaches"2 (after Paul's seminal work [18] and succes­
sive proposals as [11,26]). Although widely applied to 
many real world problems, such approaches seem to be 
less constrained and well-defined than ontological ones; 
therefore their formal definition has not yet received much 
attention. Moreover, some form of incompleteness must 
be accommodated in causal models (as well as in ontolog­
ical ones). Although this need has been recognized [17] 
and has led some researchers to provide probabilistic 
foundations to causal diagnostic reasoning [7,19], a lot of 
work still has to be done on the logical treatment of 
incompleteness in causal models. 

The aim of this paper is to describe a causal model­
ing formalism which on the one hand accommodates 
some forms of incompleteness and on the other hand has 
a precise logical formalization. In particular, the main 
goals and issues we want to address can be synthesized 
by the following items: 
- introducing a formalism to represent incomplete causal 

knowledge; 
- giving a logical foundation of causal reasoning on 

incomplete knowledge and introducing precise 
definitions of the concepts of "diagnostic problem" and 
of "solution to a diagnostic problem"; 

- providing a formal treatment of multiple-fault diagnosis 
within causal models; 

- providing some criteria to select the "best" solution to a 

1 "Even the lowest level of explanation in a domain theory may 
incorporate abstractions [...J Abstractions at the lowest level of a domain 
theory imply missing knowledge.." ( [10 ] page 543). 

2 The term "causal" has not been used here to mean that these ap­
proaches are the only ones based on causal knowledge. Many of the on­
tological approaches are in fact based on the representation of causal 
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problem. 
In our logical approach diagnosis is seen as an 

abductive process starting from the logical correspondent 
of a causal model. In order to draw conclusions from 
incomplete models some forms of nonmonotonic reason­
ing are adopted and, as a consequence, the solutions we 
obtain are defeasible. In particular, instead of using one 
of the nonmonotonic logics proposed in the literature, we 
adopt first-order logic supplemented with specific forms of 
hypothetical and circumscriptive reasoning [2]. This is in 
the same line of Poole's first-order approach to default 
reasoning and diagnosis [21,22]. 

This paper is organized as follows: in section 2 we 
outline an abstract formalism to represent causal 
knowledge; in section 3 we define a formal theory of 
causal diagnostic problem solving; in section 4 we present 
an example of diagnosis. 

2. A FORMALISM TO REPRESENT 
DEEP CAUSAL KNOWLEDGE 

In this section we shall briefly introduce a formalism to 
represent causal knowledge and its logical formalization 
(the causal modeling formalism we shall introduce is a 
rather general one, although strongly influenced by our 
past experiences in the design of the CHECK system 
[3,27]). Causal networks are a general formalism to 
represent causal knowledge, i.e. to describe the set of 
behaviors of a physical (physiological) system. In the fol­
lowing we shall assume, in particular, that causal net­
works are used to model the faulty behavior of a system 
(which seems to be the most interesting case in diagnostic 
applications). 

Consider the simple example in figure 1. At least 
four types of nodes have to be used in a causal modeling 

knowledge (together with other forms of knowledge) 

formalism: STATE nodes (elliptic boxes in figure 1), 
representing partial states of the modeled system; FIND­
ING nodes (rhomboidal boxes), representing observable 
manifestations of internal states (which cannot be 
observed); HYPOTHESIS nodes (hexagonal boxes), 
representing diagnostic hypotheses; INFTIALCAUSE 
nodes (double-lined elliptic boxes), representing initial 
perturbations (i.e. the mechanisms starting the processes 
which may lead the system to a faulty behavior). In the 
following we shall assume that INITIALCAUSEs are not 
observable (which is the most general and interesting 
case). This corresponds to a first form of incompleteness 
in the model: such nodes are abstractions of the actual 
perturbation processes, and the model gives no direct way 
to establish their presence. 

