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A b s t r a c t 

This paper describes a model-based diagnostic 
system architecture which has test generation 
capabil i ty and which learns f rom experience. 
It acquires experiential knowledge f rom single 
experiences in the form of compact symptom-
failure association rules and component failure 
records. W i t h this capabil i ty, when it has had 
a similar experience in the past, it can diag­
nose the fai lure faster and more efficiently by 
suggesting better tests. Even if it has not had 
any similar experience in the past, it can d i ­
agnose the fai lure using its knowledge about 
the structure and behavior of the target sys­
tem. Therefore, this architecture gives a solu­
t ion to both the knowledge acquisit ion bott le­
neck problem of heuristic rule based systems 
and the efficiency problem of model-based sys­
tems. Exper imenta l results show this technique 
to be practical and promising. It has been im­
plemented in P R O L O G in a concise form. 

1 I n t r o d u c t i o n 

Advances in modern design and manufactur ing technol­
ogy have enabled us to build devices of high complex­
ity. When those devices fai l to funct ion correctly, they 
need to be diagnosed for faul ty components. Because 
the complexity of diagnosis increases w i t h increasing de­
sign complexity, the efficient automat ion of this task is 
essential. 

There have been two dist inct approaches to automate 
the diagnostic task. One is based on heuristic-based ex­
pert system methods, such as the one in the M Y C I N sys­
tem [Shortliffe, 1976], The other is based on model-based 
methods, i.e. first-principle methods. Heuristic-based 
expert system methods use symptom-fai lure association 
rules gathered by interview f rom experts experienced in 
a domain. Model-based methods use design descriptions, 
such as the structure and behavior descriptions. 

Heuristic-based expert systems can guide efficient d i ­
agnosis for known cases. However, they lack robustness 

*This work was mainly done while the author was at the 
Computer Science Department of Stanford University as a 
visiting scholar for the 1987-1988 academic year. 

because they cannot deal w i th unexpected cases not cov­
ered by heuristic rules. Their knowledge bases are ex­
pensive to create, since interviewing requires substantial 
effort, as does coding and debugging of the knowledge 
base. Maintenance is also dif f icult , and even a small de­
sign change in the target device may require thorough 
review of the knowledge base. 

Model-based methods include conventional Boolean-
Logic-level diagnostic methods, such as D-algorithrn 
[Roth et a/., 1967]. Since they are specialized in Boolean 
logic-level, they suffer f rom a scaling problem in deal­
ing w i th modern complex devices which have mil l ions of 
logic-level subcomponents. Recently introduced model-
based methods, such as [Genesereth, 1984], [Davis, 
1984], [deKleer and Wi l l iams, 1987], [Reiter, 1987], and 
[Poole, 1986], provide declarative device-independent de­
sign representation languages and device-independent 
diagnostic procedures. As a consequence of this gen­
erality, they are capable, ut i l iz ing hierarchical designs, 
of diagnosing complex devices. Moreover, they can be 
used for wider classes of devices, including non-digital 
and non-electronic devices. They are more robust than 
heuristic-based systems, because they can deal w i th un­
expected cases not covered by heuristic rules. Their 
knowledge bases are less expensive to create and flexible 
in regard to design changes since they are a straight­
forward representation of designs which are likely to be 
found in modern C A D environments. They do not re­
quire rule verif ication, which can be a serious problem 
in wr i t ing heuristic rules. They can provide a working 
diagnostic system when the target device is ready for de­
l ivery because they do not require any field experience 
for bui ld ing the knowledge base. 

However, model-based diagnostic systems are generaly 
not as efficient as heuristic-based ones since they require 
more complex computat ion. Furthermore, they are not 
always able to pinpoint a fai l ing component f rom the 
available symptom informat ion and sometimes require 
many tests to reach a conclusive decision. This is be­
cause they lack heuristic knowledge. 

This paper introduces a model-based diagnostic sys­
tem architecture w i th test generation capabil i ty, one 
which is able to learn f rom its experience to improve 
its performance incrementally. It is basically model-
based, and it learns heuristic knowledge f rom experience 
in terms of symptom-failure association rules and com-
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ponent failure models. It also caches general rules for 
model-based diagnosis and test pattern generation for 
efficient computat ions. 

