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A b s t r a c t 

A majo r step in model-based fau l t diagnosis is 
the generation of candidate submodules which 
migh t be responsible for the observed symp­
t o m of ma l func t ion . A f te r the candidates are 
determined, each subrnodule can then be exam­
ined in t u r n . It is useful to be able to choose 
the most l ikely candidate to focus on first so 
tha t the fau l ty parts can be located sooner. 
We propose here a systematic method for in i ­
t ia l candidate order ing tha t takes in to account 
the s t ruc ture of the device and the discrepancy 
in ou tpu ts between the observed and expected 
values. We also give effective methods for a sys­
tem to adjust i ts focus according to new infor­
mat ion acquired dur ing diagnosis. Under the 
single fau l t assumpt ion, the average length of 
diagnosis (number of submodules evaluated) is 
O ( l o g m ) , where m is the number of submod­
ules. 

1 I n t r o d u c t i o n 

Diagnost ic reasoning based on s t ruc tura l and funct ional 
descript ions of a device, usual ly referred to as the "de­
sign m o d e l " , has been shown to be viable by many Al 
researchers [Cantone et a/., 1983, Chandrasekaran and 
M i lne , 1985, Davis et a/., 1982, de K'leer and Wi l l iams, 
1987, Genesereth, 1984, Reiter, 1987]. A thorough sur­
vey on model-based t roub leshoot ing can be found in 
[Davis and Harnscher, 1988]. In this approach reasoning 
uses " f i rst p r inc ip les" , i.e., knowledge of how the device 
works rather than knowledge of how i t fai ls. The knowl­
edge needed for such a system is wel l -s t ructured and 
usually available when a device is designed. A model-
based system avoids many of the dif f icult ies of an em­
pi r ica l fai lure-based diagnosis system, e.g., in knowledge 
acquis i t ion, diagnosis capabi l i ty (ab i l i t y to diagnose pre­
viously unseen faul ts) and system general izat ion. 

*This work was supported in part by the Air Force Sys­
tems Command, Rome Air Development Center, Criffiss Air 
Force Base, New York 13441-5700, and the Air Force Office 
of Scientific Research, Boil ing A F B DC 20332 under Con­
tract No. F30602-85-C-0008, which supports the Northeast 
Art i f ic ial Intelligence Consortium (NAIC) . 

Since a model-based faul t diagnosis system reasons d i ­
rectly on the structure and funct ion of a device, it usually 
follows a simple control s t ructure. It starts f rom the top 
level of the structural hierarchy of the device and tries 
to f ind outputs that violate their expectations. Af ter de­
tect ing the violated outputs , the system uses s t ructura l 
descriptions to find a subset of components, which might 
be responsible for the observed symptom of mal funct ion, 
at the next lower hierarchical level. Th is step, known as 
candidate generation, is a major step in faul t diagnosis. 
Th is process is then continued w i th each of the candi­
date components in tu rn unt i l the faul ty parts are found. 
It is desirable to have a diagnostic system which is able 
to choose the most l ikely candidate to focus on f irst so 
that the faul ty parts can be located sooner. 

Previous work on diagnosis based on st ructure and be­
havior contains suggestions on in i t ia l candidate order ing. 
Davis [1984] developed a technique called assumption re­
laxation for diagnostic reasoning. The technique uses an 
ordered list of hypotheses (the kinds of things that can 
go wrong) and starts to generate candidates under the 
first hypothesis. I f this fails to f ind the faul ty par t , i t 
gives up the assumption and considers subsequent hy­
potheses in order. This approach, in some sense, orders 
candidates impl ic i t l y according to various assumptions, 
such as single point of fai lure, bridges, mul t ip le points 
of fai lure, etc. However, when more than one candidate 
is generated using a part icukir hypothesis, there is no 
ordering among the generated candidates. 

In our previous work [Taie ct a/., 1987], candidates 
are expl ic i t ly sorted by their fault possibilities which are 
derived f rom their relat ionship to bad pr imary outputs . 
A subrnodule has a higher fault probabi l i ty if it con­
tr ibutes to more bad pr imary outputs . Here we extend 
this statement to its dual a subrnodule has a lower fault 
probabi l i ty i f i t contr ibutes to more good pr imary out-
puts. 

