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Abstract

We consider two approaches to giving seman-
tics to first order logics of probability. The first
approach puts a probability on the domain, and
Is appropriate for giving semantics to formulas
involving statistical information such as "The
probability that a (typical) bird flies is greater
than .9." The second approach puts a prob-
ability on possible worlds, and is appropriate
for giving semantics to formulas describing de-
grees of belief, such as "The probability that
Tweety (a particular bird) flies is greater than
.9."  We show that the two approaches can
be easily combined, allowing us to reason in a
straightforward way about statistical informa-
tion and degrees of belief. We then consider
axiornatizing these logics. In general, it can
be shown that no complete axiomatization is
possible. We provide axiom systems that are
sound and complete in cases where a complete
axiomatization is possible, showing that they
do allow us capture a great deal of interesting
reasoning about probability.

1 Introduction

Consider the two statements "I he probability that a bird
chosen at random will fly is greater than .9" and "The
probability that Tweety (a particular bird) flies is greater
than .9." It is quite straightforward to capture the sec
ond statement by using a possible-world semantics along
the lines of that used in [FH88, FHM®88, Nil8f>]. Namely,
we can imagine a number of possible worlds such that
the predicate Flies has a different extension in each one.
Thus, Flies(Tweety) would hold in some possible worlds,
and not in others. We then put a probability distribution
on this set of possible worlds, and check if the set of pos-
sible worlds where Flics(Tweety) holds has probability
greater than .9.

However, as pointed out by Bacchus [Bac88b, Bac88a],
this particular possible worlds approach runs into dif-
ficulties when trying to represent the first statement,
which we may believe as a result of statistical informa-
tion of the form "More than 90% of all birds fly." What
Is the formula that should hold at a set of worlds whose
probability is greater than .9? The most obvious can-

didate is perhaps Vx(Bird(x) => Flies(x)). However, it
might very well be the case that in each of the worlds we
consider possible, there is at least one bird that doesn't
fly. Hence, the statement Wx(Bird(x) => Fltes(x)) holds
iIn none of the worlds (and so has probability 0). Thus it
cannot be used to represent the statistical information.
As Bacchus shows, other straightforward approaches do
not work either.

There seems to be a fundamental difference between
these two statements. The first captures statistical infor-
mation, and the second captures what has been called a
degree of belief [Bac88b, Kyb88]. The first statement
seems to assume only one possible world (the "real”
world), and in this world, some probability distribution
over the set of birds. It is saying that if we consider
a bird chosen at random, then with probability greater
than .9 it will fly. The second statement implicitly as-
sumes the existence of a number of possibilities (in some
of which Tweety flies, while in others Tweety doesn't),
with some probability over these possibilities.

Bacchus [Bac88b] provides a syntax and semantics for
a first order logic for reasoning about statistical informa-
tion, where the probability is placed on the domain. This
approach has difficulties dealing with degrees of belief.
For example, if there is only one fixed world, in this world
either Tweety flies or he doesn't, so Flics(Tweely)) holds
with either probability 1 or probability 0. In particular,
a statement such as "The probability that Tweety flies is
between .9 and .95" is guaranteed to be false! Recogniz-
ing this difficulty, Bacchus moves beyond the syntax of
his logic to define the notion of a belief Junction, which
lets us talk about the degree of belief in the formula a
given a knowledge base ft. However, it would clearly
be useful to be able to capture reasoning about degrees
of belief within a logic, rather than moving outside the
logic to do so.

Tn this paper, we describe two first-order logics, one for
capturing reasoning about statistical information, and
another for reasoning about degrees of belief. We then
show how the two can be easily combined in one frame
work, allowing us to simultaneously reason about statis-
tical information and degrees of belief.

We go on to consider issues of axiomatizability. Bac-
chus is able to provide a complete axiomatization for his
language because he allows probabilities to take on non-
standard values in arbitrary ordered fields. Results of a

Halpern 1375



companion paper [AH89] show that if we require prob-
abilities to be real-valued (as we do here), we cannot in
general hope to have a complete axiomatization for our
language. We give sound axiom systems here which we
show are complete for certain restricted settings. This
suggests that our axiom systems are sufficiently rich to
capture a great deal of inleresting reasoning aboutl prob-
ability.

