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A b s t r a c t 

Reasoning about k inematics is an impor tan t as­
pect of common sense physics. In earlier work, 
we have developed the place vocabulary the­
ory of qual i ta t ive kinematics in mechanisms, 
a fo rma l theory for representing the kinematic 
behavior of two-dimensional mechanisms. The 
computa t ion of a place vocabulary is very com­
plex because it takes in to account the details of 
object shapes. In this paper, we present a rep 
resent at ion which is much more abstract than a 
place vocabulary, the kinematic topology. Kine­
mat ic topology does not define qual i tat ive in­
ference rules, bu t provides a characterizat ion of 
the topology of legal configurat ions. For exam­
ple, the k inemat ic topology of a pair of gears is 
one or several doubly connected regions, whose 
shape in conf igurat ion space indicates the rela­
t ive speeds of the two gears. For many applica­
t ions, reasoning about k inematics at this level 
is sufficient. 

K inemat ic topology can be computed in a 
purely qual i ta t ive manner and thus gives an ex­
istence proof tha t a purely qual i ta t ive kinemat­
ics is possible. Like in other qual i tat ive reason­
ing appl icat ions, the qual i ta t ive computat ion 
has the effect tha t the result is almost always 
ambiguous. On the other hand, a kinematic 
topology can be given even for mechanisms 
whose designs are only imprecise sketches, and 
can be generalized to arb i t ra ry object shapes, 
several degrees of freedom, and three dimen­
sions. We hope tha t such generalizations of 
k inemat ic topology can provide the basis for ef­
f ic ient ly comput ing place vocabularies, and rea­
soning about general k inemat ic interactions. 

1 K i n e m a t i c T o p o l o g y 

Reasoning about k inemat ic behavior is an impor tant 
problem in commonsense physics. A large proport ion 
of physical systems involve some fo rm of kinematic in­
teract ion, and few methodologies are known for f irst-
principles model ing of k inematics. In earlier work, we 
have developed the place vocabulary theory for the spe­
cial case of mechanism kinematics. It provides a gen-

Figure 1: A pair of gearwheels. The drwwing on the top 
shows an actually working device, while the one on the 
bottom is only a sketch that will not work as shown. 

eral first-principles formal ism capable of describing the 
behavior of complex device such as a mechanical clock 
[Faltings, 1987b, Faltings, 1987a, Nielsen, 1988]. 

A place vocabulary describes the kinematic behavior 
of a device as a state graph of different contact relation-
snips. Each possible contact of different pairs of object 
parts forms a dist inct state. There are aspects of human 
reasoning where this representation is overly detailed. 
Consider the example of a pair of gearwheels, shown in 
Figure 1. A mechanism made precisely to the dimen­
sions shown in the drawing on the top wi l l actual ly work. 
I ts behavior can be analyzed by precise computa t ion on 
the given data, result ing in an unambiguous place vo­
cabulary. However, the sketch on the bo t t om is far f rom 
a funct ional gear, and its precise analysis w i l l certainly 
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not reveal a gear func t ion . Yet people are capable of 
pred ic t ing tha t the gear func t ion is possible, given tha t 
the dimensions are adjusted properly. 

The metr ic d iagram computa t ion model developed for 
the place vocabulary theory [Falt ings, 1988a, Falt ings, 
1988b] provides one solut ion to this prob lem. It allows us 
to make complete lists of al l possible place vocabularies, 
and thus all possible behaviors, which may be achieved 
by var iat ion of the dimensions of the parts. However, 
th is l ist w i l l be unecessarily b ig , d ist inguishing all the 
different ways tha t the teeth could mesh or not mesh. 
A much more appropr iate level of analysis would d is t in­
guish only five different cases, each of which corresponds 
to a different topology of the set of legal configurat ions1 : 

1. The device is impossible to contruct , because the 
parts overlap each other in al l possible configura­
t ions: the set of legal configurat ions is empty. 