Most exist ing model-based t roubleshoot ing systems 
focus pr imar i ly on diagnosing failures caused by a sin­
gle faulted component. The G D E (general diagnostic 
engine) system [de Kleer and Wi l l i ams , 1987] provides 
a mechanism for dealing w i t h mu l t ip le faul ts. Th is is 
achieved by using an assumption-based t r u t h mainte­
nance system ( A T M S ) [de Kleer, 1986], which maintains 
bo th derived conclusions and their suppor t ing assump­
tions. In G D E , the hypotheses are generated in two 
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steps. First , whenever two contradictory predictions are 
made for the same point in a device, a conflict is con­
structed by tak ing the union of assumptions support ing 
the predictions. The complete set of hypotheses is then 
generated such that each hypothesis, represented as a set 
of false assumptions, has a non-empty intersection w i t h 
every conflict. Th is process is computat ional ly expen­
sive and G D E incorporates the not ion of min imal i ty in 
both conflicts and hypotheses to reduce the complexity. 
However, even the set of min imal hypotheses grows ex­
ponential ly in the worst case. G D E also uses addit ional 
measurements to discriminate hypotheses and proposes 
the best next measurement based on m in imum entropy. 
The opt imal measurement is the one that wi l l minimize 
the expected entropy of hypothesis probabil i t ies result­
ing f rom the measurement and, as a result, w i l l minimize 
the expected number of measurements. 

Whi le measurements are used to differentiate among 
the competing hypotheses in G D E , they can be used to 
conf irm or disconfirm suspected components too. The 
results of measurements also provide a diagnostic sys­
tem w i t h informat ion about the relative faul t probabi l ­
ities of other candidates. To make use of these kinds of 
informat ion, we develop candidate reordering and el imi­
nat ion methods. They modify the candidate list dur ing 
the diagnosis according to the results of measurements 
in a way that actual faul ty modules are moved forward 
in the l ist and modules which now become impossible to 
be responsible for any violations are removed f rom the 
list. 

Section 2 of this paper is devoted to in i t ia l candidate 
ordering. Section 3 explains candidate reordering and 
el iminat ion using examples. Section 4 gives an average 
case analysis of reordering and el iminat ion. 

2 I n i t i a l Cand idate Order ing 
We now describe heuristics for selecting the most l ikely 
candidate. They are derived by analyzing the circuit in 
a manner analogous to that employed by a human di­
agnostician. Typ ica l examples are used to explain our 
points. In what follows, an output of a device is said 
to be bad or violated if for a certain assignment of val­
ues to the inputs, the observed output value is different 
f rom the expected output value. (An incorrect output is 
marked wi th a cross in the figures.) An output is good 
or corroborated if it is not violated. The expected value 
of an output can be computed by knowing the funct ion 
of the device. For simplici ty, in this section, we concen­
trate only on the modules A's and B's in the fol lowing 
figures and assume other modules are wel l- funct ioning. 

Intui t ively, we have the fol lowing two heuristics: (a) a 
submodule is more likely to be faulty if it is connected to 
more bad pr imary outputs and (b) a submodule is less 
likely to be faul ty if i t is connected to more good pr imary 
outputs. Whi le these rules seem plausible, they need to 
be further refined. For example, both A and B in Fig­
ure 1 are connected to the same number of bad pr imary 
outputs, i.e., one, and the same number of good pr imary 
outputs, i.e., zero. They are equally likely to be faulty 
according to the above two rules. A closer look reveals 
that A has two outputs connecting to the bad pr imary 

Figure 1: Number of submodule outputs connected 
to bad pr imary outputs: A has two, B and 
C have one each. 