2 Probabilities on the domain

We assume that we have a first-order language for rea-
soning about some domain. We take this language to
consist of a collection ® of predicate symbols and func-
tion symbols of various arities (as usual, we can iden-
tify constant symbols with functions symbols of arity 0).
Given a formula ¢ in the logic, we also allow formulas of
the form w,(¢) > 1/2, which can be interpreted as “the
probability that a random z in the domain satisfies ¢ 1s
greater than or equal to 1/2”. We actually extend this to
allow arbitrary sequences of distinct variables in the sub-
script. To understand the imtuition behind this, suppose
the formula Son(z, y) says that z is the son of y. Now
consider the three terms w,(Son(r,y)), wy(Son(z,y)),
and w¢, ,y(Son(z,y)). The first describes the probabil-
ity that a random z i1s the son of y; the second describes
the probability that x is the son of a random y; the third
describes the probability that a random pair (7, y) will
have the property that z 1s the son of y.

We formalize these ideas by using a two sorted lan-
guage. The first sort consists of the Tunction symbols
and predicate symbols in @, together with a countable
family of object variables z°,y°,.... 'The second sort
consists of the bmary function symbols + and x, which
represent addition and multiphcation, constant symbols
0 and 1, representing the real numbers 0 and 1, binary
relation symbols > and =, and a countable family of
field variables =7, y/, .... (We drop the superscripts on
the variables when it 1s clear from context what sort they
are.) Terms of the first sort describe elements of the do-
main we want to reason about. lT'erms of the sccond sort
typically represent probabilities, which we want to be
able to add and multiply.

We now define object terms, field terms, and formu-
las simultaneously by induction. We form object terms,
which range over the domain of the first-order language,
by starting with object variables and closing off un-
der function application, so that if f 1s an n-ary func-
tion symbol in ® and t;,...,1, are object terms, then
J(t;,...,1ta) 18 an object term. We form field terms,
which range over the reals, by starting with 0, 1, and
probability terms of the form wgz(y), where ¢ is an ar-
bitrary formula, and then closing off under + and x, so
that t; + t, and t; x i, are field terms i {; and {, are.
We form formulas in the standard way. We start with
atomic formulas: if P is an n-ary predicate symbol in @,
and {;,...,!, are object terms, then /(¢y,...,1,) is an
atomic formula, while if ; and {5 are field terms, then
ty = {5 and {; > 1, are atomic formulas. We sometimes
also consider the situation where there is an equality
symbol for object terms; in this case, if {; and {, are
object terms, then t; = {5 is also an atomic formula. We
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then close off under conjunction, negation, and universal
quantification, so that if ¢, and ¢, are formulas and = is
a (field or object) variable, then ¢ A ¢2, ~p;, and Vzo,
are all formulas. We call the resulting language C,(®);
if it mcludes equality between object terms, we call it
LT(D).

We define v, =, and 3, in terms of A, =, and V as
usual. In addition, f {; and i, are two ficld terms, we use
other standard abbreviations such as {; < {5 for i, > {;,
ty 2 1y f(‘!l"tl >, Vi) =1y, ) 2 |/2 for(1+l)xi] > 1,
and so on.

The only differences between our syntax and that of
Bacchus is that we write wgz(¢) rather than {©]z, and, for
simplicity, we do not consider what Bacchus calls meca-
surtng functions (functions which map object terms into
ficld terms), and the only field functions we allow are +
and x. The language 1is still quite rich, allowing us to ex-
press conditional probabilities, notions of independence,
and statistical notions; we refer the reader to [BacR8b]
for examples.

We define a type 1 probability siructure to be a tuple
(D, x, 1), where 1) is a domain, 7 assigns to the predi-
cate and function symbols in @ predicates and functions
of the right arity over I) (so that (I, ) is just a stan-
dard first-order structure), and i is a discrete probability

function on I). That is, we take p to be a mapping from
D to the real interval [0, 1] such that 3, p(d) = 1.
For any A C D, we define p(A) = 3, 4 n(d)." Given
a probability Tunction 5, we can then define a dis.
crete probability function ™ on the product dowmain
D™ consisting of all n-tuples of elerments of 1) by taking
it (dy, ..oy dy) = p(dy) x ... x p(dy). Define a valuation
to be a function mapping cach object variable into an
element of 1) and each field varniable into an element of
IR (the reals). Given a type | probability structure M
and valuation v, we proceed by induction to associate
with every object (resp. field) term { an element [t} 57 ,)
of D (resp. IIt), and with every formula ¢ a truth value,
writing (M, v) = ¢ if the value true is associated with ¢
by (M, ). The definitions follow the lines of first-order
logic, so we just give a few clauses of the definition here,
leaving the remainder to the reader:

'"The restriction to discrete probability functions is made
here for case of exposition only. We can allow arbitrary prob-
ability functions on the domain by considering inner mea-
sures, as is done in [I'HMB88, F1189]. It rmght seem that for
practical applications we should further restrict to uniform
probability functions, 1.e., ones that assign equal probability
to all domain elements. Although we allow uniform probabil-
ity functions, and the language 1s expressive enough to allow
us to say that the probability on the domain is uniform, we
do not require them. There are a number of reasons for this.
For one thing, there are no uniform probability functions in
countable domains. (Such a probability function would have
to assign probability 0 to each individual element in the do-
main, which means by countable additivity it would have to
assign probability 0 to the whole domain.) And even if we re-
strict attention to fimite domains, we can construct two-stage
processes (where, for example, one of three urns is chosen at
random, and then some ball in the chosen urn is chosen at
random) where the most natural way to assign probabilities
would not assign equal probability to every ball [Car50].



o (M,v) Ety =1, iff [ty](ar,0) = [t2](a1,0)-
o (M,v) EVz%p iff (M,v|z°/d]) = ¢ foralld € D,

where v[x”/d] is the valuation which is identical to
v except that it maps =° to d.

¢ ['w(z.,...,z.)(W)](M,u) = u"({(dh . -,du) :
(Af, ‘U[.’L‘l /d] yeoreoylp /dn])  m— (p})

The major difference between our semantics and that
of Bacchus is that Bacchus allows nonstandard probabil-
ity functions, that take values in arbitrary ordered fields,
and are only finitely additive, not necessarily countably
additive. Our probability functions are standard: they
are real-valued and countably additive. (Bacchus allows
such nonstandard probability functions in order to ob-
tain a complete axiomatization for his Janguage. We
return to this point later.)

We write M | ¢ if (M,v) | ¢ for all valuations v,
and write = ¢, and say that ¢ 1s valitd with respect to
type 1 structures, i\l M = ¢ for all type 1 probability
structures M.

As an example, suppose the language has only onc
predicate, the binary predicate Son, and we have a
structure M = ({a, b, c}, 7, n) such that n(Son) consists
of only the pair (a,b), n(a) = /3, p(b) = 1/2, and
i(c) = 1/6. Let v be a valuation such that »(z) — a
and v(y) = c¢. Then it is easy to check that we have

lwe(Son(z, ¥))arvy = 0, [wy(Son(z, ¥))my = 1/2,
and [wg, ,y(Son(xr, y))](M:") = 1/6. Thus, if we pick a
random x from the domain and fix y to be ¢, the proba-
bility that x 1s a son of y 18 0: no member of the domain
18 a son of c. If we fix £ to be a and pick a y at random
from the domain, the probability that = is a son of y 1s
1/2, which is exactly the probability that y = b. Finally,
if we pick pairs at random from the domain, the proba-
bility of picking a pair (z, y) such that = is a son of y is
1/6.

This example shows that the syntax and semantics of
this logic are well suited for reasoning about statistical
information. But, as discussed in the introduction, the
logic is not well snited for making statements about de-
grees of belief about properties of particular individuals.
It is easy to see that for any closed formula ¢, such as
Fly(Tweety), we have =y wg(e) = 0V wz(p) = 1 for
any vector T of distinct variables. Thus, a formula such
as .9 < wg(Flies(Tweely)) < .95 is guaranteed to be
false. In order to make sense out of such formulas, we
must put probabilitics on possible worlds.

3 Probabilities on possible worlds

We have seen that in a precise sense type | probability
structures are inappropriate for reasoning about degrees
of belief. In practice, it might well be the case that the
way we derive our degrees of belief is from the statistical
information al our disposal. For example, if we know
that w,(Bird(z) = Flies(z)) > .9 in a given structure,
and we know that T'weety is a bird, then we might con-
clude that the probability that Tweety flies at least .9.
However, as pointed out by Bacchus and others, this type
of reasoning is franght with difficulties. For example, if
we have more specific information about Tweety, such

as the fact that Tweety is a penguin, we no longer want
to draw the conclusion that the probability that Tweety
flies is at lcast .9. Bacchus provides some heuristics for
deriving such degrees of belief. While this is a very in-
teresting topic to pursue, it also seems appropriate to
construct a formal model that allows us to directly cap-
lure such degrees of beliel. Such a formal model can
be constructed in a straightforward way using possible
worlds, as we now show.