2. The gears block each other, and bo th wheels can 
only t u rn a small amount : several s imply connected 
sets. 

3. The teeth mesh proper ly : one or more doubly con­
nected sets. 

4. The teeth do not mesh, and the wheels can t u rn 
independent ly of each other: a mu l t i p l y (> 2) con­
nected set. 

5. No contact between the parts is possible: a s imply 
connected set contain ing al l imaginable configura­
t ions. 

We call such a descr ipt ion the device's kinematic topol­
ogy. K inemat ic topology expresses the connectedness 
of conf igurat ion space and the fo rm of i ts regions. For 
example, when the gears mesh properly, the doubly con­
nected regions extend ni t imes across the mot ion param­
eter of the f irst gear, and n2 t imes across the mot ion pa­
rameter of the second gear, where the rat io n1/2 is the 
ra t io of the number of teeth. A descript ion at this level is 
sufficient for many appl icat ions of reasoning about kine­
matics. 

Ex t rac t i ng the k inemat ic topology f r om place vocabu­
laries or conf igurat ion space is not very promis ing, how­
ever, as it presupposes tha t these stronger descriptions 
have already been computed. The main point of this pa­
per is tha t the possible k inemat ic topologies can be de­
termined direct ly based on only a symbolic descript ion of 
the objects, and qual i ta t ive in format ion about their rel­
ative dimensions. Note the qual i f icat ion: w i t hou t metr ic 
in fo rmat ion , only the possibi l i t ies can be l is ted. Deter­
m in ing the actual k inemat ic topology in general is not 
s igni f icant ly easier than comput ing the device's complete 
place vocabulary. To see why this is the case, consider 
how in t r icate ly the meshing of the teeth depends on their 
precise shape! The existance of such ambiguit ies is a 
necessary consequence of the qual i tat ive nature of the 
representat ion. 

The fact t ha t k inemat ic topologies can be computed 
in a purely qual i ta t ive manner is a contradict ion to the 
poverty conjecture made earlier ( [Forbus et al, 1987]), 

1 Assuming that the periodicity of the parts is given 
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which states tha t no purely qual i ta t ive kinematics is pos­
sible. Note, however, t ha t k inemat ic topology is not 
st rong enough to compute an envisionment of the de­
vice's behavior. 

K inemat ic topologies are of interest not only as a qual­
i ta t ive descript ion, bu t they can also f o r m the basis for 
a much more efficient computa t ion of place vocabular­
ies. Pre l iminary tests indicate tha t the resul t ing algo­
r i t h m , called the bubble a lgor i thm, is about 100 times 
faster than the earlier implementa t ion which was based 
on conf igurat ion space computa t ion . More impor tan t ly , 
k inemat ic topology can be determined not on ly for prob­
lems w i t h few degrees of f reedom, bu t also for much more 
compl icated ones where the computa t iona l cost of com­
pu t ing w i t h a very high dimensional conf igurat ion space 
is proh ib i t ive . It can provide the basis on which effi­
cient generalizations of the place vocabulary theory can 
be built. 

The qual i ta t ive nature of k inemat ic topology also al­
lows it to be computed for a rb i t ra ry object shapes, elim­
ina t ing restrict ions on the type of boundary curves al­
lowed. For lack of space, we describe f i rst i ts derivat ion 
for the case of polygonal objects w i t h ro ta t iona l freedom, 
and then indicate how it is generalized. 

2 Computing Kinematic Topology 
The k inemat ic behavior of a pair of objects is determined 
by the condi t ion tha t they may not overlap each other. 
Th is condi t ion defines a set of i l legal conf igurat ions, the 
blocked space. K inemat ic behavior, on the other hand, 
refers to the set of legal conf igurat ions, the free space, 
which, by its def ini t ion as the absence of overlaps, can 
only be determined as the complement of blocked space. 
Bo th spaces can be represented as regions in the space of 
possible configurations of the objects, the configuration 
space (as in [Falt ings, 1987b, Falt ings, 1987a]). 

A conf igurat ion is part of blocked space if there ex­
ists a pair of object parts which would overlap in the 
conf igurat ion. Pairs of object parts are therefore the el­
ementary bu i ld ing blocks for comput ing a descript ion of 
blocked space. 

