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Abstract

It is argued that Ginsberg's Possible Worlds
Approach to counterfactual implication suffers from
a number of defects which are the result of
confusing proof theory and model theory. In
particular, logically equivalent theories do not have
iIdentical counterfactual consequences, and
monotonic theory revisions are not always preferred
to nonmonotonic ones. This paper develops a
situation semantics for counterfactual implication
In which propositions are treated as operations on
sets of possible worlds. Logically equivalent
theories have identical consequences in the model
theory, which always prefers monotonic revisions
to nonmonotonic ones and validates all the axioms
and derivation rules of counterfactual logic. The
semantics is also contrasted with Winslett's
Possible Models Approach.

1 Introduction

Counterfactuals are conditional statements in which the
antecedent is deemed to be false, e.g. 'If Waldo were rich,
he'd live in Las Vegas'. Considered as material conditionals,
all such statements are trivially true. Thus 'If Waldo were
rich, he'd live in Milwaukee' would also be a true statement,
if Waldo were not rich. Yet the intention seems to be: 'if
things were more or less as they are, except that Waldo were
rich, he'd be living in Las Vegas', which rules out living In
Milwaukee. It 1s customary 10 write a counterfactual
conditional of the form 'if y then ¢' as 'y > ¢' rather than
'Wv O ¢', In order to preserve this distinction.

Counterfactuals are not truth functional, because they can
only be evaluated relative to (1) some theory of what the
world 1s like, and (i1) some notions about what the world
might be like if certain things were to change. Informally,
we want y > ¢ to be true if and only if ¢ is true in all those
plausible worlds where y holds which are most similar to
the real world. From a formal point of vicw, the problem is
to specify what we mean by 'plausible’ and 'similar’,
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Ginsberg's [1986] paper was perhaps the first to
demonstrate the relevance of counterfactual reasoning to a
range of Al applications. Its scope is considerable,
including a review of the literature, an account of
counterfactual implication, a discussion of implementation
Issues, and a survey of applications. In this paper, we shall
be concerned only with the account of counterfactual
implication, which we feel to be flawed in corrigible ways.

Our theses are the following: (i) that the account contains
a confusion between proof and model theory; and (ii) that the
theory revisions sanctioned are not always minimal.

Our method shall be: (i) to work though the main
examples of the original paper, pointing out where
difficulties lie; (ii) to present a semantics for counterfactual
implication which alleviates these difficulties and compare it
with that of Winslett [1988]; and (iii) to show that the
model theory satisfies a well-known axiomatization of
counterfactual logic.

2 Critique of Ginsberg's construction

We saw in Section 1 that counterfactual statements are not
truth-functional, so we need some kind of construction,
consisting of possible worlds other than the current world,
which we can inspect in order to decide whether or not a
counterfactual holds in the current world.

2.1 Counterfactual implication

Ginsberg's construction for counterfactuals has the following
components: an nitial sct S of sentences; a predicate B on
25, the power sct of S; and a partial order < on 25 which
cxtends set inclusion and respects B. S is a theory of the
world, B 1s a 'bad world' predicate which declares some
worlds to be implausible, and < is a comparator of possiblc
worlds along the plausibility dimension. The definition of
plausible, similar worlds is as follows.

Definition 1 A possible world for yin § is any subset T of
S such that T I# -y, —-B(T), and T is maximal with respect
to <, given these restrictions. The set of such worlds,
W(vy, S), 1s given by

(TcSITlE-yA-B(A
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A counterfactual y > ¢ 1s now true with respect to S iff T
v (y)}il=¢forall T e W(y,S).

Treating 25 as a set of possible worlds confuses syntactic
objects, such as sets of sentences, with semantic objects,
such as models. In fact, each T € 25 represents a set of
worlds in its own right, namely those worlds that satisfy
every sentence in T. It can be dangerous to treat arbitrary
theories as 'partial possible worlds', because theories are
more complex than models. This construction is known as
the Possible Worlds Approach (PWA), although the 'worlds'
in W(y, S) are partial. The basic idea is that if T € W(y,

S) then T represents a minimum revision to S such that T
W {y} 1s consistent, T is not implausible, and no other
revision of S i1s more plausible than T.

In the rest of this paper, a possible world ® will be
represented by a set of atomic propositicns, {yq, ..., W},
such that if y is an atom then ® satisfies y, written ® I=
vy, if and only if y € ®, and if y ¢ ® then w |I= —y. Such
worlds are essentially propositional calculus models as
specified in Chang & Keisler (1973, Ch.1]. Sausfaction
conditions for a compound statement y follow the normal
truth-functional recursion on the complexity of y.