Figure 2: Number of covered bad pr imary outputs: 
A covers p1 and B covers p1 and p2. 

output while B has only one. This makes A more likely 
to be faul ty than B since either of A's two outputs may 
be responsible for the observed output discrepancy and 
the probabi l i ty of A being faul ty is approximately the 
sum of the probabil i t ies of each of its outputs being bad 
(assuming they are independent). This example shows 
that we have to consider submodule outputs indiv idu­
ally and combine them in some way. Summing up the 
to ta l number of bad (good) pr imary outputs connected 
to each output of a submodule works fine in this case. 

The circuit in Figure 2 shows that the number of bad 
pr imary outputs covered by a submodule is more im­
por tant than the number of potent ia l bad outputs of a 
submodule. Here both A and B have two outputs, and 
each of them connects to one of the bad pr imary outputs. 
The to ta l number of bad pr imary outputs connected to 
A's outputs, i.e., two, is the same as tha t of B's outputs. 
This t ime the dist inct ion lies not on the to ta l number 
but the different number of the bad pr imary outputs 
connected to their outputs. The fact that B's outputs 
cover two bad pr imary outputs while A's outputs cover 
only one gives us some evidence that B is more likely to 
be the faulty submodule. Thus in addit ion to summa­
t ion, we also need to know the union of the sets of bad 
pr imary outputs connected to the outputs of a submod­
ule. 

Figure 3 shows the insufficiency of the previous rules. 
None of the rules wi l l discriminate A and B since they 
both cover the same bad and good pr imary outputs. 
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Figure 3: Outputs a2' b and d are good interactive 
(G I ) , while a1 and c are non-GI . In this 
example, the in i t ia l ordering derived is (C 
A B D) . 

Nevertheless, the fact that B's only output connects to 
both the bad and good pr imary outputs shows evidence 
of its being good and makes B less l ikely to be faulty. 
This makes it necessary to distinguish between the two 
types of outputs, ou tput a1 of A and output b of B. An 
output of a module is said to be good interactive (or GI) 
if it connects to any good pr imary output (e.g., a2 and 
6); otherwise, it is said to be non-GI (e.g., a1). GT out­
puts are considered more l ikely to be good than non-GI 
outputs. 

These examples show that the two heuristics using 
submodules as references are not adequate. We have 
to consider the indiv idual outputs of submodules before 
considering the submodules themselves. In order to com­
bine the results obtained from the indiv idual outputs of 
a submodule, we need to use additions and set unions 
w i th special t reatment on Gl outputs. 

We present in the fol lowing an algor i thm which assigns 
a rank to a submodule S according to these heuristics. In 
addi t ion, we also make use of heuristics about the kinds 
of faults that are more frequently encountered when the 
device has been funct ioning for a while. Here we assume 
that single faults occur more often than other faults. 

1. Let B and G be the sets of bad and good pr imary 
outputs , respectively. Assume o\, 0 2 , . . . , Ok are the 
outputs of submodule 5. 

2. For each oi, compute bi and gi, which are the sets 
of bad and good pr imary outputs o i connects to, 
respectively. Note that if gi — 0 then oi is a non-GI 
ou tput . 

3. Compute the rank of 5, r = ( r 1 , r2, r3, r4, r 5 ) . 

which is the tota l number of 
bad pr imary outputs (wi thout repetit ion) con­
nected to the outputs of 5. 

which is the total number of 
bad pr imary outputs (wi thout repetit ion) con­
nected to the non-GI outputs of 5. 

which is the to ta l number of bad 
pr imary outputs (w i th repeti t ion) connected to 
the outputs of S. 

which is the same as r2 but 

which is the negative of the 
tota l number of good pr imary outputs (wi th 
repetit ion) connected to the outputs of S. 

