
T u n i n g
To Crea te G o o d C i r cu i t Designs

C h r i s Tong*
Department of Computer Science

Rutgers University
New Brunswick, NJ 08903

P h i l F r a n k l i n +
Department of Computer Science

Rutgers University
New Brunswick, NJ 08903

A b s t r a c t

T h e eff iciency and o p t i m a l i t y of a d iv ide-
and-conquer approach to design depends upon
the associated h ierarchy o f imp lemen ta t i on
goals hav ing s ib l ing subgoals t h a t in teract only
weak ly or not a t a l l . Un fo r tuna te l y , in many
domains the on ly easily acquirable design re
f inement knowledge leads to the f o rma t i on o f
goal hierarchies t h a t v io la te th is assumpt ion .

In th is paper , we describe a learn ing me thod
t h a t i nc rementa l l y t rans fo rms a search-based
design system t h a t spends much of i ts t ime re
cover ing f r o m the i m p l i c i t (and mis taken) as
s u m p t i o n t h a t subproblems do no t in te rac t ,
i n t o a compi le r - l i ke system t h a t decomposes
the or ig ina l design p rob lem i n t o t r u l y non-
i n te rac t i ng subprob lems. T h e improved system
f inds loca l ly o p t i m a l so lut ions to i ts subprob
lems, wh i ch are composed i n t o g lobal ly op t i
ma l solut ions. By ana lyz ing dependencies, the
learn ing m e t h o d re-parses a poor design de
compos i t i on i n t o one w i t h no subprob lem i n
teract ions; i t t hen generalises f r o m the result
i n g decompos i t i on , add ing new ref inement rules
to the knowledge base.

We have imp lemen ted a design system called
CPS t h a t solves design prob lems of imp lement
i ng boo lean expressions as gate- level c i rcu i ts .
We have also imp lemen ted a learn ing p rog ram
cal led S C A L E t h a t i nc rementa l l y t ransforms
CPS i n t o an o p t i m i z i n g compi ler .

* currently on leave at I B M Watson Research Center
*The research reported here was supported in part by

the Defense Advanced Research Projects Agency (DARPA)
under Contract Number N00014-85-K-0116, in part by the
Nat ional Science Foundation (NSF) under Grant Number
DMC-8610507, and in part by the Center for Computer Aids
to Industr ia l Product iv i ty (C A I P) , Rutgers University, w i th
funds provided by the New Jersey Commission on Science
and Technology and by CAIP 's industr ia l members. The
opinions expressed in this paper are those of the authors and
do not reflect any policies, either expressed or impl ied, of any
granting agency.

1 I n t r o d u c t i o n

In pr inc ip le , design efficiency and solut ion op t ima l i t y can
be impacted by three factors: choice of design process
mode l ; the accuracy of the (possibly imp l i c i t) assump
t ions made by tha t design process about subproblem in
teract ions; and the contents of the knowledge base. We
w i l l discuss these factors in t u r n , f ina l ly concluding tha t
i f a learn ing me thod focuses on i m p r o v i n g the last of
these, using a f ixed, search-based model of design, the
second issue w i l l disappear over t ime .

1.1 S o m e s i m p l e m o d e l s o f d e s i g n

M u c h research in knowledge-based design [Kan t and
Bars tow, 1978, Stefik, 1981, M i t t a l , 1986, Steinberg,
1987, Tong , 1988, B r o w n and Chandrasekaran, 1989] has
concentrated on design invo lv ing some f o rm of top-down
refinement. In many knowledge-based design systems,
top -down ref inement proceeds by repeatedly app ly ing
refinement rules t ha t flesh out or decompose abstract
func t iona l specif ications, u n t i l the leaves of the generated
hierarchy are funct ions t ha t are d i rec t ly implementab le
in the target technology (using ref inement rules we w i l l
cal l implementation rules). T h e func t iona l component
hierarchy is isomorphic to a goal h ierarchy conta in ing
imp lemen ta t i on goals and subgoals o f the f o r m , " O p t i
ma l ly imp lement component x " . F igure 1 i l lust rates such
a hierarchy in the domain wh ich we w i l l use to i l lus t ra te
our ideas: boolean expression design.