2.2 Semantics of counterfactuals

In this subsection, we review the model theory of Ginsberg's
construction, as well as Winslett's reconstruction of the
semantics of counterfactual consequence.

2.2.1 PWA and equivalent theories
Ginsberg notes that logically equivalent theories do not
have identical counterfactual consequences in PWA.

Example | LetS={p,poqland T= {p,q}. ~gq>pisa
counterfactual conscquence of T but not of S. Neither is it

the case in general that a theory and its deductive closure
have the same counterfactual consequences.

Ginsberg writes: 'lt does not seem to me that this
dependence upon representation is inappropriate when
investigating counterfactuals, so that we should not be
overly concerned over the fact that our construction depends
upon more than merely the model-theoretic information
contained in the theory S'.

On the contrary, we believe that the counterfactual
consequences of a theory should not depend upon the
vagaries of its syntactic representation, and construe this
dependency as further evidence of a confusion between
syntactic and semantic entities. Section 3 presents a
semantics in which logically equivalent theories have
identical counterfactual consequences.

Example 2 Let ¢ denote 'thunder' and [ denote 'lightning'.
An agent unaware of the connection between them would
describe the world as S = (¢, {}, giving —t > [.

Ginsberg uses this example to suggest that without the
vices of his model theory, it would be impossible for any
fact to be irrelevant to any other. This turns out not to be
the case. Section 3 presents a model theory without these
vices in which irrelevance is possible.

2.2.2 The Possible Models Approach

Winslett's [1988] Possible Models Approach (PMA)
attempts to regularize the model theory of counterfactual
consequence. Given a set of formulas S and a theory T,
PMA computes a set of models Incorporate(S, M) produced
by incorporating S into T, where M is a model of T. The
formal definition can be expressed as follows.

Definjtion 2 Let T be a theory with protected formulas T*
c T, let Mbe amodel of T, and let S be a set of formulas.
Incorporate(S, M) is the set of all models M such that

() M'I=S and M' I= T*; and

(i1) no other model satisfying (i) differs from M on
fewer atoms

where ‘fewer’ is defined by set inclusion. If Models(T) is the
sct of all models of T, then the set of models of the revised

theory is given by: Uy Models(T) Incorporate(S, M).

It is easy to verify that logically equivalent theories have
identical counterfactual consequences in PMA. However, we
shall argue that its results are sometimes counterintuitive,
especially when we iterate the conditional operator. We
return to Winslett's construction in Section 3.2 (Example
4), and show that its revisions are not always minimal.

3 Situation semantics for counterfactuals

The following account assumes a propositional language L,
defined over a finite alphabet A. We can construct 2!A!
interpretations over this alphabet, and consider each as a
possible world. Let this set of intcrpretations bc W. The
empty theory, @, is satisficd by every interpretation, SO we
label this set of worlds Wg, i.c. the class containing all
models of @. Clearly Wz = W. A non-emply theory S c L
describes a situation, Wq € 2V, Thus Wg W is the st
containing just those possible worlds which satisfy S.

The easicst way to formalize situations 1S in terms of
model-theoretic forcing [Keisler, 1977]). If S is a theory,
then a condition for S is a finite set of literals, C, consistent
with S, and C lI- y denotes that C forces y, i.e. that S, C |-
y. G is a generic set for S iff each H ¢ G is a condition for
S and G lI- y or G lI- —wy for all propositons .

Definition 3 If S is a theory, then a situation for §, Wg, 18
a set of possible worlds constructed as follows. For cach
gencric set G for S, we can construct a world

w={y!S, Gl vy}
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where ¥ is an atomic proposition. W; is the set of such

worlds.

The semantics that we shall give for counterfactuals of
the form ¥ > ¢ with respect to a theory S depends upon a
very simple idea. We consider ¥ as a revision function that
we can apply to S to return those plausible worlds where y
holds which are most similar to some world in Ws. y > ¢
IS then a consequence of S just in case ¢ holds in each of
these worlds.

3.1 Propositions as functions

A proposition y can be considered as a function, y: 2V 5
2" from situations to situations. For example, if S c L is
{p o g}, then p(S) denotes p(Ws), where p is the function
associated with P. We want the value of p(W5s) to be the set
of worlds most similar to S in which p holds. IfA = {p, q/
is the alphabet of L, then Ws = {9, [q], {p, q)}, and the
application of p to Wy should return {{p, q]], the only
model of {p, p D q}.