2 .1 O b j e c t D e s c r i p t i o n 

In the fol lowing discussion, we refer to the pairwise inter­
action of two polygonal objects A and B, each of which 
has freedom of ro ta t ion only. We assume that the bound­
ary of each of the objects is described as a sequence of 
pieces and cavities. A piece is centered around a convex 
vertex and consists of the vertex and the two boundary 
segments which are jo ined there (extending to in f in i ty ) . 
A cavity is the complement of a piece, centered either 
around a concave vertex or a m i n i m u m of the radius to 
the center of ro ta t ion , and the two boundaries adjoining 
i t 2 . A sample decomposit ion is shown in Figure 2. 

2 .2 F o r m u l a t i n g t h e n o n - o v e r l a p c o n d i t i o n 

Since the two objects A and B are ro ta t ing around a 
f ixed center, the conf igurat ion space of such a pair is 

In the case of a radius minimum, the two halves of the 
boundary segment. 



two-dimensional , spanned by the orientat ions and 
of A and B. The fact tha t two pieces PA and PB on ob­
jects A and R can not overlap yields the condit ion that 
none of the l ine segments bound ing PA and PB can in­
tersect each other, and none of the two can be entirely 
inside the other. For each pair of object pieces, this de­
fines an obstacle, the set of configurat ions which violate 
the cond i t ion . The boundary of the obstacle is given 
as the envelope of four constraint curves, which consist 
of the conf igurat ions where a vertex of one piece touches 
one of the two boundary segments belonging to the other 
piece. An example of such an obstacle is shown in Figure 
3. An obstacle contains two touchpoints where all four 
bounding constraints intersect each other. They are con­
f igurat ions where the vertices of the two objects touch 
each other. 

Because object pieces are assumed to extend to inf in­
i ty, the obstacles often also contain many configurations 
where no overlap exists, and we call these parts of the ob­
stacle inva l id . The impor tance of the obstacles lies in the 
fact t ha t any boundary between free and blocked space 
is par t of the boundary of some obstacle (see [Faltings, 
1987a, Brooks and Lozano-Perez, 1983]). Our a lgor i thm 
composes the correct boundary between free and blocked 
space by composing only the boundary elements of the 

valid parts of the obstacles. The obstacles serve as tokens 
which permi t an efficient organizat ion of these elements. 

In the case of several adjacent pieces, the obstacles 
they generated have to be intersected to form the true 
region of blocked space. For kinematic topology, this 
means that these obstacles can be combined into a single 
token of a blocked space area. 

2.3 T h e i n i t i a l t o p o l o g y g r a p h 

Between the obstacles thus centered in configuration 
space lie regions of potent ial free space, described by bub­
bles. In tu i t ive ly , a bubble describes the potent ial ly legal 
configurations where a piece on one object falls w i th in a 
cavity on the other. It is a token which stands Cor the 
interaction of either a piece and a cavity or two cavities, 
and takes its shape f rom the surrounding obstacles and 
bubbles. 

When two cavities follow each other on an object 
boundary, they enclose between them a boundary seg­
ment which does not belong to any piece. Th is segment 
can also generate a boundary between free and blocked 
space, which is represented by a token called an infi­
nite obstacle. An inf ini te obstacle can not exist inde­
pendently, but only modify or l ink together obstacles to 
which it becomes adjacent, as shown in Figure 4. 

The first approximat ion of the kinematic topology 
computed by the a lgor i thm is an array of al ternat ing 
bubbles and obstacles, where the sequence of bubbles 
and obstacles in each dimension reflects the sequence of 
pieces and cavities along the object boundary. An ex­
ample of such a graph is shown in Figure 5. 