In this paper, the author is making a single fault as­
sumption. T h a t is, it is assumed that there is only one 
malfunct ioning component in a fai l ing device. This as­
sumpt ion makes it easy to rule out certain failure hy­
potheses using test results. The author also makes a 
non-intermittency fault assumption. Tha t is, it is as­
sumed that the behavior of a fai l ing device does not 
change dur ing the diagnosis process. This enables lo­
calizing a faul t by testing the device after the symptom 
appears. In addi t ion, the method is based on the na­
ture of the fault locality. It is usually true that most 
of the faults which occur in a device are local to some 
part icular subcomponents. Tha t is to say, a failed sub­
component tends to fai l again in a similar manner in 
the future. This supports the use of fault models and 
symptom-fai lure association rules which are learned by 
analyzing past experience. 

This paper is organized as follows. The first section to 
follow uses a simple example to present the general struc­
ture and general flow of the proposed diagnostic system. 
The second section explains inference procedures. Ex­
perimental results, indicat ing promising data, are shown 
in the th i rd section. The last section evaluates and dis­
cusses the u t i l i t y of the approach. 

2 Architecture 
2.1 S t r u c t u r e 

A generic diagnostic system architecture described here 
is based on a previously reported study of the knowl­
edge acquisit ion task of an expert system for telephone 
switching system diagnosis [Koseki et a/., 1987]. Mainte­
nance experts can quickly identify a faulty component if 
they have solved a similar problem in the past. If a novel 
symptom arises, the expert consults w i th the design de­
script ion manuals to f ind out how the system is supposed 
to work, and what components might have gone wrong 
which would have caused this failure to occur. Then he 
performs several tests to localize the fault and repairs 
the fai l ing component. Interestingly, when he again con­
fronts a similar case in the future, he can diagnose the 
failure using fewer tests w i thout consulting the design 
description. 

The proposed architecture structure is shown in Fig­
ure 1. The model-based diagnostician diagnoses the fail­
ure w i th the correct design model, which includes de­
script ion of the structure and behavior of the target 
device. The experience-based diagnostician uses expe­
r ient ial knowledge represented in the form of heuristic 
symptom-failure association rules. If some faulty sub­
component behavior is known to be probable, symptom-
failure association rules for such behaviors may be pro­
vided in advance by using the test pattern generator. 
The test pattern generator generates tests to discrimi­
nate fa i l ing components f rom working components. The 
model-based diagnostician caches its inference reasoning 
result in the justification cache, which is a set of gen­
eralized compact rules based on previously experienced 

cases. The test pat tern generator also caches generated 
test patterns in a test pattern cache. Th is archi tecture is 
novel in the sense tha t it uti l izes bo th mod el-based and 
experience-based diagnosticians, and it acquires knowl­
edge incremental ly f rom past experience. 

2.2 D e s i g n R e p r e s e n t a t i o n 

Th is section summarizes the design model representa­
t ion. A simplif ied telephone swi tch ing system, shown in 
Figure 2, is used as an example. A l l descriptions are ex­
pressed in the fo rm of f irst order predicate calculus, w i th 
the conventions used in [Genesereth and Nilsson, 1987]. l 

The design description for the system consists of de­
scriptions of its st ructure and its behavior. The struc­
ture descript ion consists of nine subcomponents and in­
terconnections between them. The fo l lowing facts define 
the connections. The dash character - is used as an in ­
fix operator to represent a por t w i th a component and 
a subport name. The first line states tha t ou tpu t -po r t 
Up of subscriber Sub(n) is connected to input -por t Upln 
of Line Ci rcu i t LC(n). The remaining lines describe the 
other connections in a similar way. 

The behavior descriptions are specified by a set of rules. 
The connection behavior, w i th zero t ime delay, is given 

^ h e lower case letters stand for universally quantified 
variables, the upper case letters for constants, A for logical 
conjunction, V for logical disjunction, -* for negation, and <= 
and =* for logical implication. 
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ate the non-failure components. Th is test-and-analyze 
cycle is repeated unt i l the number of suspects is signifi­
cant ly reduced or unt i l there is no test available. The sys­
tem then suggests a repair of the remaining suspects. If 
this experience-based diagnosis phase fails to identi fy the 
faulty components, i.e. the suspect list becomes empty 
or the problem is not fixed by the suggested repair, a 
model-based diagnosis is conducted. 