The above example was rather straightforward, p was
consistent with S, and we did not place any restrictions upon
the range of/?, i.e. all worlds in which p held were deemed
to be plausible. As a result, we can consider the
computation performed by p as an instance of forcing: {p}
was a condition for S that forced q. But we are most
interested in the case where p is inconsistent with S, and
cannot therefore be a condition for S. What general
properties should propositions considered as revision
functions possess?

Pl. It S logically implies ¥, then there is no need to
change W;. Otherwise, some revision must be effected, else
there will be a world in Ws which is not a model of Y-

P2. If y is consistent with S but does not follow from it,
then we compute a new situation y(§) = W{W} N Wg,
containing all the possible worlds which satisfy {y} U S.

P3. If y is inconsistent with S, then we compute some
minimum revision, Y(S), of W, such that y(S) C W{W}'
This inclusion must hold if ¥ is to be true at every world in
y(S). If y is inconsistent with protected propositions in S,

then y(S) = 9.

Let us concentrate on P3, since the other three cases are
straightforward. y(S) cannot be just any subset of W y,1.
because there may be propositions in S that we wish to
protect. If S* ¢ S is the (proper) subset containing the
protected propositions, then we require that y(S) ¢ (W (w}
N Wga), 1.e. W(S) must contain only plausible worlds.

We can generalize the notion of a revision function as
follows. Rather than generating an individual function for
each proposition, and composing these functions for
compound propositions, we introduce a two-place operation,
=, upon sets of worlds, such that y(S) = (WW} = Wg).
In so doing, we use the notion of a world lattice: If S ¢ L
and B ¢ A contains those members of the alphabet of L
occuring in S, then Ag = (2B, ) is a world lattice for S.
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Definition 4 LetS*cSc L,y € Land Wi,z "Wg=0.
Then y(S) = W1 = Wg contains just those worlds ® €
(W[w} N Wgqe) that satisfy the following condition:

There is a world v € Wg such that
(i)a)isaglb orlub of vin Ag; or
(ii) there isaworld ® € Ww} such that
(a@saglborlubof viAgnd
(b)@e¢ W.* and
(c ® s the smallest superset or largest subset of

where glb denotes the greatest lower bound and lub denotes
the least upper bound.

Thus each world in W,y = Wg is a world from W .
For each world @ i Ww}, ® in the revision if and only
if: either (i) ® satisfies the protected propositions and is a
maximal subset or minimal superset of a world in Ws; or
(i) there is an implausible world @ in W{w} which is a
maximal subset or minimal superset of a world in Ws, and
® is a maximal subset or minimal superset of @ with
respect to the plausible worlds. Hence the worlds most
similar to worlds in Ws are those plausible worlds which are
closest to such worlds in the lattice.

Each proposition is therefore a function of the following
Kind.

Definition 5 If W is a proposition and S a theory, then

W(S) = W[W} M WS if S I -, else W(\V} = Ws.

The reader can verify that the definition satisfies each of
the properties P1-P3.

Definition 6 w> ¢i1sa«rfactual consequence of S iff
o I= ¢ for all w € Y(S)

This completes our semantic account of counterfactual
consequence; we now return to the examples introduced in
Section 2.2.1. The recomputation of the set of plausible,
similar worlds for each case will illustrate the model theory,
as well as demonstrating its advantages. Let us agree to call
the logic of Definitions 3-6 'Belief Revision Logic', or
BERYL for short.

3.2 The examples revisited

In this subsection, we show that the problems noted In
Section 2 do not arise in BERYL.

Example 1 revisited IfS = {p,p>¢q}, T = {p, g} and there
are no protected propositions in either theory, then

—q(S)= {9, (p}) = {{p. q}} = {{p}} =—q(T).

Thus —~g > p is a counterfactual consequence of both
theories. It is easy to see that if S and T are any pair of
equivalent theories, then they will have Iidentical
counterfactual consequences, so long as S$* and T* arc
equivalent. (This result also holds for Winslett's PMA.)



Theorem 1 If S and T are equivalent propositional theories
and S* and T* are equivalent, then for all propositions y and
o, v > ¢ is a consequence of S iff y > ¢ is a consequence of
T.

Proof Follows straightforwardly from Definitions 3-6. If
the antecedent holds, then y(S) = w(T). Thus w I= ¢ for all
® € Y(S) iff  I= ¢ for all w € y(T).

