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Abstract

Reasoning about kinematics is an important as-
pect of common sense physics. |In earlier work,
we have developed the place vocabulary the-
ory of qualitative kinematics in mechanisms,
a formal theory for representing the kinematic
behavior of two-dimensional mechanisms. The
computation of a place vocabulary is very com-
plex because it takes into account the details of
object shapes. In this paper, we present a rep
resentation which is much more abstract than a
place vocabulary, the kinematic topology. Kine-
matic topology does not define qualitative in-
ference rules, but provides a characterization of
the topology of legal configurations. For exam-
ple, the kinematic topology of a pair of gears is
one or several doubly connected regions, whose
shape in configuration space indicates the rela-
tive speeds of the two gears. For many applica-
tions, reasoning about kinematics at this level
Is sufficient.

Kinematic topology can be computed in a
purely qualitative manner and thus gives an ex-
istence proof that a purely qualitative kinemat-
Ics Is possible. Like in other qualitative reason-
iIng applications, the qualitative computation
has the effect that the result is almost always
ambiguous. On the other hand, a kinematic
topology can be given even for mechanisms
whose designs are only imprecise sketches, and
can be generalized to arbitrary object shapes,
several degrees of freedom, and three dimen-
sions. We hope that such generalizations of
kinematic topology can provide the basis for ef-
ficiently computing place vocabularies, and rea-
soning about general kinematic interactions.

1 Kinematic Topology

Reasoning about kinematic behavior is an important
problem in commonsense physics. A large proportion
of physical systems involve some form of kinematic in-
teraction, and few methodologies are known for first-
principles modeling of kinematics. In earlier work, we
have developed the place vocabulary theory for the spe-
cial case of mechanism kinematics. It provides a gen-

Figure 1. A pair of gearwheels. The drwwing on the top
shows an actually working device, while the one on the
bottom is only a sketch that will not work as shown.

eral first-principles formalism capable of describing the
behavior of complex device such as a mechanical clock
[Faltings, 1987b, Faltings, 1987a, Nielsen, 1988].

A place vocabulary describes the kinematic behavior
of a device as a state graph of different contact relation-
snips. Each possible contact of different pairs of object
parts forms a distinct state. There are aspects of human
reasoning where this representation is overly detailed.
Consider the example of a pair of gearwheels, shown in
Figure 1. A mechanism made precisely to the dimen-
sions shown in the drawing on the top will actually work.
Its behavior can be analyzed by precise computation on
the given data, resulting in an unambiguous place vo-
cabulary. However, the sketch on the bottom is far from
a functional gear, and its precise analysis will certainly
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not reveal a gear function. Yet people are capable of
predicting that the gear function is possible, given that
the dimensions are adjusted properly.

The metric diagram computation model developed for
the place vocabulary theory [Faltings, 1988a, Faltings,
1988b] provides one solution to this problem. It allows us
to make complete lists of all possible place vocabularies,
and thus all possible behaviors, which may be achieved
by variation of the dimensions of the parts. However,
this list will be unecessarily big, distinguishing all the
different ways that the teeth could mesh or not mesh.
A much more appropriate level of analysis would distin-
guish only five different cases, each of which corresponds
to a different topology of the set of legal configurations' :

1. The device is impossible to contruct, because the
parts overlap each other in all possible configura-
tions: the set of legal configurations is empty.

2. The gears block each other, and both wheels can
only turn a small amount: several simply connected
sets.

3. The teeth mesh properly: one or more doubly con-
nected sets.

4. The teeth do not mesh, and the wheels can turn
iIndependently of each other: a multiply (> 2) con-
nected set.

5. No contact between the parts is possible: a simply
connected set containing all imaginable configura-
tions.

We call such a description the device's kinematic topol-
ogy. Kinematic topology expresses the connectedness
of configuration space and the form of its regions. For
example, when the gears mesh properly, the doubly con-
nected regions extend ni times across the motion param-
eter of the first gear, and n2 times across the motion pa-
rameter of the second gear, where the ratio n;/2 is the
ratio of the number of teeth. A description at this level is
sufficient for many applications of reasoning about kine-
matics.