2.4 T h e w e a k t o p o l o g y g r a p h 

The in i t ia l topology graph can be computed without 
any metric tests whatsoever, but does not yet say very 
much about kinematic topology. A much more expres­
sive version, the weak topology graph, can be obtained 
by a modif ications based on the tests involv ing informa­
t ion only about the distance of the centers of cavities 
and pieces f rom the center of object ro ta t ion , and the 
distance between the centers of ro ta t ion of the objects. 
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2.4 T h e weak t o p o l o g y g r a p h 

The in i t ia l topology graph can he computed wi thout any 
metric tests whatsoever, but does not yet say very much 
about kinematic topology. A much more expressive ver­
sion, the weak topology graph, can be obtained by a se­
quence of modifications based on tests involving infor­
mation only about the distance of the centers of cavities 
and pieces from the center of object rotat ion, and the 
distance between the centers of rotat ion of the objects. 

First, if a pair of object parts PA and PB are too far 
apart or too close together to touch each other, there is 
no configuration that falls wi th in the corresponding ob­
stacle, and it is marked inactive and ignored in further 
processing. If we let denote the mini­
mum and maximum radius (distance f rom the center of 
rotat ion) for any point on piece P, and d be the distance 
between the two centers of rotat ion, this condition can 
be expressed as: 

These distance comparisons can in general be carried 

out w i t h only very rough in format ion about object di­
mensions. In the case where not enough in format ion is 
available, a case spl i t results. 

Obstacles separated by a single bubble often intersect 
each other and destroy or div ide the bubble which sepa­
rates them. Consider a bubble generated by a cavity CA 
and a piece PB- If the conf igurat ion where the vertex of 
PB touches the po in t of m i n i m u m radius of CA is achiev­
able, this point is an intersection between the obstacles 
generated by PB and each of the pieces adjacent to CA 
The obstacles are marked as d i rect ly adjacent, d iv id ing 
the bubble between them in half. Th is condi t ion is tested 
by similar radius comparisons as those described above. 

The shape of inf in i te obstacles is determined by the 
same cr i ter ion. As shown in Figure 4, they can either 
be connected to a f in i te obstacle on one side only, forming 
a "bu lge " , or be connected to adjacent obstacles on both 
sides, thus fo rming a l ink between finite obstacles. 

Note tha t all the tests necessary to compute the weak 
topology graph are linear distance comparisons, and can 
be handled by quant i ty spaces ( [Forbus, 1984]) or even 
order-of-magnitude reasoning ( [Raiman, 1986]). We wi l l 
discuss the use of the weak topology graph after f inishing 
the descript ion of the algor i thms to compute kinematic 
topology. 

2.5 T h e f u l l t o p o l o g y g r a p h 

In the weak topology graph, we have incorporated those 
aspects of the metr ic dimensions which can be easily cap­
tured by qual i tat ive representations. However, this can 
not be enough for a complete descript ion of kinematic 
topology. For example, deciding whether the teeth of 
a pair of gearwheels mesh requires evaluation of non­
linear expressions for which we have not even found a 
closed-form solut ion. The reason why comput ing the ful l 
topology is hard is that is must take into account the oc­
curence of free subsumptions, intersections between ob­
stacles which are not direct ly related in the topology 
graph. Conf igurat ions corresponding to such intersec­
t ions are characterized by the fact tha t the objects are 
in contact at two dist inct points. 

Devices in which free subsumptions are impor tan t are 
di f f icul t to understand for people also, and we can do 
so only in very l im i ted cases, such as tha t of successive 
teeth touching each other in gearwheels. 

However, the s i tuat ion is not hopeless, because the 
set of possible subsumptions can often be bounded. The 
most powerful cr i ter ion for bounding the set of possible 
subsumptions is the extent of an obstacle in configura­
t ion space. The val id port ions of an obstacle can be en­
closed w i t h i n two possibly over lapping bounding rectan­
gles, which enclose all val id por t ions of obstacle bound­
aries. On ly pairs of obstacles whose bounding rectangles 
intersect are candidates for free subsumptions. 