Example 2 revisited 1f S = {r,1} and S* = @, then
—~ ()= (9, (1}) = . 1}) = {{1}}

so—¢t>1[,and tisirrclevantto l. Butif T= {/, -t } and T*
= @, then

(=DM =(D,{.1}} = (}}} =(D, {1, 1}}

and ¢ and / are now dependent, and will remain so as long as
t =!1s protected. But if ¢+ =1/ 1s not protected, then 1t will
be retracted in the face of —t or —I. Note also that, if r=11s
not protected, we have (t = [)(—t (S)) # =t ((t = [)(S)), even
though —¢ and ¢t = arc consistent:

(t=D(—1(S)) = (D, {I,1})
=t ((t=0(S)) = {{1}).

It follows that —¢ > ((t=1) > 1) 1s a counterfactual
conscquence of S, but not (¢ =1) > (—¢ >[). The order in
which we entertain the two hypotheses makes a difference.

The point is that the outcomes in Example 2 are identical
to those that would be derived by PWA. Thus the fact that
equivalent theories have identical counterfactual
consequences in BERYL has no bearing on the issue of
irrclcvance. Nor does it prevent counterfactual consequence
from being sensitive to either the order in which we
entertain hypotheses or the protection of certain propositions
in the face of hypotheses. (The same results hold for PMA.)

The next example highlights an essential difference
between PWA and BERYL.

Example 3 LetS={p>¢q,—p).T={p>4q,—p,—q),and
*=T*=0Q

In PWA, there is a single revision of S in the light of p:
we retract —p.  But there are two alternative revisions of T:
we can retract —~g or we can retract p O q. The possible
worlds associated with the revised theories S' and T are {{p,
g} ) and {{p), {p, q} ) respectively. By contrast, in BERYL:

p(S) = {{p), (p.9)} = (D, {q)} = {{p}. (p. 4]}
p(M) = ({p}, (p.q}} = (D) = ({p})

Thus p > ¢ is a counterfactual consequence of S In
Ginsberg's method but not in BERYL, while p > —~g 1sa
consequence of T in BERYL but not in Ginsberg's method.
This conflict is worth examining in more detail. The reader

1s Invited to consult the world lattices of Figure 1, where
dark shading signifies the models of the theory in question,
light shading signifies models of the counterfactual premise.

With respect to S, the minimal change is to retract —p
and p © q. From a semantic point of view, {p] is the most
similar world to @ and {p, ¢} is the most similar world to
{q}. {p,q]) is not the most similar world to @, and so
moving from @ to {p, ¢} is not a minimal change. This
much 1s clear from Figure la.

BERYL's judgement is also justifiable from a syntactic
point of view, so long as that view is purely syntactic. In
the propositional calculus, p D ¢ is just another way of
writing the disjunction —p v q. Relinquishing —p v ¢ must
involve a smaller change to S than retaining it and admitting
q,since g l-—p v q.

A similar argument holds with respect to the revision of
T. Figure 1b shows that {p} is the world closest to @. The
minimal change is to reliquish p o g before admitting q.

(a) (b)

Figure 1 World lattices for Example 3, (a) representing p(S) and
(b) representing p(T).

If we protect p o ¢ in both theories, then BERYL and
PWA get the same results. But in so doing we have
implicitly gone beyond the syntax (and semantics) of the
propositional calculus. p > g then signifies something
closer to L(p o ¢q) 1in a system of modal logic (where L is
the necessity operator), since we insist that p o ¢ hold in
every possible world. (PMA agrees with BERYL, not
PWA))

The final example, also taken from Ginsberg's paper,
serves to differentiate BERYL from both PWA and PMA.

Example 4 Let S = {—v, b, s} with S* = @, where v
denotes that Verdi is French, b denotes that Bizet is French,
and s denotes that Satie 1s French.

What are the counterfactual consequences of v = b, i.e.
the consequences of Verdi and Bizet being compatriots?
PWA, PMA and BERYL agree about this. PWA would
derive the two alternative theories S; = {v, b, s} and S, =
{—v, =b, s}, while, in BERYL's notation:

(v=b)S) = {{v, b, s}, (5}].

Thus (v = b) > s, which seems intuitively right: Satie
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remains French in both worlds. This result can be read off
from Figure 2a, where dark shading distinguishes models of
S, light shading distinguishes models of the counterfactual
premise, and models of the revised theory are heavily
outlined.

But what of the additional premise —v = s? What are the
counterfactual consequences of Verdi and Satie not being
compatnots while Verdi and Bizet are compatriots?