The syntax for a logic for reasoning about possible
worlds is essentially the same as the syntax used in the
previous scction. Starting with a set ® of function and
predicate symbols, we form more complicated formulas
and terms as before except that instead of allowing prob-
ability terms of the form wz(y), where £ is some vector
of distinct object variables, we only allow probability
terms of the form w(¢), interpreted as “the probability
of ¢”. Since we are no longer going to put a probabil-
ity distribution on the domain, it does not make sense
to talk about the probability that a random choice for
7 will satisfy ¢. It does make sense to talk about the
probability of ¢ though: this will be the probability of
the set of possible worlds where ¢ 1s true. We call the
resulting language L,(®); il it includes cquality betwceen
object terms, we call it L5 (®).

More formally, a type 2 probabslity structure s a tuple
(D,S, 7, 1), where D) is a domain, S is a set of siales
or possthle worlds, for cach state s € S, n(s) assigns
to the predicate and function symbols in @ predicates
and functions of the nght arity over I) for each state
s € 5, and u 1s a discrete probability function on 9.
Note the key difference between type 1 and type 2 prob-
ability structures: in type 1 probability structures, the
probability 1s taken over the domain ), while in type 2
probability structures, the probability is taken over the
set S of states. Given a type 2 probability structure M,
a state 3, and valuation v, wec can associate with ev-
ery object (resp. field) term t an element [t]ipg 4 4) of D
(resp. 1), and with every formula ¢ a truth value, writ-
ing (M, s,v) | ¢ il the value true is associated with ¢
by (M,s,v). Note that we now need the state to pro-
vide meanings for the predicate and function symbols;
they might have different mecanings in cach state. Again,
we just give a few clauses of the definition here, which
should suflice to indicate the similanties and differences
between type | and type 2 probability structures:

o (M,s,v) =ty = o il [th)(a1.6.0) = [L2)(n,5,0)-

o (M,s,v) | V¢ ilf (M,s,v[z°/d]) = ¢ for all
del,

o [w(@)arsey = n({s'€S5:(Ms,v)FE p})

We say M k= @ il (M,s,v) | ¢ for all states s in M
and all valuations v, and say ¢ 1s valid with respect to
type 2 siructures, and write =, ¢, if M |= ¢ for all type
2 probability structures M.

As expecled, in type 2 probability struclures, il is
completely consistent for the probability that Tweety
flies to be between .9 and .95. A sentence such as
9 < w(Flics(Tweely)) < .95 is truc in a structure M
(independent of the state s) precisely if the set of states
where I'lics(Tweely) is true has probability between .9
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and .95. However, there is no straightforward way to
capture statistical information using L9.?

Possible extensions: We have made a number of sim-
plifying assumptions in our presentation of type 2 proba-
bility structures. We now briefly discuss how they might
be dropped.

1. Just as in the case of type 1 probability structures,
we can allow arbitrary probabibty functions, not
just discrete ones, by using inner measures.

2. We have assumed that all functions and predicates
are flerible, 1.e., they may take on different mean-
mmgs at each state. We can easily designate some
functions and predicates to be rigid, so that they
take on the same meaning at all states.

s

. We have assumed that there is only one domain.
We could instead view each state s as a first-order
structure, with its own domain [),. In this case,
7(s) would assign to each predicate and function
symbol in ® a predicate (resp. function) of the right
arity on D,. Let ) = UgesD, U {Ll}, wherec 1L is a
distinguished element not in Ugesl);. We now take
a valuation to be a function that associates with
cach field variable an element of IR, as before, and
with cach object variable an element of /). Given
a predicate on I),, we can view il as a predicate
on I) with the same extension. We can also ex-
tend an n-ary function f on /), to one on I by
defining f(d,,...,d.) = 1L if some d; ¢ D,. We
can now define the semantics of terms and formu-
las in a straightforward way, along the same lines as
before. Note that universal quantification must be
taken over the appropriate domain, so we have:

(M,s,v) = V%@ iffl (M,s,»[z°/d]) =y foralldeD,.