Extracting the kinematic topology from place vocabu-
laries or configuration space is not very promising, how-
ever, as it presupposes that these stronger descriptions
have already been computed. The main point of this pa-
per is that the possible kinematic topologies can be de-
termined directly based on only a symbolic description of
the objects, and qualitative information about their rel-
ative dimensions. Note the qualification: without metric
information, only the possibilities can be listed. Deter-
mining the actual kinematic topology in general is not
significantly easier than computing the device's complete
place vocabulary. To see why this is the case, consider
how intricately the meshing of the teeth depends on their
precise shape! The existance of such ambiguities is a
necessary consequence of the qualitative nature of the
representation.

The fact that kinematic topologies can be computed
In a purely qualitative manner is a contradiction to the
poverty conjecture made earlier ( [Forbus et al, 1987]),

" Assuming that the periodicity of the parts is given
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which states that no purely qualitative kinematics is pos-
sible. Note, however, that kinematic topology is not
strong enough to compute an envisionment of the de-
vice's behavior.

Kinematic topologies are of interest not only as a qual-
itative description, but they can also form the basis for
a much more efficient computation of place vocabular-
les. Preliminary tests indicate that the resulting algo-
rithm, called the bubble algorithm, is about 100 times
faster than the earlier implementation which was based
on configuration space computation. More importantly,
kinematic topology can be determined not only for prob-
lems with few degrees offreedom, but also for much more
complicated ones where the computational cost of com-
puting with a very high dimensional configuration space
iIs prohibitive. It can provide the basis on which effi-
cient generalizations of the place vocabulary theory can

be built.

The qualitative nature of kinematic topology also al-
lows it to be computed for arbitrary object shapes, elim-
inating restrictions on the type of boundary curves al-
lowed. For lack of space, we describe first its derivation
for the case of polygonal objects with rotational freedom,
and then indicate how it is generalized.

2 Computing Kinematic Topology

The kinematic behavior of a pair of objects is determined
by the condition that they may not overlap each other.
This condition defines a set of illegal configurations, the
blocked space. Kinematic behavior, on the other hand,
refers to the set of legal configurations, the free space,
which, by its definition as the absence of overlaps, can
only be determined as the complement of blocked space.
Both spaces can be represented as regions in the space of
possible configurations of the objects, the configuration
space (as in [Faltings, 1987b, Faltings, 1987a]).

A configuration is part of blocked space if there ex-
ists a pair of object parts which would overlap in the
configuration. Pairs of object parts are therefore the el-
ementary building blocks for computing a description of
blocked space.

2.1 Object Description

In the following discussion, we refer to the pairwise inter-
action of two polygonal objects A and B, each of which
has freedom of rotation only. We assume that the bound-
ary of each of the objects is described as a sequence of
pieces and cavities. A piece is centered around a convex
vertex and consists of the vertex and the two boundary
segments which are joined there (extending to infinity).
A cavity is the complement of a piece, centered either
around a concave vertex or a minimum of the radius to
the center of rotation, and the two boundaries adjoining
it?. A sample decomposition is shown in Figure 2.

2.2 Formulating the non-overlap condition

Since the two objects A and B are rotating around a
fixed center, the configuration space of such a pair is

In the case of a radius minimum, the two halves of the
boundary segment.



Piece A

Piece C

Figure 2: The decomposition of an object boundary into
pieces and cavities.

Itgure 3: Ezample of an obstacle.

two-dimensional, spanned by the orientations ¢ and ¥
of A and B. The fact that two pieces PA and PB on ob-
jects A and R can not overlap yields the condition that
none of the line segments bounding PA and PB can in-
tersect each other, and none of the two can be entirely
inside the other. For each pair of object pieces, this de-
fines an obstacle, the set of configurations which violate
the condition. The boundary of the obstacle is given
as the envelope of four constraint curves, which consist
of the configurations where a vertex of one piece touches
one of the two boundary segments belonging to the other
piece. An example of such an obstacle is shown in Figure
3. An obstacle contains two fouchpoints where all four
bounding constraints intersect each other. They are con-
figurations where the vertices of the two objects touch
each other.