The model-based diagnostician works similarly, except 
that it does not use any failure models. When it gets a 
suspect list for a given symptom, it caches a compact 
generalized rule in the justification cache. It also iter­
ates a test-and-analyze cycle unt i l it gets small number 
of suspects or runs out of available tests. Every t ime it 
generates a test, it caches the test pattern for future use. 
Af ter successfully repairing the faul ty component, the 
system learns f rom the case. It analyzes the symptom 
and identifies the faulty behavior of the fai l ing compo­
nent. It then stores a generalized symptom-fai lure asso­
ciation rule based on that analysis. 

by the rule given below. This rule states that por t q has 
value v at t ime t, if port p is connected to port q, and 
port p has value v at t ime t. 

The behavior descriptions for the subcomponents are 
given by the rules listed below. For simplicity, it is as­
sumed that al l of the subcomponents have zero t ime de­
lay. The first rule states that output Down of switch SW 
is x at t ime t, if input State of SW is n l -n2 , input Up 
of SW is x, and SW is working correctly for inputs State 
and Up and output Down. The remaining rules state the 
behaviors for Line Ci rcu i t LC. 

2.3 G e n e r a l F l o w 

The general flow of the diagnostic system is shown in Fig­
ure 3. The system first tries experience-based diagnosis, 
and if it fails to diagnose the given symptom, it performs 
model-based diagnosis. The experience-based diagnosti­
cian first obtains a list of suspects, using the previously 
learned symptom-fai lure association rules. The obtained 
suspect list is sorted in order of failure probabil i ty, ac­
cording to the failure records. This ordering gives higher 
pr ior i ty in testing to the more probable failures than for 
the less probable failures. When the number of suspects 
is greater than one, a test is generated by the test pat­
tern generator for the failure remaining at the top of the 
suspect list. The test result is then analyzed to exoner-

In the example switching system, suppose that when 
Sub( l ) made a call to Sub(2), noise was heard in addi­
t ion to the voice at Sub(2) at t ime 100. The symptom 
may be described as: 

Suppose that the system has no in i t ia l experiential 
knowledge. The experience-based diagnostician would 
then fai l to identi fy the failure, and the system would 
perform a model-based diagnosis. The model-based 
diagnostician gives a list of suspects in terms of the 
subcomponent working-condit ions which should have 
worked correctly. In our example here, it gives a list 
in a disjunct ion of negated subcomponent working con­
dit ions: 

Note that the order of components in the list is arbi trary. 
A test pat tern then is generated for the component be­
havior on the top of the list. It is assumed here that 
al l the observable points and the control lable points are 
subscriber ports. In this case, the test pat tern gener­
ator gives a test pat tern to test LC(1) behavior, which 
inputs Voice to Sub( l ) -Up and tries to observe Voice at 
Sub(4)-Down. Suppose that noise was observed again. 
This gives another set of suspects, that is, 

By the single fault assumption and the non-
mtermit tency assumption, those two suspect sets are 
merged to one suspect list [Singh, 1988]: 
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Next , a voice is i npu t to Sub(3)-Up and a check is made 
for a voice at Sub(4)-Down. Suppose tha t a normal out­
pu t voice is observed. Th is exonerates the second dis­
j u n c t i o n for SW in the suspect set.2 Af ter ver i fy ing 
tha t the diagnosis was correct by repair ing or replac­
ing the LC(1), the system learns a generalized, compact 
symptom- fa i lu re association rule for the in i t ia l symptom, 
in the fo l lowing fo rm: 

The system also records the fai lure in format ion in the 
form of 1). 
The last argument is the fai lure number counter and it 
holds the number of the t imes the system has experi­
enced th is fau l t in the past. Th is in format ion repre­
sents the fa i lure p robab i l i t y and w i l l be used by the 
experience-based diagnost ic ian for sor t ing the suspect 
list. 