The nodes in a network can be connected by means 
of different types of arcs (relationships): each CAUSAL 
arc (continuous lines in figure 1) connects one or a set 
(conjunction) of STATE and INITIALCAUSE nodes to a 
STATE node and represents a cause-effect relationship; 
each HAM arc (dashed lines) connects a STATE node to 
a FINDING node (HAM - that is Has As a Manifestation 
- arcs connect states to their external manifestations); 
each DEFINEDAS arc (double lines) connects a STATE 
(or a conjunction of STATE nodes) to a HYPOTHESIS 
node (to represent that the hypothesis is defined as the 
presence of the state, therefore hypotheses are defined 
concepts). 

In case of different arcs entering a node N, such arcs 
are implicidy ORed (see, for example, the CAUSAL arcs 
entering the STATE "o i l lack" in figure 1). Nodes can 
have attributes (i.e. variables giving a better characteriza­
tion of the entity represented by the node itself)- a func­
tion, describing how the values of the attributes of the 
caused state (manifestation) depend on those of the caus­
ing ones, is associated with each CAUSAL and HAM arc. 
Besides the incompleteness associated with 
INITIAL CAUSE nodes, some other form of 
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incompleteness must be accommodated by causal model­
ing formalisms. Causal models of complex physical (phy­
siological) systems may be incomplete at least for the fol­
lowing reasons (see [2,4] for a discussion): 
- Choosing the level of detail of a model is quite arbitrary 

(or, at least, domain and task dependent). However, in 
order to constrain the complexity of a model, some 
bounds have to be imposed to the level of detail at 
which knowledge is represented [18,23]. Therefore, 
processes and conditions at a lower level than the 
chosen one have to be abstracted. 

- There exist (especially in physiological systems) 
processes and conditions which are not perfectly known. 

In order to deal with such forms of incompleteness we 
have introduced the possibility of labeling each CAUSAL 
or HAM relationship in the causal model as a MAY one. 
A MAY label denotes that the model of the relationship is 
incomplete, i.e. that some condition or process has been 
abstracted. A relationship not explicitly iabeled as MAY 
is assumed to be fully specified. 

Let us discuss now how a logical semantic can be 
associated with the formalism introduced in the previous 
paragraphs. AH the entities and relationships in a causal 
network can be modeled in a logical framework; the main 
ideas of such a formalization can be summarized as fol­
lows: 
- Each STATE, FINDING and INITIAL_CAUSE can be 

characterized as an atomic formula. More specifically, 
different sets of predicate symbols are used for each 
type of node: "state symbols" for STATE nodes, "man­
ifestation symbols" for FINDING nodes and "initial 
cause symbols" for INITIAL_CAUSE nodes3. The arity 
of a predicate symbol equals the number of attributes of 
the node it represents. For example, a STATE S with 
two attributes is represented by the formula S(x,y) with 

"state symbols". 
- CAUSAL and HAM relationships are modeled by 

implication formulae. Functions are used to express 
how the values of the attributes of the caused state 
depend on those of the causing ones. For example: 

lubricoi lburning(x) -> stacksmoke(f1(x)) 
is part of the logical model of the network in figure 1. 
The state "lubric_oil_burning" has the attribute "quan­
tity" and the finding "stacksmoke" has the attribute 
"color"; the function is defined as follows: 

f 1 ( l owgrey and f1(high)=black 
- MAY relationships are modeled through the introduction 

of an "abstracted condition symbol"4. Each "abstracted 
condition" atom models the actual condition (process) 
abstracted (ignored) in the model. As an example from 
figure 1, we have: 

highenginetemp(x) power_decrease(f2(x)) 
Since INITIALCAUSEs and MAY relationships 
represent two forms of incompleteness that will be dealt 

3 In definitions and in symbolic examples "state symbols" wil l be 
denoted by upper case roman letters, "manifestation symbols" by lower 
case roman letters and "initial cause symbols" by the last letters of the 
greek alphabet 

4 "abstracted condition" symbols wil l be denoted by the first letters 
of the greek alphabet. 

with in a similar way, we introduce the following 
definition: 

Definition 2.1. The set of assumption symbols is the 
union of the sets of abstracted condition and initial cause 
symbols, that is: 

{assumption symbols} « 
{abstracted condition symbols} {initial cause symbols} 

A form of "hypothetical reasoning" wil l be defined in the 
following sections to deal with such assumptions in the 
diagnostic reasoning process. 