4. We have assumed that there i1s only one probabibty
measure . on the set of states. We may want to
allow uncertainty about the probability functions.
We can achieve this by associating with cach state a
(possibly different) probability function on the set of
states (cf. [I'1I88, Hal89]). Thus a structure would
now consist of a tuple (), S, 7, {p® : s € §}); in
order to evaluate the value of the (field) term w(y)
in a state s, we usc the probability function pu?.

4 Probabilities on the domain and on
possible worlds

In the previous sections we have presented structures to
capture two different modes of probabilistic reasoning.

>We remark that there is a sense in which we can trans-
late back and forth between domain-based probability and
possible-world-based probability. For example, there is an ef-
fective translation that maps a formula ¢ in LT to a formula
@ in language £3, and a mapping from type 1 structures M
to type 2 structure M ' such that M | o if M’ = ¢'. Similar
mappings exist in the other direction. (Details can be found
in [AH89].) However, we would still argue that £, is not the
right language for reasoning about probability over possible
worlds, while £3 is not the rnight language for reasoning about
probability over the domain.
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We do not want to say that one mode is more "right"
than another; they both have their place. Clearly there
might be situations where we want to do both modes of
reasoning simultaneously. We consider three examples
here.

Example 4.1: Consider the statement "the probability
that Tweety files is greater than the probability that a
random bird flies." This can be captured by the formula

w(Flhies(Tweety)) > w,(Flies(x)).

Example 4.2: For a more comphicated example, con-
sider two statements like “The probability that a ran-
dom bird flies is greater than .99” and “The probability
that a random bird flies s greater than .9.” An agent
might consider the first statement rather unlikely to be
true, and so take it to hold with probability less than .2,
while he might consider the second statement exceeding
likely to be true, and so take it to hold with probability
greater than .95. We can capture this by combining the
syntax of the previous two sections Lo get:

w(wy(Flics(x) | Bird(z)) > .99) < .2)A
w(wz(I'lics(z) | Bird(z)) > .90) > .95),

where a conditional statement
such as w,([l'lies(x)| Bird(z)) > r is an abbreviation

for w.(I'lies(z) A Bird(x)) > rw, (Bird(z)).’

Example 4.3: A final example 1s given by Miller’s
principle [Sky80], which can be viewed as a way of con-
necting degrees of belief with probabilitiecs on the do-
main. Perhaps the most obvious connection we can ex-
pect to hold between an agent’s degree of belief in ¢(a),
for a particular constant a, and the probability that (1)
holds for a random mdividual z 1s equality, as character-
ized by the following equation:

w(p(a)) = we(o(z)). (+)

Miller’s principle says something a little different; it says
that for any real number r,, the conditional probability
of p(a), given that the probability that a random z sat-
isfies ¢ is 71, is itsell 7. Assuming that the real varniable
r does not appear free in @, we can express (this instance
of) Miller’s principle in our notation as

Vrw(p(a) | (w.(e(x)) = 1)) = 1]

We examine the connection between Miller’s principle
and (*) after we define our formal semantics.

Given a set ® of function and predicate symbols let
L3(®) be the language that results by allowing probabil-
ity terms both of the form wz(p), where T is a vector of
distinct object variables, and of the form w(¢); we take
L5 (®) to be the extension of L3(®) that includes equal-
ity between object terms. To give semantics (o formulas
in L3(®) (resp. L5 (®)), we will clearly need probability

functions over both the set of states and over the domarn.

"More typically, the conditional probability of A given
B is taken to be the probabtnhity of A N B divided by the
probability of B. We have cleared the denominator here to
avold having to deal with the difficulty of dividing by 0 should
the probability of I3 be 0.



Let a type. S probability structure be a tuple of the form
(D,S,n, up, ns), where 1), 5, and 7 are as for type 2
probability structures, up is a discrete probability func-
tion on /) and g is a discrete probability function on S.
Intuitively, type 3 structures are obtained by combining
type 1 and type 2 structures.

Given a type 3 probability structure M, a state s,
and valuation v, we can give semantics to terms and
formulas along much the same lines as in type 1 and
type 2 structures. For example, we have:

¢ [w(:r:;,...,x.)(w)](hl,s,v) — ﬂ"[l)({(dl, .o 1dn) :
(M, s,v|r,[d1,...,zp/da]) E ¥}).

o [w(v)rmeny =ns({s'€S:(M s v)E p}).