Af te r the system has learned f r om a first experience, 
i t is capable of deal ing w i t h s imi lar symptoms more effi­
ciently. Suppose tha t there is another s imi lar but differ­
ent s y m p t o m , such as when Sub(3) made a call to Sub(4), 
noise was heard at Sub(4) at another t ime. Th is symp­
tom matches the previously learned association rule, and 
produces a suspect l ist w i t h only one suspect, which 
is Failed(LC(3), [Upln(Voice)] , UpOut(Noise)). The test 
pa t te rn generator generates a test to check this faul ty 
behavior. I t tr ies to observe Noise at Sub(2). I f this 
fau l ty behavior is conf i rmed, it is concluded that LC(3) 
is fau l ty and produc ing a noisy ou tpu t , and the system 
suggests a repair to fix i t . 

3 Inference Procedures 
The diagnosis inference and the test pat tern generation 
is based on an abduc t ion inference method called res­
olution residue [Finger and Genesereth, 1985] which is 
used in D A R T [Genesereth, 1984] and S A T U R N [Singh, 
1987]. Th is method is funct ional ly equivalent to the con­
straint suspension technique of [Davis, 1984] and the 
Theor is t f ramework of [Poole, 1986]. Th is inference 
procedure uses a domain theory, a goal, and a spec­
i f icat ion of facts called assumablcs, which can be as­
sumed to prove the goal. It deduces a set of assum-
able facts wh ich , together w i t h the domain theory, en­
tai ls the goal. To learn symptom- fa i lu re association rules 
and to generate generalized rules for caching, the residue 
inference method is extended using Explanation Based 

2Under an assumption that if an instantiated behavior 
of a component is correct, the behavior rule in general is 
correct. Although this assumption is not always true, it is 
not a relevant problem to the discussion here. A more formal 
treatment of this situation is given in [Singh, 1988]. 

Generalization (EBG) techniques [Mi tche l l et a/., 1986, 
Dejong and Mooney, 1986]. The extended inference pro­
cedure is called R E B G . 

E B G method uses a goal concept and a training ex­
ample w i th the domain theory to compose an explana­
t ion tree, which explains why the t ra in ing example is 
an instance of the goal concept, given the domain the­
ory. The explanat ion tree is then generalized to obta in a 
general concept for the goal in terms of operational cri­
teria. In other words, this method performs two func­
tions. F i rs t , i t examines the given inference explanat ion 
and re-expresses it in a compact rule fo rm in terms of 
operat ional cr i ter ia. Performance gain here is main ly 
a t t r ibutab le to this funct ion. The EBG method then 
generalizes the obtained rule by replacing instant iated 
variables by as many variables as possible. Th is func­
t ion makes the learned rule applicable to other similar 
cases. R E B G performs those funct ions in residue com­
puta t ion. 

3 .1 M o d e l - B a s e d D i a g n o s i s 

The input to the model-based diagnosis procedure is 
a design descript ion D and a symptom descript ion < 
/ , - > 0 >, where / is a conjunct ion of input (contro l ­
lable) por t values and O is an expected ou tpu t (observ­
able) port value. The model-based diagnostician pro­
duces a set of possible failures (suspects) in terms of 
working-condit ions W for the components. In apply ing 
the residue procedure to a model-based diagnosis prob­
lem, the domain theory corresponds to design descrip­
t ion D and input por t values /. Assumable facts specify 
working condit ions W for the components, and the goal 
is ou tput por t value O. A set of assumable work ing con­
dit ions W is then computed so that is 
t rue. Th is is equivalent to Since de­
sign D is assumed to be correct, this formula corresponds 
to the diagnosis rule Note tha t this pro­
cedure does not require any subcomponent fai lure mod­
els. This design was considered impor tan t because of 
the extreme dif f icul ty of assuming fai lure models, such 
as stuck-at-faults, in general devices. 