Because object pieces are assumed to extend to infin-
ity, the obstacles often also contain many configurations
where no overlap exists, and we call these parts of the ob-
stacle invalid. The importance of the obstacles lies in the
fact that any boundary between free and blocked space
Is part of the boundary of some obstacle (see [Faltings,
1987a, Brooks and Lozano-Perez, 1983]). Our algorithm
composes the correct boundary between free and blocked
space by composing only the boundary elements of the

Figure 4: Infinite obstacles connecl or modify obstacle
boundaries.

valid parts of the obstacles. The obstacles serve as fokens
which permit an efficient organization of these elements.

In the case of several adjacent pieces, the obstacles
they generated have to be intersected to form the true
region of blocked space. For kinematic topology, this
means that these obstacles can be combined into a single
token of a blocked space area.

2.3 The initial topology graph

Between the obstacles thus centered in configuration
space lie regions of potential free space, described by bub-
bles. Intuitively, a bubble describes the potentially legal
configurations where a piece on one object falls within a
cavity on the other. It is a token which stands Cor the
iInteraction of either a piece and a cavity or two cavities,

and takes its shape from the surrounding obstacles and
bubbles.

When two cavities follow each other on an object
boundary, they enclose between them a boundary seg-
ment which does not belong to any piece. This segment
can also generate a boundary between free and blocked
space, which is represented by a token called an infi-
nite obstacle. An infinite obstacle can not exist inde-
pendently, but only modify or link together obstacles to
which it becomes adjacent, as shown in Figure 4.

The first approximation of the kinematic topology
computed by the algorithm is an array of alternating
bubbles and obstacles, where the sequence of bubbles
and obstacles in each dimension reflects the sequence of
pieces and cavities along the object boundary. An ex-
ample of such a graph is shown in Figure 5.

2.4 The weak topology graph

The initial topology graph can be computed without
any metric tests whatsoever, but does not yet say very
much about kinematic topology. A much more expres-
sive version, the weak topology graph, can be obtained
by a modifications based on the tests involving informa-
tion only about the distance of the centers of cavities
and pieces from the center of object rotation, and the
distance between the centers of rotation of the objects.
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Igure 5: An exzample of the wmatial topology graph.
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2.4 The weak topology graph

The initial topology graph can he computed without any
metric tests whatsoever, but does not yet say very much
about kinematic topology. A much more expressive ver-
sion, the weak topology graph, can be obtained by a se-
quence of modifications based on tests involving infor-
mation only about the distance of the centers of cavities
and pieces from the center of object rotation, and the
distance between the centers of rotation of the objects.

First, if a pair of object parts PA and PB are too far
apart or too close together to touch each other, there is
no configuration that falls within the corresponding ob-
stacle, and it is marked inactive and ignored in further
processing. If we let 7"”” and r74* denote the mini-
mum and maximum radlus (distance from the center of
rotation) for any point on piece P, and d be the distance
between the two centers of rotation, this condition can

be expressed as:

Irpin — rp"‘l > d , too close together, or
rp.. +rp.” < d | too far apart

These distance comparisons can in general be carried
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out with only very rough information about object di-
mensions. |In the case where not enough information is
available, a case split results.

Obstacles separated by a single bubble often intersect
each other and destroy or divide the bubble which sepa-
rates them. Consider a bubble generated by a cavity CA
and a piece PB- If the configuration where the vertex of
PB touches the point of minimum radius of CA is achiev-
able, this point is an intersection between the obstacles
generated by PB and each of the pieces adjacent to CA
The obstacles are marked as directly adjacent, dividing
the bubble between them in half. This condition is tested
by similar radius comparisons as those described above.

The shape of infinite obstacles is determined by the
same criterion. As shown in Figure 4, they can either
be connected to afinite obstacle on one side only, forming
a "bulge"”, or be connected to adjacent obstacles on both
sides, thus forming a link between finite obstacles.

Note that all the tests necessary to compute the weak
topology graph are linear distance comparisons, and can
be handled by quantity spaces ( [Forbus, 1984]) or even
order-of-magnitude reasoning ( [Raiman, 1986]). We will
discuss the use of the weak topology graph after finishing
the description of the algorithms to compute kinematic
topology.