Notice that no logical correspondent is defined for 
DEFINED_AS relationships. Such relationships are, in 
fact, at a different knowledge level than the other ones 
(hypotheses are defined concepts), so it is not necessary to 
model them as logical formulae. However, since each 
diagnostic hypothesis is defined as the presence of a con­
junction of states (i.e. each HYPOTHESIS node is con­
nected to a set of STATE nodes through a DEFINEDAS 
arc), we introduce the following definition: 

Definition 2.2. Given a diagnostic hypothesis H (i.e. a 
HYPOTHESIS node H), we denote with def(H) the for­
mula 

in case a DEFINEDAS arc connects S1,...,Sk to H. 
In the following, for the sake of brevity, we shall limit 
ourselves to consider "singly connected" causal networks, 
i.e. those networks in which, given two nodes N1 and N2, 
there exists at most one path connecting N1 and N2. A 
discussion about more general causal networks can be 
found in [5]. 

3. DIAGNOSTIC PROBLEMS AND 
THEIR SOLUTIONS 

In this section we introduce the concepts of diagnostic 
problem and of solution to a diagnostic problem, defining 
in which way the solutions are affected by the form of 
hypothetical reasoning that is used to find them. 

3.1. Basic Definitions 

A causal network represents the general knowledge about 
some domain. We have a diagnostic problem when we 
add to this knowledge the set of findings that have been 
observed in the case under examination. 

Definition 3.1. A diagnostic problem (d.p. in the follow­
ing) P is a triple where: 
- NET is the set (conjunction) of logical formulae model­

ing a causal network NETWORK; 
node in the 

causal network NETWORK}; 
- Ψ is a nonempty set of ground manifestation atoms. 

Since manifestation predicates represent observable condi­
tions, we assume that the manifestations which have not 
been declared as observed are absent therefore in the fol­
lowing we use the set: 

is a ground manifestation atom, 
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This is the first non-monotonic rule we introduce in the 
diagnostic process in order to draw conclusions from 
incomplete knowledge: this is a case of (possibly) incom­
plete factual knowledge, i.e. we only have a partial 
description of the case under examination. In a real 
application such a rule must be made explicit, even if it 
does not preclude that data are acquired incrementally by 
the system's control strategy (that is, the systems asks for 
further data when necessary). However, in the following 
the whole diagnostic process is described in a declarative 
way, abstracting from the definition of a control strategy. 
It is worth noting that, as an alternative, we can give the 
possibility to leave some findings as "unknown"; we shall 
briefly return to this point at the end of this subsection. 

The reasoning process involves the concept of 
hypothetical world, in the (syntactical) sense of a set of 
formulae including assumptions. Such a world may be 
regarded as a tentative reconstruction of the causal evolu­
tion that has led to the observed situation. The notion of 
hypothetical world to be used in solving a diagnostic 
problem is defined recursively. The basis is the case of a 
world containing initial causes; the recursive case 
involves abstracted conditions on causal relationships. 

Definition 3.2. Given a d.p. and given 
a world W, W is a world for P iff 

W = NET is a 
ground initial cause atom (in this case we say that W 
is an initial world for P) 

or 

instance of a formula in NET, 
where is an abstracted condition symbol; 

In the latter case of the definition, the world W' 
has to be considered in order to examine the conse­
quences of assuming that the condition a is actually true 
in the case under examination; that is, assuming that the 
corresponding "MAY" relationship holds in the case under 
examination. 

To test a world against the observed manifestations 
we introduce the following definitions. 

Definition 3.3. Given a d.p. a world 
W for P is inconsistent i f f W m for some ground 
manifestation atom m such that 

In other words, W is inconsistent for P i f f W is 
inconsistent in the logical sense. This has similarities with 
consistency-based approaches to nonmonotonic reasoning 
[25], with the difference that in our diagnostic system, 
which is not a general-purpose approach to nonmonotonic 
reasoning, the consistency check can be limited to a small 
class of formulae. 