In the previous example, I and O are as follows: 

) 

Note that O is the expected correct value instead of the 
actual fai l ing value. The assumable facts specify the 
work ing condit ions for components and have the fol low­
ing form: 

W i t h this procedure, work ing condit ions W are com­
puted for this form, which, together w i t h design D and 
input / , entai l ou tpu t O. The procedure employs the 
depth-f i rst directed resolution strategy of [Genesereth 
and Nilsson, 1987]. It works backward to prove the goal 
by assuming some of the assumable facts. It concludes 
the work ing condit ions W for the ou tpu t O to be correct: 
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Negation of this proposit ion produces the desired suspect 
list. 

3.2 K n o w l e d g e C a c h i n g b y R E B G 

Model-based reasoning is expensive because it involves 
f inding a proof for the correct output value by examin­
ing the structure and behavior of the device. One way 
to avoid this computat ion is to compile al l of the cases 
into symptom-fai lure association rules in advance. This 
method may be feasible if probable subcomponent mis­
behaviors are known in advance. 

As an alternat ive to compi l ing al l the cases, this sys­
tem part ia l ly compiles and caches its model-based knowl­
edge into compact generalized rules for the cases it has 
experienced. The REBG procedure generates such rules 
while it computes residue. It is essential to store general­
ized rules rather than instance rules in order to cover the 
entire class of symptoms related to cases experienced. 

3.3 A s s o c i a t i o n - R u l e G e n e r a t i o n b y R E B G 

After a successful model-based diagnosis, REBG also 
generates symptom-fai lure association rules to be used 
by the experience-based diagnostician. REBG computes 
a fai l ing component behavior, which can be assumed 
to prove the faul ty output . This procedure generates 
a compact generalized rule at the same t ime to cover the 
entire class of related cases. In this case, the assumable 
facts are the behavior of the fai l ing component. 

3.4 T e s t - P a t t e r n G e n e r a t i o n 

The test-pattern generation a lgor i thm is based on the 
work of S A T U R N system [Singh, 1987]. It is an algor i th­
mic test generation system, similar to the D-algor i thm. 
However, it works on designs specified at arbi t rary ab­
straction levels rather than at the Boolean logic level. 
The procedure takes as inputs the design description 
D and the subcomponent input -output behavior to be 
tested < ls,Os >. It propagates Is to a set of control­
lable input values /, and Os to a set of observable output 
values O, by using the residue method. To increase ef­
ficiency, it util izes the control strategies of conditional 
values and consistency checking. Condi t ional values are 
used to propagate only useful values to the observable 
output ports. Consistency checking is used to eliminate 
inconsistent alternatives in earlier stages of the search 
process. 

The experience-based diagnostician uses this algo­
r i t hm to propagate a faulty behavior of the suspected 
subcomponent, while the model-based diagnostician 
propagates a correct behavior. Since this computat ion 
is also expensive, after it generates a test pattern for a 
suspect, the system caches the result for future use. 

4 Expe r imen ta l Results 

An experimental system was implemented as a PRO­
LOG meta-interpreter on a DEC-20 computer, using 
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the EBG implementat ion technique described in [Kedar-
Cabel l i and McCarty, 1987, Hi rsh, 1988]. W i t h gen­
eral resolution residue procedures, assumed facts must 
be checked against the theory for consistency, a task 
which is not ordinar i ly semi-decidable, but fortunately, 
this task is not necessary here for caching and generat­
ing association rules. Th is is because it is obvious that 
assuming the correct behaviors of components does not 
cause any inconsistency w i th other rules in the theory. 

The system was tested on several designs including the 
example switching system. In the example mentioned 
in the previous section, the number of tests required to 
identi fy a fault by the model-based diagnostician was 
three, while the experience-based diagnostician required 
only one test. 

The performance improvement achieved wi th knowl­
edge caching for a model-based diagnosis is shown in 
Table 1. It shows CPU times for a full-adder circuit , a 
circuit called D74, which computes a sum of products3 , 
the example telephone switching system SW, and a 7-
segment decoder circui t 7SEG. The first and second 
rows, labeled SUM and C O U T , are for the two outputs 
f rom full-adder circuit. The CPU times are measured in 
msec for the compiled meta-interpreter. The first col­
umn shows the t ime used in the normal model-based 
diagnosis. The second column is for the enhanced pro­
cedure R E B G , which produces generalized rules at the 
same t ime. The th i rd column shows the actual perfor­
mance improvement achieved wi th cached rules. These 
examples show that the REBG funct ion is approximately 
five times slower than the regular residue procedure. Im­
provement wi th the cached rules is by a factor of ten. 