2.5 The full topology graph

In the weak topology graph, we have incorporated those
aspects of the metric dimensions which can be easily cap-
tured by qualitative representations. However, this can
not be enough for a complete description of kinematic
topology. For example, deciding whether the teeth of
a pair of gearwheels mesh requires evaluation of non-
linear expressions for which we have not even found a
closed-form solution. The reason why computing the full
topology is hard is that is must take into account the oc-
curence of free subsumptions, intersections between ob-
stacles which are not directly related in the topology
graph. Configurations corresponding to such intersec-
tions are characterized by the fact that the objects are
In contact at two distinct points.

Devices in which free subsumptions are important are
difficult to understand for people also, and we can do
so only in very limited cases, such as that of successive
teeth touching each other in gearwheels.

However, the situation is not hopeless, because the
set of possible subsumptions can often be bounded. The
most powerful criterion for bounding the set of possible
subsumptions is the extent of an obstacle in configura-
tion space. The valid portions of an obstacle can be en-
closed within two possibly overlapping bounding rectan-
gles, which enclose all valid portions of obstacle bound-
aries. Only pairs of obstacles whose bounding rectangles
intersect are candidates for free subsumptions.

In general, testing whether the subsumption actually
occurs requires a detailed (and expensive) analysis of
the precise dimensions of the objects' shapes. In many
practical cases, however, it can be determined that a
subsumption must occur, by finding a valid point on an
obstacle which falls within the valid region of another.
For this purpose, we test whether the configurations cor-



responding to the touchpoints enclosed by the intersect-
ing bounding rectangles violate the non-intersection con-
straints of the other obstacle. In practical cases, such as
gearwheels, this test has proven very powerful and reli-
able.

Both the computation of bounding rectangles and the
tests of non-intersection involve the nonlinear function
relating radius to angle of touch. They can either be
approximated, or computed by manipulating an analog-
ical representation, using fixed parallel structures similar
those in vision systems.

A free subsumption is installed in the topology graph
by establishing a direct connection between the obsta-
cles involved in the subsumption, dividing in half all
intervening bubbles. As the individual bubbles do not
have precise boundaries in configuration space, the exact
shape of the path is of no importance - in our implemen-
tation, we chose the shortest one (the one that requires
modifying the fewest bubbles).

The resulting structure now correctly describes the
kinematic topology of the device. Every free subsump-
tion candidate whose validity could not be determined
means that the existance of the corresponding adjacency
in the topology graph could not be decided, and the so-
lution is ambiguous. The bubbles and their connectivity
represent the topology of the free space. Additionally,
each bubble can be associated with the interaction (or
rather closeness) of particular object features. The con-
ditions which have resulted in the transformation of the
initial topology graph to the full topology graph are a
causal explanation for those aspects of the fined result.
In the topology graph, we mark adjacencies where the
actual positions correspond to zero-crossings of the re-
spective orientation parameter. The shape of each region
In configuration space - for example, the number of ro-
tations of each gear required to traverse the doubly con-
nected regions for a pair of gearwheels - is determined by
counting the traversals of marked links on a path around
the region boundary.

3 Applications and Extensions

Kinematic topology by itself is often a sufficient descrip-
tion for reasoning about kinematics. For example, the
kinematic topology of gearwheels describes succinctly
their behavior as two objects which can turn in coordi-
nated motion. Note, however, that kinematic topology
Is not a substitute for place vocabularies: the behavior
of a clock escapement, for example, is only described
as a doubly connected free-space region, which doesn't
capture its function.

An interesting aspect is the fact that kinematic topol-
ogy often contains ambiguities. This reflects the ambi-
guity which arises in human reasoning based on rough
sketches. For problem solving, it can be an advantage
because it points out the possibilities which could be
achieved given that the details are chosen in the proper
way. In the example of a sketch of gearwheel behavior
the interpretation of a functioning set of gears requires
very particular shapes and dimensions of the gearteeth,
which are far more likely to be violated than satisfied.
Yet, the gearwheel interpretation is the only one which

Figure 6. Convex segments of an arbitrary curve can be
approximated by sequences of pieces, and concave seg-
ments by sequences of cauvities.

exhibits a remarkable and useful function not achieved
by most other objects, and is therefore chosen as the
desired interpretation.