As it stands, in a given type 3 probability structure, we
have one fixed probability function on the domain. This
means that the truth of a formula such as w.(@(z)) =7
IS independent of the state; it is either true in all states
or false in all states. Thus (using =3 to denote validity
in type 3 structures) we immediately get:

Lemma 4.4:

b= Vr{(w(we(p(r)) = 7) = 1)V (w(w.(p(z)) = r) = 0)].

This means that type 3 structures as we have defined
them are not expressive enough to capture the intuition
behind Example 4.2, since the conditional probability
will be the same in all states. The only way for the agent
to believe that the statement "The probability that a
random bird flies is greater than .99" holds with prob-
ability less than .2 is for the statement to be false at
all worlds (and thus hold with probability 0). Similarly,
the only way for the agent to believe that the statement
"The probability that a random bird flies is greater than
.90" holds with probability greater than .95 is for it to
be true at all possible worlds.

We can easily extend type 3 structures to deal with
this problem. We simply allow the probability function
on the domain to be a function on the state; thus at each
state s we would have a (possibly different) probability
function p}, on the domain. When computing the value
of a field term such as w;(p(x)) at state 9, we use the
function p,;). With this change, a statement such as
"The probabilty that a random bird flies is greater than
.99" can be true at some worlds and false at others, thus
allowing us to better capture our intuitions here. Other
extensions of type 3 structures, along the lines discussed
for type 1 and type 2 structures, are possible as well.

In type 3 structures as we have defined them, there is
a close connection between Miller's principle and (*). In
fact, as the following theorem shows, they are equivalent.

Proposition 4.5 : 3 |w(p(a)) = w.(p(a))]
Vrw(e(a)|(w=(e(z)) = 1)) = 7]

We remark that this result depends crucially on the
fact that the probability on the domain is the same at
ever}' state. If we drop this assumption, then neither
direction of the implication necessarily holds.

The idea of there being two types of probability has
arisen in the literature before. Skyrms [Sky80] talks
about first and second-order probabilities, where first-
order probabilities represent propensities or frequency
essentially statistical information while second order

il

probabilities represent degrees of belief. These are called
first- and second-order probabilities since typically one
has a degree of belief about statistical information (this
is the case in our second example above). Although
Ea(‘b) allows arbitrary alternation of the two types of
probability, the semantics does support the intuition
that these really are two fundamentally different types
of probability.

5 On obtaining complete
axiomatizations

In order to guide (and perhaps help us automate) our
reasoning about probabilities, it would be nice to have
a complete deductive system. Unfortunately, results of
[AlI89] show that in general we will not be able to ob-
tain such a system. We briefly review the relevant results
here, and then show that we can obtain complete axiom-
atizations for important special cases.

5.1 Decidability and undecidability results

All the results in this subsection are taken from [A 1189],
T he first result is positive:

Theorem 5.1: If® consists only of unary predicates,
then the validity problem Jor Ly(®) with respect to type
1 probability structures is decidable.

The restrictions made in the previous result (to a lan
guage with only unary predicates, without equality be-
tween object terms) are both necessary. Once we al-
low equality in the language, the validity problem is no
longer recursively enumerable (r.e.), even if ® is empty.
And a binary predicate in ® is enough to guarantee that
the validity problem is not r.e., even without equality
between object terms.

Theorem 5.2:

/. For all &, the validity problem Jor LT(®) with re-
spect to type 1 structures is not r.e.

2. /I ® contains at least one predicate of artty greater
than or equal to two, then the validity problem for
L1(d) with respect to type 1 probability structures is
not r.e.

Once we move to L,, the situation is even worse. Even
with only one unary predicates in ®, the validity problem
for L’,Q(d?) Is not r.e. If we have equality, then the validity
problem is not r.e. as long as ¢ has at least one constant
symbol. (Note that ¢ = (w(¢) = 1) is valid if ¢ contains
no nonlogical symbols that is, ¢ does not contain any
function or predicate symbols, other than equality so
we cannot make any nontrivial probability statements if
¢ is empty.)