In the circuits w i th some reconvergent fanout points, 
simple backward inference may include redundant com­
putat ion of the same values. This redundancy can be 
checked and eliminated in the generalization process. 
When the system assumes an assumable fact, it checks 
its uniqueness against previously assumed facts. Simi­
larly, when the system composes a rule w i th operational 
facts, it checks its uniqueness against previously used 
operational facts. Redundant facts are el iminated and 
not included in the learned rules. A 7-segment decoder 
contains many fanout reconvergent points. Redundancy 
checking was effective in e l iminat ing redundancy in gen­
erated rules for this circuit. Using the rules generated 
wi thout redundancy checking, it took 24 ms to compute 
suspects, while it took 10 ms when using rules w i th re­
dundancy checking. 

5 Discussion 

When the experience-based diagnostician has had a sim­
ilar experience in the past, it can diagnose the failure 
faster and more efficiently by suggesting better tests. 
The number of tests to discriminate one suspect out of 
n suspects is log2 n, when every test is chosen to reduce 
the number of suspects by half. It is n in the worst case, 
and 1 in the best case. For target devices which have a 
fault locality, the number of suspects enumerated by the 

3The circuit is also used in [Gcnesereth, 1984] and [Davis, 
1984] to describe their systems. 



experience-based diagnostician is kept small. Since the 
number of tests to localize a fault depends on the num­
ber of suspects, the experience-based diagnostician may 
find faults w i th fewer tests than wi l l the model based 
diagnostician. 

The experimental results show that caching improves 
efficiency significantly. It has been pointed out that 
when too many rules are learned, the caching technique 
does not always improve the efficiency. It is true that 
the larger the cache becomes, the longer it takes to find 
an appropriate rule. However, even in the worst case, 
where all of the possible combinations of the symptoms 
are cached, the complexity of computing suspects by 
learned rules never exceeds the complexity involved when 
using the model-based diagnostician. This is because the 
learned rules are simply compact forms of an inference 
chain, obtained in the model-based inference. There is 
not much indexing overhead in looking up the learned 
rules because the rules are indexed by their first argu­
ments which hold output port names. 

To l im i t the performance degradation which wi l l be 
caused by an increase in the number of learned rules, 
only frequently used rules should be retained. Those 
which have not been used for a long t ime may be for­
gotten. This corresponds to the strategy described in 
M in ton , 1988] for using a u t i l i t y function. This treat­

ment is considered to be practical in the diagnosis do­
main because of i ts tendency to have fault locality; that 
is, components which have once failed in the past tend to 
fail again and similar symptoms are l ikely to reappear. 

This proposed method has a notable advantage in cor­
rectness. Whi le it has a comparable efficiency to conven­
t ional rule-based expert system approaches, it provides 
a sound and complete diagnosis. Therefore, it solves 
the serious rule verif ication problems of conventional ap­
proaches. Since learned rules are generated from the 
behavior and structure model of the target equipment, 
they are guaranteed to be sound. A set of learned rules in 
the experiential knowledge base may be incomplete, but 
the entire diagnosis system gives a complete diagnosis 
because the symptoms not covered by the experience-
based diagnostician are diagnosed by the model-based 
one. 

6 Conclus ion 

This paper has described a model-based diagnostic sys­
tem architecture w i th test generation capability, one 

which learns from experience. I ts architecture offers 
a solution to the two main problems encountered in 
heuristic-rule based systems, brittleness and knowledge 
acquisition bottlenecks. It also solves the efficiency prob­
lem in model-based systems. Future testing of the sys­
tem on an actual communication system is in the plan­
ning stages. The general residue inference procedure and 
the learning procedure used in the system are currently 
incorporated into a PROLOG based knowledge program­
ming framework PEACE [Koseki, 1987]. At present, the 
system works on one level of abstraction. Future work 
is to include the use of hierarchical design models for 
diagnosis and for test pattern generation. 
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