In general, test ing whether the subsumpt ion actually 
occurs requires a detai led (and expensive) analysis of 
the precise dimensions of the objects ' shapes. In many 
pract ical cases, however, it can be determined that a 
subsumpt ion must occur, by f ind ing a val id point on an 
obstacle which falls w i th in the val id region of another. 
For this purpose, we test whether the configurat ions cor-
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responding to the touchpoints enclosed by the intersect­
ing bounding rectangles violate the non-intersection con­
straints of the other obstacle. In pract ical cases, such as 
gearwheels, th is test has proven very powerful and rel i ­
able. 

Bo th the computa t ion of bounding rectangles and the 
tests of non-intersect ion involve the nonlinear funct ion 
re lat ing radius to angle of touch. They can either be 
approx imated, or computed by manipu la t ing an analog­
ical representat ion, using f ixed paral lel structures similar 
those in vision systems. 

A free subsumpt ion is instal led in the topology graph 
by establ ishing a direct connection between the obsta­
cles involved in the subsumpt ion, d iv id ing in hal f all 
intervening bubbles. As the ind iv idua l bubbles do not 
have precise boundaries in conf igurat ion space, the exact 
shape of the path is of no importance - in our implemen­
ta t ion , we chose the shortest one ( the one that requires 
mod i fy ing the fewest bubbles). 

The result ing st ructure now correctly describes the 
k inemat ic topology of the device. Every free subsump­
t ion candidate whose val id i ty could not be determined 
means tha t the existance of the corresponding adjacency 
in the topology graph could not be decided, and the so­
lu t ion is ambiguous. The bubbles and their connectivi ty 
represent the topology of the free space. Addi t ional ly , 
each bubble can be associated w i t h the interact ion (or 
rather closeness) of part icular object features. The con­
di t ions which have resulted in the t ransformat ion of the 
in i t ia l topology graph to the fu l l topology graph are a 
causal explanat ion for those aspects of the fined result. 
In the topology graph, we mark adjacencies where the 
actual posit ions correspond to zero-crossings of the re­
spective or ientat ion parameter. The shape of each region 
in conf igurat ion space - for example, the number of ro­
tat ions of each gear required to traverse the doubly con­
nected regions for a pair of gearwheels - is determined by 
count ing the traversals of marked l inks on a path around 
the region boundary. 

3 Appl icat ions and Extensions 
Kinemat ic topology by itself is often a sufficient descrip­
t ion for reasoning about k inematics. For example, the 
k inemat ic topology of gearwheels describes succinctly 
their behavior as two objects which can tu rn in coordi­
nated mo t ion . Note, however, tha t k inematic topology 
is not a subst i tu te for place vocabularies: the behavior 
of a clock escapement, for example, is only described 
as a doubly connected free-space region, which doesn't 
capture i ts func t ion . 

An interest ing aspect is the fact tha t kinematic topol­
ogy often contains ambiguit ies. Th is reflects the ambi­
gui ty which arises in human reasoning based on rough 
sketches. For prob lem solving, it can be an advantage 
because it points out the possibil i t ies which could be 
achieved given tha t the details are chosen in the proper 
way. In the example of a sketch of gearwheel behavior 
the in terpre ta t ion of a funct ion ing set of gears requires 
very par t icu lar shapes and dimensions of the gearteeth, 
which are far more l ikely to be violated than satisfied. 
Yet , the gearwheel in terpreta t ion is the only one which 

Figure 6: Convex segments of an arbitrary curve can be 
approximated by sequences of pieces, and concave seg­
ments by sequences of cavities. 

exhibits a remarkable and useful funct ion not achieved 
by most other objects, and is therefore chosen as the 
desired in terpretat ion. 

The a lgor i thm described in this paper has been im­
plemented as part of a research project in automatic 
mechanism design and has proven robust and efficient. 
Depending on the example, it is between 500 and 5000 
times faster than comput ing a complete place vocabu­
lary, and can work using less precise object descriptions. 
However, much more impor tan t than the advantages in 
speed are the generalizations that the method permits. 

3.1 G e n e r a l i z a t i o n s 

An impor tan t aspect of kinematic topology is that i t 
is easily generalizable. The topological computat ion can 
be extended w i thout great di f f icul ty to devices wi th more 
than two degrees of freedom. Because bubbles and obsta­
cles are tokens, their nature does not change in higher-
dimensional configuration spaces. An impor tant differ­
ence, however, lies in the potent ia l ly much higher num­
ber of ambiguit ies which may result in such a device. 