Definition 3.4. Given a world W and a set Ψ of ground 
manifestation atoms, W covers 

In order to give a solution to a diagnostic problem 
a world W for P has to explain the 

observed findings in and must not predict the presence 
of findings that have not been observed; this is summar­
ized by the following definition. 
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Definition 3.5. Given a d.p. a world 
W for P is a final world i f f W covers Ψ and is not incon­
sistent, that is 

ground manifestation atom, 

The definition of solution to a diagnostic problem is given 
as follows, in terms of diagnostic hypotheses whose 
definition is satisfied in a final world, i.e. in a world 
representing a causal evolution that is consistent with the 
observed situation. 

Definition 3.6. Given a dp . and a 
final world W for P, the set 
diagnosis(W) } 

is a solution to P. We say that W is a causal explana­
tion of the solution. 

It is worth noting that this kind of explanation of a solu­
tion may be very important for the user, for example to 
remove the fault in the system under examination. 

The definitions in this section are sufficient to 
characterize diagnosis as a nonmonotonic process. Con­
sider, for example, the network in figure 2. In such a 
case we have that is the solution to the problem 
characterized by and is the solution to 
the problem characterized by 

The previous definitions can be extended to the case 
of "unknown" findings. In such a case the set of ground 
manifestation atoms is partitioned into the three classes of 
"observed", "unknown" and "absent" ones. A world W is 
inconsistent if and only if an "absent" finding is deduced 
in W, while final worlds must cover only observed 
findings and may predict the presence of some unknown 
finding (more details are given in [5]). 

3.2. Confirmation of assumptions and solutions 

The form of hypothetical reasoning described in the previ­
ous definitions is the first step to solve the problem of 
dealing with incomplete knowledge. It is not enough 
because, in many cases of interest in real-world applica­
tions, there may be more than one final world and then 
more than one solution to a diagnostic problem, according 
to the definitions given above. A solution is one of the 

Figure 2 - A simple causal network exemplifying 
the nonmonotonicity of the diagnostic process. 



possible explanations of the given data. The problem is 
that we have no direct way to establish the truth of the 
conditions that have been assumed in order to explain the 
observed findings: we need some stronger form of abduc-
tive reasoning to give an indirect confirmation to the 
assumptions, or, at least, to give some preference criteria 
between the different solutions to a diagnostic problem. 

In particular, we introduce a non monotonic criterion 
for the confirmation of assumptions. The conclusions 
obtained in this way are strongly dependent on the 
hypothesis that the causal network contains all the 
relevant knowledge, that is all the possible causes for a 
given state and all the states that (may) have a given 
finding as a manifestation. Therefore, such conclusions 
are defeasible, as it is typical in nonmonotonic reasoning. 
The idea is to confirm those assumptions that are neces­
sary to explain the presence of the observed findings. 

Definition 3.7. Given a d.p. P, an assumption a is 
confirmed iff for every final world W for P, W. 

The extension of the definition to give confirmation to a 
world and to a solution is straightforward. 

Definition 3.8. A final world W for a d.p. P is confirmed 
iff every assumption W is confirmed. 

In other words, a final world W is confirmed if its 
assumption set Assumptions(W) is a subset of the 
assumption sets of any (other) final world. 

Definition 3.9. A solution to a diagnostic problem P is 
strongly confirmed i f f = diagnosis(W) for some 
confirmed final world W. 

This is the most natural case for the confirmation of a 
solution: it allows us to confirm the explanation of a solu­
tion, i.e. to confirm an instance of a subnetwork represent­
ing the causal evolution that has led to the observed situa­
tion. There are cases where this cannot be done, but it is 
still possible to give some kind of "weak" confirmation to 
a solution, directly confirming diagnostic hypotheses 
without dealing with the (more primitive) level of the 
assumptions. 

Definition 3.10. Given a d.p. a diag­
nostic hypothesis H occurring in HYP is confirmed iff 

for every solution to P. 