In th is paper, we w i l l consider design processes tha t

Tong and Franklin 1439

perform not only refinement, but also patching and back
tracking; we presume a depth-first search strategy. In
the boolean funct ion domain, a patcher might use a rule
base containing patching rules such as P1: " I f the cir
cuit is a combinational circuit , and two inverters are
in sequence, they can be replaced by a wire." Patch
ing is used to correct constraint violations, and to op
timise the design. If patching is insufficient for resolv
ing some problem, backtracking wi l l retract refinement
and patching choices that have been made. Models that
include other design operations are also possible. For
example, many of the ideas about patching apply more
generally to subproblem composition processes (includ
ing constraint-based reasoning). However, the simple
elements just mentioned wi l l suffice to demonstrate the
basic intui t ions behind our learning method.

1.2 T h e accu racy o f a s s u m p t i o n s a b o u t
s u b p r o b l e m i n t e r a c t i o n s

Suppose we want the design process to create an imple
mentation of a boolean expression design problem that
is opt imal w i th respect to gate count. We wi l l consider
three different solutions to the design problem of Fig
ure 1; one has 10 gates, another, 8 gates, and a th i rd ,
6 gates. The 6 gate solution is an opt imal one for this
design problem. Wha t sort of design processes might
produce the suboptimal solutions?

" N o n - i n t e r a c t i n g s u b p r o b l e m s " a s s u m p t i o n . A
10 gate solution could be produced by a purely
refinement-based process. The design process creates the
subproblem decomposition in Figure 2, and selects the
(locally) best solution to each subproblem (depicted in
the figure). Such a design process impl ic i t ly 1 makes the
mistaken assumption that subproblems do not interact]
that is, it assumes that locally correct and opt imal so
lutions to the subproblems compose to form a globally
correct and opt imal solution.

" W e a k l y i n t e r a c t i n g s u b p r o b l e m s " assump
t i o n . An 8 gate solution could be produced by a design
process that supplements top-down refinement w i t h op
t imizat ion. Many programming language compilers have
this sort of behavior. Repeated application of patching
rule P1 in the boolean funct ion domain is an example
of a linear time optimizer, a procedure that i teratively
modifies solutions un t i l i t produces an opt imal solution
(in linear t ime). "Peephole opt imizat ion" is another ex
ample of a linear t ime optimizer. Both of these patching
processes are applied to the f lat, composed solution; h i
erarchical patching (e.g., the merge step of mergesort)
can increase the complexity by a factor of d, the depth
of the hierarchy.

Top-down refinement would in i t ia l ly produce the same
10 gate implementat ion as before. Subsequent hi l lc l imb-
ing toward a more opt imal design via patching finds only
a single opportuni ty to apply patching rule P1 (to sub-
problems 3 and 4), resulting in an 8 gate solution. This
design process impl ic i t ly makes the mistaken assumption
that the subproblems only weakly interact, i.e., it is pos
sible to take any combination of subproblem solutions

1We only consider design processes that do not explicitly
reason about such assumptions.

1440 Knowledge Representation

and patch it in to a globally correct and opt imal solution
in linear t ime.

S t r o n g l y i n t e r a c t i n g s u b p r o b l e m s . Subproblems
strongly interact if some combination of subproblem solu
tions cannot be patched into a globally opt imal solution
in linear t ime. The subproblems in Figure 2 strongly
interact (as i l lustrated by the particular solutions in the
figure). Given the possibil i ty of strongly interacting sub-
problems, we use a search-based model of design that
permits backtracking to guarantee that an opt imal solu
t ion is produced. We assume that the search is t ry ing to
optimize an evaluation funct ion f (e.g., gate count), and
that one of the problem inputs is a budget that must be
met: f(design) < bu.