4. Determine whether 5 is a candidate under the fault 
assumption we are using according to its rank. For 
example, 5 is a candidate under the single fault as­
sumption (SFA) if r1 = |B | , or 5 is a candidate 
under the unidirectional ports assumption (UPA) 1 

After each of the candidate submodules has been iden­
tified and assigned a rank, we can now order them ac­
cording to their ranks. We use r1 as the first key, r2 as 
the second key, etc. and order candidates in decreasing 
ranks. The reasons we select these keys are explained as 
follows. The first key, r1 orders candidates by the num­
ber of different bad pr imary outputs covered by their 
outputs. The more bad pr imary outputs a module cov­
ers, the more likely its being faulty can explain the ob­
servation. The second key, r2, counts the number of 
bad primary outputs covered by the non-GI outputs of 
a module since non-GI outputs have higher probabil i­
ties of being bad. The th i rd and fifth keys, r3 & r5, 
are straightforward realization of the heuristic implied 
by Figure 1. The fourth key, r4, serves as a tie breaker 
for the th i rd key. 

To see that the rank assignments actually reflect the 
heuristics described above, we review the circuit in Fig­
ure 3 again according to the algor i thm. A l l modules, 
except D, have one output connected to the bad pr i ­
mary output , p1, so r1(A) = r1(B) = r1(C) = r3(A)= 
r3(B) = r3(C) = 1 and n(D) = r 3 ( D ) = 0. Both 
modules A and C have only one non-GI output con­
nected to the bad primary output , so r2(A) = r4(A) = 1 
and r2(C) = r4C) = 1. On the other hand, B and 
D have no non-GI outputs so r2(B) = r4(B) = 0 
and r2(D) = r4(D) = 0. Similarly, r5(A) — - 1 , 
r5(B) = - 1 , r5(C) = 0 and rr0(D) = - 1 . Thus we 
have r(C) > r(A) > r(B) > r(D), which is consistent 
w i th the result derived f rom our heuristics. 

3 Candidate Reordering and 
Elimination 

While the ini t ia l candidate ordering looks promising, 
there is no guarantee that actual faulty components are 
ordered in the front of the candidate list. In fact, for any 
device and good/bad output pat tern, it is not difficult 
to come up w i th a counterexample on which our method 
does poorly in the sense that the actual faulty compo­
nent is put at the last few places in in i t ia l ordering. For 
example, in Figure 3, the culpri t might actually be B 
which is the last candidate (under SFA) according to our 
in i t ia l ordering. To address this problem, we reorder or 

1 Unidirectional ports assumption assumes that the inputs 
always receive data and outputs always send data, not the 
other way around. In this paper, we also implicitly assume 
UPA as we assume SFA. 
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Figure 4: An example for candidate e l iminat ion: (A 
B C D E) is the assumed in i t ia l ordering 
w i th E the culpr i t . 

el iminate candidates whenever some intermediate values 
are measured. 

We now explain the reordering principle by consider­
ing the example of Figure 3. Assume there is only one 
fault and B is the culpr i t (or the actual faul ty module). 
As shown in previous section, the in i t ia l candidate list is 
(C A B) . Af ter we check the current candidate C by mea­
suring its inputs and outputs, we wi l l f ind that the first 
input of C is consistent w i th the expected value derived 
from pr imary inputs but the second input is not since B 
is the one at faul t . Now we can use this informat ion to 
shove B to the front of candidate list and A to the tai l 
because B (A) becomes more (less) l ikely to be faulty. 
Therefore, the candidate list becomes (B A) and B wi l l 
be checked next. Th is shows that B is not the last one 
to be checked due to candidate reordering although it 
was at the last place ini t ia l ly. More formally, candidate 
reordering works as follows. Af ter the inputs of current 
candidate are measured, candidates connected to its in­
correct inputs are shoved to the front of candidate l ist 
and candidates connected to correct inputs but not to 
incorrect inputs are shoved to the ta i l . 

To explain candidate e l iminat ion, we use the example 
in Figure 4. We assume E is the only culpr i t and the 
in i t ia l candidate l ist is ( A B O D E ) . Since E is the only 
culpr i t , the measured value of A 's output is consistent 
w i th its predicted value and A is said to be non-error-
propagatzng. Module A cannot be responsible for the 
observed error in p2 nor can B. This is because, B's out­
put must go through A to affect p2 but A's output has 
been known to be consistent w i th what it is supposed to 
be. Therefore B can be removed f rom the candidate list. 
In contrast to B, D cannot be removed at this t ime due 
to the existence of a path passing C to p2. This leaves 
(O D E) as the new candidate l ist. By the same argu­
ment, D w i l l be removed after C's output is found to be 
consistent. As a result, E becomes the only candidate 
left and the diagnosis at this level can be terminated. 
In short, whenever a candidate is found to be non-error-
propagating, candidates that no longer have a path to 
violations are removed f rom the candidate list. 