The algorithm described in this paper has been im-
plemented as part of a research project in automatic
mechanism design and has proven robust and efficient.
Depending on the example, it is between 500 and 5000
times faster than computing a complete place vocabu-
lary, and can work using less precise object descriptions.
However, much more important than the advantages in
speed are the generalizations that the method permits.

3.1 Generalizations

An important aspect of kinematic topology is that it
IS easily generalizable. The topological computation can
be extended without great difficulty to devices with more
than two degrees of freedom. Because bubbles and obsta-
cles are tokens, their nature does not change in higher-
dimensional configuration spaces. An important differ-
ence, however, lies in the potentially much higher num-
ber of ambiguities which may result in such a device.

Another important generalization is that of object
shapes. For reasons of conciseness, we have so far as-
sumed objects to be polygons. The same theory applies,
however, to arbitrary boundary shapes, where pieces are
defined by convex segments of the boundary, and cav-
ities by concave ones. Imagine the boundary approxi-
mated by a very fine polygon, as shown in Figure O.
Each convex segment is then a sequence of convex ver-
tices (pieces), and each concave segment one of concave
vertices (cavities). The obstacles generated by the adja-
cent pieces form one contiguous region of blocked space,
and the bubbles generated by the adjacent cavities gen-
erate ' contiguous region of free space, possibly broken
in half by the succession of the infinite obstacles between
them. As the grain size of the approximation becomes
infinitely fine, these conjoined regions become the Kkine-
matic topology of the complex shapes.

Topologically, both the succession of obstacles or bub-
bles can equally well be modelled by a single obstacle and
a single bubble, generated by pieces and cavities formed
by the convex and concave segments of the boundary
curve. The condition for the existance of the combined
obstacle is that at least one of its component exists,
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which is the case if and only if the one at the extremum
of the radius exists. |If the point of extreme radius is
taken as the "vertex" of the combined piece, it will cor-
rectly predict the existence of the combined obstacle. An
equivalent result holds for combined cavities.

Note that this generalization requires the same divi-
sion into segments of equal curvature that has already
been proposed on independent grounds by vision re-
searchers such as ( [Brady and Asada, 1986]).

3.2 The Bubble Algorithm

The kinematic topology can be used as the basis for an
eflicient algorithm to compute place vocabularies. The
place vocabulary is derived from the kinematic topology
by determining the shape of the region boundaries as
sequences of different contact relationships, and marking
their qualitative directions, which define the inference
rules for qualitative analysis (as described in [Faltings,
1987b, Faltings, 19897]).

When the kinematic topology is given, the place vo-
cabulary computation can ignore most of the actually
Impossible contact relationships, as the regions of kine-
matic topology contain only legal contacts. The place
vocabulary can now be computed in time proportional
to its actual size. We also do away with an explicit rep-
resentation of configuration space and all the expensive
computation associated with it. Preliminary tests indi-
cate that on typical examples, the bubble algorithm will
be about 100 times faster than earlier implementations
of the place vocabulary theory. More importantly, the
topology-based computation can potentially be general-
ized to more than two simultaneous degrees of freedom,
three dimensions, and complex boundary curves.

4 Conclusions

In this paper, we have introduced the concept of kine-
matic topology as a robust model of commonsense rea-
soning about kinematics from very approximate informa-
tion. Kinematic topology is an abstraction of the place
vocabulary concept and distinguished by the fact that (i)
It is almost always ambiguous, but with a manageable
number of possibilities, (ii) requires significantly less in-
formation for its computation, but (iii) is not powerful
enough to allow an actual envisionment of the behav-
lor. The prime motivation for the development of the
concept was the need for a causal analysis of kinematic

topology in an ongoing project to develop a system for
automatic mechanism design.

Kinematic topology can be computed in a purely qual-
itative way, and is the first representation of kinematics
with this property. It stands in contradiction to the ear-
lier poverty conjecture that no purely qualitative kine-
matics is possible ( [Forbus et al , 1987]), and gives an
indication of the extent to which we may succeed in the
challenge of disproving this negative prediction.

As a practical application, kinematic topology is being
used as a basis for place vocabulary computation meth-
ods which are much more eflicient and general than was
possible before.
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