Definition 3.11. A solution to a diagnostic problem P 
is weakly confirmed i f f every is confirmed (and 
is not strongly confirmed). 

The following property shows that the concept of 
confirmed solution is well-defined. 

Property 1. A diagnostic problem has at most one 
(either strongly or weakly) confirmed solution.5 

3.3. Object level characterization of confirmation 

We have seen in the previous section that the 
confirmation of assumptions is based on the non­

5 The proof of this property and of the following ones can be 
found in [5]. 

monotonic hypothesis that all relevant knowledge is 
modeled. If this is the case, when a state (or manifesta­
tion) is present, one of its possible causes must be 
present. This can be formalized using M Carthy's cir­
cumscription principle [14], giving in such a way an 
object level characterization of the confirmation criterion. 
In particular, we use parallel circumscription in ordered 
formulae which has been proven equivalent to a first-order 
formula ([12], theorem 6.11, p.148). Notice that in our 
case the same results can be obtained using predicate 
completion [1]. 

Considering the topological order defined in a singly 
connected causal network, it is easy to prove that the log­
ical model of such a causal network is an ordered formula 
with respect to the set of state and manifestation predi­
cates. 

We give, therefore, an alternative definition for the 
confirmation of assumptions using the parallel cir­
cumscription of the set of state and manifestation predi­
cates in the formula NET - that is, the (first-order) for­
mula NETcirc defined as follows, (where STATE and 
FINDING are the classes of state and manifestation sym­
bols of the alphabet): 

This formula gives a formalization to the intuition 
described above and can be used to give the following 
definition. 

Definition 3.12. Given a d.p. an 
assumption a is circumscription-confirmed iff 

The two different criteria can be proven to be 
equivalent. 

Theorem 2. Given a d.p. an assump­
tion a is confirmed iff it is circumscription-confirmed. 

The importance of this result stems from the 
different nature of definitions 3.7 and 3.12. The latter is 
an object level characterization, while the former is a 
meta level one and can be easily implemented, since we 
are generally interested in finding all the final worlds for 
a problem (or at least the non redundant ones - see next 
section). The object-level approach can be generalized to 
characterize the entire set of solutions to a diagnostic 
problem [6]. 

3.4. Parsimonious solutions 

The confirmation criteria defined in the previous section 
may sort out one of the solutions to a diagnostic problem; 
when there is no confirmed solution, we may still be 
interested in ranking the solutions, trying to find the 
"best" one or at least a selected subset of equally good or 
incomparable ones. 

This problem has been analyzed by some researchers 
over the last few years. In the "Parsimonious Covering 
Theory" [20] the notions of minimality and minimum car­
dinality have been used to define some parsimony criteria. 
Similarly de Kleer [9] and Reiter [24] proposed parsi-
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mony criteria based on minimality considerations . 
The basic justification supporting the "minimal cardi­

nality" parsimony criterion is the assumption that faults 
are independent Such an assumption can be questioned in 
many real world domains. In many cases, in fact, two 
faults (diseases or diagnostic hypotheses) can be causally 
correlated (e.g. "burnout" and "melting" in figure 1). On 
the other hand, the "minimality" (irredundancy) parsi­
mony criterion seems to be much more widely applicable 
since it does not require any a-priori assumption on the 
nature of the diagnostic hypotheses being considered. Of 
course this criterion is weaker, since it is based on a par­
tial order, where we may have different (and incompar­
able) minimal elements (while in the other case two 
different solutions of minimum cardinality can be con­
sidered equally good). 

In our case the two criteria can be applied to the 
solutions as sets of diagnostic hypotheses, and, more 
interestingly, to the set of assumptions that characterize 
the final worlds or, equivalently, to the final worlds them­
selves. We have already remarked that assumptions are a 
more primitive notion; moreover, if a solution has more 
than one explanation, we can select the best one by con­
sidering their assumption set. 