To have more effective reordering and el iminat ion re­
sults and a more efficient terminat ion condit ion for d i ­
agnosis, the predictions have to be updated after new 

Figure 5: A faulty ful l adder w i th measured input 
and output values (parenthetical values 
are predictions). 

measurements are made. This makes it necessary to gen­
eralize the notion of violat ion and corroboration to inter­
mediate points as well as pr imary outputs. Reordering 
and el iminat ion are most effective since they are based 
on the most current predictions. Also diagnosis can be 
terminated when there are no more violations, except 
those at outputs of known faul ty components. This way 
the diagnostic procedure is able to f ind a minimal set 
of faul ty components to account for the observed misbe­
havior of a device, which is similar to the "diagnosis" de­
fined according to the principle of parsimony in [Reiter, 
1987]. It is worth point ing out that since the predictions 
are updated as measurements are made, violations and 
corroborations are updated correspondingly. Due to the 
effect of canceling faults, a corroborat ion may later be­
come a violat ion (and vice versa) and hence components 
which were not candidates before may need to be added 
to the candidate l ist. 

We shall demonstrate in the fol lowing ful l adder exam­
ple [Genesereth, 1984] h ow the aforementioned ideas can 
be used in a diagnostic procedure. Suppose the symp­
tom of the ful l adder is that w i th inputs X Y Z = 101 it 
produces outputs SC = 00 and assume both X O R gates 
XI and X2 are faulty. The expected values at intermedi­
ate points and pr imary outputs are shown in parentheses 
in Figure 5. Since output C is a violat ion and output S 
is a corroborat ion, the in i t ia l candidate list is ( A l A2 
Ol X I ) . The output of A l , W, is measured to be 0 and 
A l i s non-error-propagating. The A N D gate A l and all 
upstream components which can no longer be responsi­
ble for the violat ion at C are el iminated (here only Al is 
excluded) and the candidate list becomes (A2 Ol X I ) . 
Next, A2's output , V, is measured to be 0 which is differ­
ent f rom its predicted value, 1. The second input of A2 , 
U, is then measured to determine if A2 is at fault and 
the measurement is 0 due to the assumption that XI is 
faulty. Therefore A2 is found not faul ty and the candi­
date l ist becomes ( X I O l ) because U is an inconsistent 
input of A2 and XI is shoved to the f ront . The predic­
tions are updated according to the measurements at U 
and V as shown in Figure 6. Since C is not a violation 
now, O1 is not a candidate any more and the candidate 
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Figure 6: A ful l adder w i t h requested intermediate 
measurements. 

list becomes ( X I ) . However, S becomes a violation so X2 
is now added to the candidate list making it (X2 X I ) . 
Since all inputs and outputs of XI and X2 are known at 
this point , X1 and X2 are found faul ty and there remains 
no more candidate. The diagnosis terminates w i th the 
conclusion that both X1 and X2 are faulty. 

In this simple example, i t turns out that all interme­
diate points are measured before a conclusion can be 
reached. It should be noted that in general it is not 
necessary to check all components when reordering and 
el iminat ion techniques are used. We shall show in the 
next section that these techniques are indeed helpful at 
least for the single fault cases. 

4 Analys is 

To show that candidate reordering and el imination re­
ally help shorten the length of a diagnosis, we com­
pute the average number of components that have to 
be checked before the culpr i t is found, under single fault 
assumption (SFA). Note that under SFA, shoving candi­
dates connected to incorrect inputs of current candidate 
to the front of candidate l ist is equivalent to removing 
other candidates as far as the length of diagnosis is con­
cerned. The culpr i t is guaranteed to be among those 
being shoved to f ront since they contr ibute to some vi­
olations while others don' t . Throughout the analysis, 
the probabi l i ty d is t r ibut ion is assumed to be uniform. 
For example, each candidate has equal failure rate and 
a candidate has a probabi l i ty of 0.5 of being non-error-
propagating if it is not faulty. 