Because the search-based design process st i l l divides
problems in to subproblems (via refinement) it st i l l be
haves as though the subproblems do not interact or only
weakly interact, and only backtracks when that (im
pl ic i t) assumption is proven wrong. Thus like the previ
ous design processes, it selects the locally best solution
to each subproblem it tries. Suppose it solves the sub-
problems of Figure 2 in the order {1,2,...,7}. If we set
a budget of 6 gates, it wi l l search about half the design
space before it retracts the in i t ia l choice it makes for
subproblem 1, and begins to converge on the opt imal so
lu t ion (Figure 1). The opt imal solution is produced by
selecting the locally worst solutions for subproblems 1
and 6, implementing each of these two ORs as a N A N D
gate and two inverters. This produces a design in which
patch rule PI can be applied three t imes, bringing the
gate count down to 6. As i l lustrated by this example,
search finally finds the opt imal solution, but generally
does so in exponential t ime. Thus no leverage in effi
ciency was gained from the "problem decomposition".

1.3 T h e con ten t s o f t h e k n o w l e d g e base

M i s t a k e n a s s u m p t i o n s a re d u e t o i n a p p r o p r i a t e
r u l e s . Problems of subopt imal designs or inefficient de
sign processes occur when the goal hierarchy is inappro
priate; the subproblems it creates interact, thus mislead
ing a design process that presumes otherwise. Inappro
priate goal hierarchies are evidence that the knowledge
base contains inappropriate rules. For instance, pure
top-down refinement would be sufficient for the boolean
expression design task if the refinement rules were guar
anteed to produce non-interacting subproblems. Instead
of changing the nature of the design process, we can t ry
to change the rules which produce the subproblems, so
that they produce subproblems whose worst-case inter
actions are guaranteed to fal l in to a particular category
(e.g., "weakly interact ing subproblems").

A c q u i s i t i o n o f des ign k n o w l e d g e . The most ob
vious response to this observation would be to acquire
rules that only create non-interacting subproblems; we
wi l l call these good refinement rules. One or more such
rules might decompose our example design problem in
the manner depicted in Figure 1 (instead of the decom
posit ion of Figure 2). Because they are non-interacting,
the locally opt imal solutions to these subproblems com
pose to form a globally opt imal 6 gate solution. We may
arrive at these locally opt imal solutions either by ap-

plying the "design as search" approach locally to solve
each subproblem, or by acquiring three addit ional imple
mentation rules that tel l us how to opt imal ly implement
these subproblems.

In contrust, however, most prototype knowledge-based
design tools or compilers that have been created for "real
wor ld" problems such as circuit or software design do
not follow this strategy. Most create an in i t ia l , poor
design based on an inappropriate goal hierarchy, and
then optimize (e.g., [Knapp and Parker, 1986, Kowal-
ski, 1985]). Far fewer (e.g., [Kant and Barstow, 1978,
Steinberg, 1987]) actually use refinement rules that en
able a polynomial t ime, divide-and-conquer approach.

The reason seems clear. Acquir ing implementation
rules sufficient for forming (probably inappropriate) goal
hierarchies is generally a relatively easy and constrained
task (see, e.g., Figure 3). Acquir ing patching rules suf
ficient for l imi ted opt imisat ion is also relatively easy.
On the other hand, acquiring good refinement rules is
a rather unconstrained task. A combinatorial number
of such rules may be necessary to get broad coverage.
Such rules may not exist, may not be easily obtainable
f rom domain experts, or may not be expressible in any
intu i t ive form.