Theorem 5.3:

[. Il ¢ contains at least one predicate of arity greater
than or equal to one, then the validity problem for
L,() with respect to type S probability structures is
not r.e.

validity ~ problem  for
2 probability  structures

2. If & 1s nonemply, then the
l:;":(‘]") with reapecl to  type

IS not r.e.
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These results paint a rather discouraging picture as
far as complete axSomatizations go. If a logic is to
have a complete recursive axiornatization, then the set
of valid formulas must be r.e. (we can enumerate them
by just carrying out all possible proofs). Thus, for all
the cases cited in the previous theorems for which the
validity problem is not r.e., there can be no complete
axiornatization.*

There is some good news in this bleak picture. In
many applications it suffices to consider structures of
size bounded by some N (or of size exactly N). In this
case, we get decidability.

Theorem 5.4: /| we restrict to finite structures of size
at most N then, for all®, the validity problem for LT (®)
(resp., L5(®), L5(P)) with respect to type 1 (resp., type
2, lype 3) probability structures is decidable.

A fortiori, the same result holds if equality is not in
the language. We also get decidability if we restrict to
structures of size exactly N.

The restriction to bounded structures Is necessary
though.

Theorem 5.5: For all ® (resp., for all nonempty @,
for all ®) the validity problem for LT(®) (resp., L5 (P),
L3 (P)) with respect to type 1 (resp., type 2, type S) prob-
ability structures of finite size is not r.e.

5.2 An axiom system for probability on the
domain

Although the previous results tell us that we cannot
in general get a complete axiornatization for reasoning
about probability, it is still useful to obtain a collection
of sound axioms that lets us carry out much of our rea
soning.

In order to carry out our reasoning, we will clearly
need axioms for doing first-order reasoning. In order to
reason about probabilities, which we take to be real num-
bers, we need the theory of real closed fields. An ordered
field is a field with a linear ordering <. A real closed
field is an ordered field where every' positive element has
a square root and every polynomial of odd degree has a
root. Tarski showed [Tar51, Sho67] that the theory of
real closed fields coincides with the theory of the reals
(for the first-order language with equality and nonlogi-
cal symbols +, x, >,0, 1). That is, a first-order formula
involving these symbols is true of the reals if and only if
it is true in every real closed field. lie also showed that
the theory of real closed fields is decidablc and has an
elegant complete axiornatization. We incorporate this
into our axiornatization too, since the language of real
closed fields is a sublanguage of L;(®).

Our axiom system for reasoning about probabilities on
the domain, AX\, includes the axioms of first order logic,
the axioms of real closed fields, and axioms for reasoning
about probabilities, similar to those of [Bac88b, FI1TM88].
The axioms for reasoning about probability are:

*We remark that in [AH89], the exact degree of undecid-
ability of the validity problem for all these logics is completely
characterized. It turns out to be wildly undecidable, much
harder than the validity problem for the first-order theory of
arithmetic. We refer the reader to [ATI89] for details.
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Reasoning about probabilities over the domain:

PDI Vr;...Vzyo = w3 (0) = 1,
(X",..., x,) is a sequence of distinct object variables

PD2 wz(yp) >0

PD3 wz(p AY)+ wz(p A ~¢) = we(p)

PD4 wz(¢) = wg,/.)(wl7if2]), where z is an object
variable which does not appear in ¥ or

where

PD5 wzg(e A ) = wz(e) x wg(¥h), if none of the free
variables o1 r e contained in y, none of the free
variables of ¥ are contained in x, and x and ¥ are
disjoint

RPD1 From ¢ = ¢ infer wz(y) = wz(¥)

Note that PD4 allows us to rename bound variables,
while PDS5 lets us do reasoning based on the indepen
dence of the random variables. AX\ is a straightforward
extension of the axiom system used in [F1IM88] for rea
soning about the propositional case. Not surprisingly,
it is also quite similar to the collection of axioms given
in [Bac88b]. Bacchus does not use the axioms for real
closed fields, but instead he uses the axioms for ordered
fields, since he allows his probability functions to take
values in arbitrary ordered fields. His axioms for reason-
Ing about probabilities are essentially the same as ours
(indeed, axioms PDI, PD2, and PD4 are also used by
Bacchus, while PD5 is a weaker version of one of his
axioms).

It is easv to check that these axioms are sound with
respect to type | probability structures: if M is a type
1 probability structure, then M = ¢ for every axiom .
By the results of Subsection 5.1, AX\ (or any other ax-
iom system!) cannot hope to be complete for £;{®) once

has a predicate of arity at least two, nor can it be com-
plete for LT . However, if we restrict ® to consist only
of unary predicates and do not have equality between
object terms in the language, then it is complete.