PWA and PMA agree on the set of worlds { (s}, (v, b}].
In PWA, we can retract the Frenchness of Bizet to obtain the
world (s}, or we can retract the Frenchness of Satie to obtain
the world {v, b}. In PMA, the models (s} and (v, b} each
satisfy (—wv = 5) A (v = b) and differ minimally from (b, s},
the only model of S. Neither of these worlds is preferred to
the other, according to Definiuon 2. BERYL's answer is
((=v = 5) A (v= b))(S), which evaluates to

((v, b}, (s}} = ({b,s)}) = ({5}).

(a) (b)

Figure 2 World lattices for Example 4, (a) representing
(v = b)(S) and (b) representing ((—v = 5) A (v = b))(S).

Thus ((—v=35) A (v=>5)) > s, and we conserve Satie's
Frenchness (sec Figure 2b). The minimal change to S is to
let Satie stay French in the world where Bizet i1s Italian,
since one of Bizet and Verdi must change nationality
anyway. The inclusion of {v, b} by PWA and PMA seems
counterintuitive. (v, b} differs from {b, s} on atoms v and
s, while {s} only differs on b, so {s} conserves more of S,
and therefore secms more similar to {b, s} than does {v, b).

In any event, we have a clash of intuitions, and BERYL's
result 1s perfecudy arguable. The difference betwen BERYL
and PMA 1is a direct consequence of Definition 4, which
cnsurcs that y(S) contains worlds 1n WW} which are
maximal subsets or minimal supersets of worlds in Wg,
rather than worlds which differ minimally on atoms from
worlds in W, as in PMA.

We can use this ¢xample to further distinguish between
BERYL and PMA. The most illuminating exercise 1S to
compute (—v = 5)((v = b)(S)), i.e. to compute the worlds in
which —v = 5 holds which are most similar to the worlds
most similar to S where v =5 holds. BERYL's answer 1s
identical to ((—v = s) A (v = b))(S):
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((s), (v}, (v, b}, (b, 5)) N ({v, b, 5}, {s}} = {{s})

whether or not v = b i1s protected, because —v = s iS
consistent with (v = b)(S), and so the revision 1s given by
W (—v=s) M (v = b)(S), courtesy of Definition 5. Hence (v
= b) > ((—v =s) > 5), and we conserve Satie’s Frenchness
again.

If v = b 1s unprotected, PMA's answer 1S

Incorporate({—v = s}, Incorporate({v = b}, {5, 5}))
= {{v, b}, {b, s}, {s})-

If v= b is protected, then PMA's answer is {{v, b}, {s5}].
Yet the monotonic revision! {5} to (v = b)(S) seems
preferable to either of the nonmonotonic revisions {v, b} and
{b, s}, whether v = b is protected or not. It is hard to see
how a nonmonotonic revision can be as small as a
monotonic revision, whatever one's intuitions. Remember

that all three systems agree on (v = bXS). In fact, PWA
agrees with BERYL here.

4 Summary and related work

We have presented a semantics for counterfactual implication
which uses nothing more than set inclusion to compute the
set of plausible, similar worlds in which a counterfactual
premise holds. The function that computes this set, for a
given theory S with protected propositions S*, corresponds
to the premise itself. Thus if y is a counterfactual premise
inconsistent with S, then y can be understood as the
function (AX)(W (y} = Wy), whose argument 1s S. The
1dca of using propositions as functions from one epistemic
state to another 1s entircly due to Girdenfors (1988, Ch.6).
Our use differs only 1n that such functions can be

nonmonotonic.
The most interesting comparison is that between BERYL

and Girdenfors' (op cit, Ch.7) axiomatization of Lewis’
(1973) counterfactual logic, VC.

Theorem 2 The construction of Definitions 3-6 satisfies the
ten axioms and two derivation rules of Girdenfors'
axiomatization of VC.

Proof Letvy, ¢ and ¢ be any propositions, and let S < L be
any consistent theory.

A 1. All truth functional tautologies.

Ly ool Wiy < Wi, as usual.

AZ.(¥ > 8) A > ) 5w > (0 A D).

If o= ¢and o =y for all ® € y(S), then @ |= (¢ A Y).
A3.y>T. If |- ¢, then © |= ¢ for all w € y(S).

Ad.y > Vy. 0= vy forall ® € y(S).

AS.(y > $) D (y D 9).

If o |= ¢ for all ® € y(S), then ¢ follows from S and .