Definition 4.1. A solution to a diagnostic problem P is 
- SA-parsimonious iff it has an explanation which has a 

_ -minimal assumption set within the final worlds for P; 
- SH-parsimonious i f f it is a minimal element of the set 

of solutions to P; 
- CA-parsimonious i f f it has an explanation with 

minimum number of assumptions within the final 
worlds for P; 

- CH-parsimonious i f f it has minimum cardinality within 
the set of solutions to P. 

The various definitions are not independent from 
each other and from the concept of confirmed solution; 
these relationships are summarized by the following pro­
perties. 

Property 3. Given a solution to a diagnostic problem, 
(a) is SA-parsimonious i f f it is SH-parsimonious; 
(b) if is CA-parsimonious, then it is SA-parsimonious; 
(c) if is CH-parsimonious, then it is SH-parsimonious. 

Property 4. 
(a) A strongly confirmed solution to a diagnostic problem 

is CA-parsimonious and CH-parsimonious (and then 
SH-parsimonious and SA-parsimonious). 

(b) A weakly confirmed solution to a diagnostic problem 
is CH-parsimonious (and then SH-parsimonious and 
SA-parsimonious). 

It is worth noting that there is no general relation between 
CA-parsimony and CH-parsimony or weak confirmation. 
Consider the example in figure 3. For the problem 
characterized the solution obtained 
under the assumption set {cuo2} is CH-parsimonious and 
weakly confirmed; the solution obtained 

6 The idea in Reiter's and de Kleer's approaches as well as in our 
one is that parsimony can be also used to gain in efficiency, avoiding the 
construction of redundant solutions. 
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Figure 3 - A simple causal network exemplifying 
the different concepts of parsimony. 

under the assumption set {Xi} is CA-parsimonious. 

4 . AN EXAMPLE 

As a simple example in a real-world domain, consider the 
following diagnostic problem on the causal model in 
figure 1, where we assume, for the sake of simplicity, that 
nodes have no attributes: 
P! =<NET! ,H YPj, where: 
- NET! is the logical model of the network 
- HYP1={<burnout,high_engine_temp>, 

<melting,melted_j)istons>, 
<ignition_j>roblems,irreg_ignition>} 

= {dirty_sparkj>lugs, l acko facce l , tempind ic red , 
vapour} 

The only final world is that containing the assumptions 
{o i l cupho led , oldsparkjplugs, a } , where a is the 
assumption associated with the CAUSAL arc between the 
states "highenginetemp" and "powerdecrease". There­
fore the only solution to P is {burnout}. Notice that the 
presence of "old_spark_plugs" is necessary to explain 
"dirty_spark_plugs", but the related diagnostic hypothesis 
"ignition_problems" is not part of any solution, due to the 
absence of "mumbling_engine". In this case the "MAY" 
relationship between " sparkj r iugsusedup" and 
" irregignit ion" does not hold. On the other hand, the 
initial assumption "o i l cupho led " is necessary to explain 
" tempind ic red" and "vapour"; in fact "stacksmoke" is 
absent and thus the assumption "pistonringsused" is 
rejected while the absence of "oil_below_car" is not 
relevant because it is not a necessary consequence of 
"o i l cupho led " . 

5. CONCLUSIONS 

In this paper we have presented a formal theory of causal 
diagnostic reasoning, paying particular attention to the 
problem of dealing with incomplete knowledge. Different 
forms of incompleteness have been discussed, and a non­
monotonic reasoning process for drawing (defeasible) con­
clusions in the presence of incompleteness has been 
presented. In summary, such forms of incompleteness can 
be divided into two main classes: 
- Abstracted knowledge: initial causes and abstracted 



conditions fall within such a class. A hypothetical rea­
soning scheme has been designed in order to deal with 
abstracted knowledge. 

- Missing knowledge: in order to draw conclusions from 
incomplete models, different forms of circumscriptive 
reasoning have been used on the causal model itself and 
on the findings observed in a specific case under exami­
nation. 

The diagnostic process described in this paper has been 
implemented in Prolog, experimenting different control 
strategies in order to avoid inefficiencies. In particular, 
compiled heuristic rules are used to focus the reasoning 
process (i.e. to limit the number of initial worlds to be 
considered) [5]. 
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