Let / (n) denote the average length of a diagnosis (num­
ber of candidates checked) when there are n candidates. 
l(n) is given by the fol lowing recurrence relation: 

The first term represents the case that the first candi­
date is faulty (w i th probabi l i ty 1/n) and only one com­
ponent is checked. If the first candidate is intact (wi th 
probabi l i ty (n — l ) / n ) and non-error-propagating (w i th 
conditional probabi l i ty 0.5), 0 to n —2 candidates may be 
eliminated (i.e., 1 to n — 1 candidates are left) and each 
case has an equal probabil i ty of l / ( n — 1). The average 
number of checked components for this case is computed 
by the second term. Similarly, if the first candidate is 
intact (probabil i ty = (n — l ) / n ) and error-propagating 
(probabil i ty = 0.5), 1 to n— 1 candidates may be shoved 
to the front of candidate list. This is described by the 
last term. The above expression simplifies to 

If there are m candidates in i t ia l ly (m is bounded by 
the number of components), the average length of d i ­
agnosis using candidate reordering and e l iminat ion is 

(log m). Th is is much better than random or sequential 
examinat ion whose expected length is -1/2m. 

5 Discussion 
Our system accomplishes the m in ima l diagnosis for mu l ­
t iple faults by tak ing addi t ional measurements at inter­
mediate points. As in G D E , we assume complete v is ib i l ­
i t y of the diagnosed device. Unl ike G D E , we avoid the 
problem of enumerat ing the power set of components by 
pu t t i ng all potent ia l faul ty components in one candidate 
l ist and man ipu la t ing the list according to our reordering 
and e l iminat ion principles which take advantage of both 
violat ions and corroborat ions. We have also shown the 
effectiveness of these techniques by analyzing the aver­
age length of diagnosis for single fau l t cases. However, 
the measurement selection method of G D E does have 
the advantage of becoming a b inary search procedure on 
a cascaded chain of components where our methods fai l 
to be d iscr iminat ing. 

The techniques of candidate order ing, reordering and 
e l iminat ion have been implemented in our Versati le 
Maintenance Exper t System ( V M E S ) [Shapiro et a/., 
1986, Taie et a/., 1987]. V M E S is a model-based fau l t d i ­
agnosis system which assists inexperienced maintenance 
technicians in t roubleshoot ing electronic c i rcui ts. As ex­
pected, the system shows reasonable improvement in 
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diagnostic performance after these techniques are em­
ployed. 

A l though our average case analysis does not depend on 
the in i t ia l ordering of the candidates, presumably a good 
in i t ia l ordering would prevent a diagnosis f rom going in to 
worst cases. Incidental ly, our in i t ia l candidate ordering 
scheme can be easily augmented to include other infor­
mat ion useful for a system to produce a better in i t ia l 
ordering. A l l we need to do is introduce new keys rep­
resenting the new informat ion in appropriate positions. 
For example, if we have informat ion about the failure 
rate and test cost of each component type, we can sim­
ply add them as, say, the second and fourth keys. 

We view diagnosis as a progressive process. Un t i l the 
culpri ts of a malfunct ioning device are found, a diagnos­
tic system must be able to produce a new answer and 
confirm the answer. The system is allowed to make mis­
takes but should not only recover f rom them but also 
discover useful informat ion f rom them. The candidate 
reordering and el iminat ion techniques are mot ivated by 
these ideas. They are somewhat l imi ted due to the need 
for measuring values at intermediate points of the diag­
nosed device. Our future work wi l l include the devel­
opment of similar "self-adjusting" search methods that 
are based on other kinds of informat ion which can be ac­
quired dur ing diagnosis. The behavior of the diagnosed 
device after some boards are replaced or swapped, and 
its responses to different pr imary (external) inputs, are 
currently under consideration. 
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