Theorem 5.6: If ® consists only of unary predicates,
then AX\ is a sound and complete axiornatization for the
language Ly(®) with respect to type 1 probability struc-
tures.

The previous result shows that AX\ is rich enough to
let us carry out a great deal of probabilistic reasoning.
The next result reinforces this impression.

Let A,\',N be A.Y, together with the following axiom,
which says that the domain has size at most TV:

FINy Bml...mNVy(yza:lV...Vy_—_::;:N)

Theorem 5.7: AX", s a sound and complete axiomati-
zation for L;{(Q>) with respect to type 1 probability struc-
tures of size at most N, for any set Q.

We can of course modify axiom FINyv to say that the
domain has exactly TV elements, and get a complete ax-
lornatization with respect to structures of size exactly
N. We can also get sound axiom systems AX, and AXj
for reasoning about type 2 and type 3 structures respec-
tively. Again, they are not complete, but they are com-
plete with respect to structures of size at most N once
we add FJNy- We leave details to the full paper.



9 Conclusions

We have provided natural semantics to capture two dif-
ferent kinds of probabilistic reasoning: in one, the prob-
ability is on the domain, and in the other, the proba-
bility is on a set of possible worlds. We also showed
how these two modes of reasoning could be combined in
one framework. We then considered the problem of pro-
viding sound and complete axioms to characterize first-
order reasoning about probability. While complexity re-
sults of [AH89] show that in general there cannot be
a complete axiomatization, we did provide sound axiom
systems that we showed were rich enough to enable us to
carry out a great deal of interesting probabilistic reason-
Ing. In particular, together with an axiom guaranteeing
finitcness, our axiom systems were shown to be complete
for domains of bounded size.

Our results form an interesting contrast to those of
Bacchus [Bac88b]. Bacchus gives a complete axiomati-
zation for his language (which, as we remarked above,
is essentially the same as our language Lq(®) for rea-
soning about probabilities on the domain), thus showing
that the validity problem for his language is r.e. The
reason for this difference is that Bacchus allows nonstan
dard probability functions, which are only required to be
finitely additive and can take values in arbitrary ordered
fields. In [A1189] it is shown that all the undecidability
results mentioned above can be proved even if we only
require the probability function to be finitely additive,
and restrict probabilities to taking only rational values.
This shows that the key reason that Bacchus is able to
obtain a complete axiomatization is that he allows prob-
abilities to take values in arbitrar}' ordered fields.’

The situation here is somewhat analogous to that of
axiomatizing arithmetic. Godel's famous incompleteness
result shows that the first-order theory of arithmetic
(for the language with equality and nonlogical symbols
+,x,0, 1, where the domain is the natural numbers)
does not have a complete axiomatization. The axioms
of Pcano Arithmetic are sound for arithmetic, but not
complete. They are complete with respect to a larger
class of domains (including so-called nonstandard mod-
els). Our results show that reasoning about probabilities
IS even harder than reasoning about arithmetic (since the
validity problem for arithmetic is easier than Ilj), and so
cannot have a complete axiomatization. However, Bac-
chus' axioms are complete with respect to a larger class
of structures, where probabilities can assume nonstan-
dard values. And just as the axioms of Peano Arith-
metic are sufficiently rich to let us carry out a great deal

*Bacchus claims [Bac88b] that it is impossible to have
a complete proofl theory for countably additive probability
functions. Although, as our results show, his claim 1s essen.
tially correct (at least, as long as the language contains one
binary predicate symbol or equality), the reason that he gives
for this claim, namely, that the corresponding logic 18 not
compact, is not correct. For example, even il = { P}, where
I’ is a unary predicate, the logic is not compact. (Consider
the set {w.(I(x)) # 0, we(P(z)) < 1/2, w(P(z)) < 1/3,
we(P(x)) < 1/4, ...}. Any finite subset of these formulas 1s
satisfiable, but the full set is not.) However, by Theorem 5.6,
the logic in this case has a complete axiomatization.

of interesting arithmetic reasoning, so the axioms that
we have provided (or the axioms of [Bac88b]) are suf-
ficiently rich to enable us to carry out a great deal of
interesting probabilistic reasoning.
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