' The model {sEpresents a monotonic revision because
it only requires that we discard models from Ws; thus the
process is analogous to theory extension. By contrast, the
revisions {v, b} and {b, s} each require that we introduce
new models, and are therefore nonmonotonic.



A6. (¥ A ¢) D (¥ >9).

This follows immediately from Definition 5.

AT.(y > —vy) D (0> V).

w |= - for all w € y(S) iff y(S) =@. Thus w |= -y for
all w € ¢(S) and any ¢, since S* |- —y. (If S* =@, then |-
—Nf.)

AS.(y>0) A (®> ) D ((y>x)D@®>X).

If\ll = ¢, then W[w] = W[¢], SO \V(S) = ¢(S).
Ad.((y>x) A d>10) Dy v o)>x).

(v o)S) S Wiy if w(S) S Wiy and &(S) C Wy, ).
A10. (y > &) Ay > =) 2 (W A %) > 9).

(W A 0(S) < yw(S) if o |2 -y for any @ € y(S).
DR1.-(wA(yDd) D¢ |

(Wit " Wiw s o1) S Wig) as usual.

DRIX]H l- q:lg x?]then - {(q\;l] > ) D (Y > %).

Wio) S Wiy) S0W(S) C Wiy) T W(S) < Wy,

Ginsberg's construction satisfies A10 only if the partial
order is modular, i.e. for any worlds ®w and ® such that

neither ® <@ nor @< o, if v <® then v <®W. Partial

orders based solely on set inclusion do not have this
property, although orders based on cardinality, for example,
BERYL satisfies A10 without
modularity, so this suggests that the requirement is a

do. Nevertheless,

property of PWA, not counterfactual logic.

Gardenfors identifies a number of criteria for the
classification of belief revision functions, two of which are

the preservation criterion (K*P) and the monotonicity
criterion (K*M). The former states that if ¢ follows from
S and W is consistent with S, then ¢ will still follow from
the revision of S by y. The latter states that if S1 and S,

are theories and S, contains S1, then the revision of S, will
contain the revision of S1 We can show that the revisions

sanctioned by BERYL arc always preservative but not

always monotonic. (K*P and K*M are translated into the
present notation in the following theorems.)

Theorem 3 BERYL satisfies the preservation criterion,
K*P: If Sl -y and S |= ¢, then y > ¢.

Proof S l# —y and S |= ¢ by hypothesis, so W,y N W #
@and Wg < W(4). Butthen Wiy N Wg o Wiy Sow
I= ¢ for all ® € \pgs), and y > ¢.

It is easy to show that PWA satisfies K*P.

Theorem 4 PMA docs not satisfy the preservation criterion.

Proof By counterexample. In Example 4, (v = b) > s with

respect to the theory S = {—w, b, 5}, but it is not the case

that (—v = 5) > s with respect to the theory S' = {v=b, s},
which is just S revised by v=»b. Yet S | —(-v=3).

These theorems are important if one wishes to extend

either system in the direction of a probabilistic model, since
Bayes' Theorem endorses the preservation criterion. Thus

the revision functions of BERYL and PWA are amenable to
a Bayesian extension, while that of PMA is not as it stands.

Theorem 5 BERYL does not satisfy the monotonicity
criterion, K*M: If §; € S5, then y(S5) € w(Sy).

Proof By counterexample. LetSy = (p=gqg)and S, = (p=
q,p}. —q(S1) = (D) while ~¢(S,) = {{p}). Hence S; < S,,
but not W(S7) € W(Sy)

Not surprisingly, BERYL is a nonmonotonic logic.
Note that we render the consequent of K*M by \V(Sz) -
y(S1) and not y(S1) < y(S,), since there is an inverse
relation between the specificity of a theory and the number
of models that satisfy it.

In conclusion, we feel that nothing in this paper detracts
from Ginsberg's argument that counterfactual reasoning is
important for artificial intelligence. We criticize his
construction because (i) logically equivalent theories can
differ in their counterfactual consequences, and (ii) it does
not always compute the smallest revision necessary to admit
a proposition to a theory. Winslett's PMA avoids the
confusion of proof theory and model theory found in PWA.
Like BERYL, PMA uses no order on models other than set
inclusion to compute similarity, and logically equivalent
theories have identical counterfactual consequences. Yet
Example 4 shows that the definition of 'Incorporate’ (given
here as Definition 2) is not equivalent to Definitions 4 and
5, as it docs not always prefer monotonic revisions to
nonmonotonic ones.
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