Another impor tan t generalization is tha t of object 
shapes. For reasons of conciseness, we have so far as­
sumed objects to be polygons. The same theory applies, 
however, to arb i t rary boundary shapes, where pieces are 
defined by convex segments of the boundary, and cav­
ities by concave ones. Imagine the boundary approxi­
mated by a very fine polygon, as shown in Figure 0. 
Each convex segment is then a sequence of convex ver­
tices (pieces), and each concave segment one of concave 
vertices (cavities). The obstacles generated by the adja­
cent pieces form one contiguous region of blocked space, 
and the bubbles generated by the adjacent cavities gen­
erate '* contiguous region of free space, possibly broken 
in half by the succession of the inf in i te obstacles between 
them. As the grain size of the approximat ion becomes 
inf ini tely fine, these conjoined regions become the kine­
matic topology of the complex shapes. 

Topologically, both the succession of obstacles or bub­
bles can equally well be modelled by a single obstacle and 
a single bubble, generated by pieces and cavities formed 
by the convex and concave segments of the boundary 
curve. The condit ion for the existance of the combined 
obstacle is that at least one of its component exists, 
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which is the case if and only if the one at the extremum 
of the radius exists. If the point of extreme radius is 
taken as the "vertex" of the combined piece, it w i l l cor­
rectly predict the existence of the combined obstacle. An 
equivalent result holds for combined cavities. 

Note that this generalization requires the same div i ­
sion into segments of equal curvature that has already 
been proposed on independent grounds by vision re­
searchers such as ( [Brady and Asada, 1986]). 

3.2 T h e B u b b l e A l g o r i t h m 

The kinematic topology can be used as the basis for an 
eflicient algor i thm to compute place vocabularies. The 
place vocabulary is derived f rom the kinematic topology 
by determining the shape of the region boundaries as 
sequences of different contact relationships, and marking 
their qualitative directions, which define the inference 
rules for qualitative analysis (as described in [Faltings, 
1987b, Faltings, 1989?]). 

When the kinematic topology is given, the place vo­
cabulary computat ion can ignore most of the actually 
impossible contact relationships, as the regions of kine­
matic topology contain only legal contacts. The place 
vocabulary can now be computed in t ime proport ional 
to its actual size. We also do away wi th an explicit rep­
resentation of configuration space and all the expensive 
computation associated with i t . Prel iminary tests indi­
cate that on typical examples, the bubble algori thm wil l 
be about 100 times faster than earlier implementations 
of the place vocabulary theory. More important ly, the 
topology-based computation can potential ly be general­
ized to more than two simultaneous degrees of freedom, 
three dimensions, and complex boundary curves. 

4 Conclusions 

In this paper, we have introduced the concept of kine­
matic topology as a robust model of commonsense rea­
soning about kinematics f rom very approximate informa­
t ion. Kinematic topology is an abstraction of the place 
vocabulary concept and distinguished by the fact that (i) 
it is almost always ambiguous, but wi th a manageable 
number of possibilities, ( i i) requires significantly less in­
formation for its computat ion, but ( i i i ) is not powerful 
enough to allow an actual envisionment of the behav­
ior. The prime motivat ion for the development of the 
concept was the need for a causal analysis of kinematic 
topology in an ongoing project to develop a system for 
automatic mechanism design. 

Kinematic topology can be computed in a purely qual­
i tative way, and is the first representation of kinematics 
w i th this property. It stands in contradiction to the ear­
lier poverty conjecture that no purely qualitative kine­
matics is possible ( [Forbus et al , 1987]), and gives an 
indication of the extent to which we may succeed in the 
challenge of disproving this negative prediction. 

As a practical appl icat ion, kinematic topology is being 
used as a basis for place vocabulary computation meth­
ods which are much more eflicient and general than was 
possible before. 
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