L e a r n i n g g o o d r e f i n e m e n t ru les f r o m des ign ex
p e r i e n c e . Let us reconsider the problem of inappropri
ate goal hierarchies f rom the standpoint of human de
signers. In a poorly understood design domain, human
designers do not usually start out doing top-down design.
Instead, they first do a lo t of "exploratory design", using
processes such as composit ion, hi l lc l imbing, or analogical
reasoning (see, e.g., [Kowalski, 1985]). We hypothesise
that one of the pr imary purposes of such exploratory de
sign is to form a more appropriate goal hierarchy out
of an in i t ia l ly poor one, so that a reasonably efficient
top-down refinement based approach to design can be
pursued subsequently, and so that the process is reason
ably l ikely to produce an opt imal (or satisficing) solu
t ion. Human designers appear to learn appropriate goal
decomposition hierarchies bo th while solving a part icu
lar problem, and more generally, so that later problem-
solving behavior for a similar problem seems less search-
like. We have modelled the "wi th in- task" learning skill
(given an in i t ia l budget for an evaluation function f),
in a circuit design program called D O N T E [Tong, 1988].

This paper focuses on model l ing across-task learning of
appropriate goal decomposit ion hierarchies that are fine-
tuned for opt imiz ing a part icular evaluation funct ion.

I m p l i c i t v s . e x p l i c i t d e c o m p o s i t i o n . The prob
lem decompositions we have been discussing can be cre
ated direct ly by decomposition rules that match a design
problem and produce a set of subproblems to be solved.
Al ternat ively, a decomposit ion can be created indirect ly
by apply ing refinement rules tha t only match a subex
pression S (e.g., (A N D u v)) of the design problem P
(e.g., (N O T (A N D u v))) . Such a rule impl ic i t l y decom
poses P in to two problems: " Implement Sn and " Imple
ment everything in P but Sn (e.g., (N O T expr)) . If P
can be "parsed" in to subexpressions al l of which match
some refinement rule, we say tha t P is implicitly decom-
posed by the set of matching rules. Ambigu i ty in the
parse corresponds to al ternat ive decompositions. In this
paper, we w i l l study the learning of good refinement rules
that implicitly decompose a problem in to non-interacting
subproblems by matching its subexpressions.

S i m p l i f y i n g a s s u m p t i o n s . Design subproblems can
interact in different ways. A functional interaction oc
curs if some combinat ion of choices for solving the sub-
problems leads to a global design that fails to funct ion
correctly. A resource usage interaction occurs if some
combinat ion of choices for solving the subproblems leads
to a design that is suboptimal w i t h respect to a given re
source budget. In this paper, we focus on resource usage
interactions between subproblems, and presume that no
funct ional interactions between subproblems can occur.

2 The design method

C h o i c e o f des ign p rocess m o d e l . I f the same de
sign process model is to be used at any point dur ing the
course of learning, that model must be robust enough
to recover f rom mistaken assumptions about subprob-
lem interactions. On the other hand, after i ts knowledge
base has been improved, the design process must be able
to use the learned knowledge in such a way that i ts per-
formance is improved. In this section, we describe a
simple design process model that has bo th of these prop
erties. This model has been implemented in a program
called CPS. CPS is a search-based design system that
performs top-down refinement, patching, and chronolog-

Tong and Franklin 1441

ical backtracking. We w i l l i l lustrate the behavior of CPS
in solving the problem in Figure 1.

I n p u t . The inpu t to CPS is a boolean expression
(composed of b inary A N D and OR funct ions, and the
N O T funct ion) , an evaluat ion funct ion tha t defines de
sign opt imal i ty , and a global resource budget tha t must
be achieved. For the purpose of s impl i fy ing the learning
method (so i t needn't ver i fy tha t the design produced
by the performance system is op t ima l) , the budget we
give CPS is the cost of an op t ima l solut ion. By opti
mal solution we mean the c i rcui t in the space of circuits
defined by the refinement and patching rule base (see be-
low) tha t costs the least (w i th respect to the evaluat ion
funct ion) .

O u t p u t . The ou tpu t i s an op t ima l cost, T T L gate-
level c i rcui t , composed of b inary AND-gates, OR-gates,
and NAND-gates, as well as inverters. Figure 1 gives an
op t ima l solut ion to our example prob lem.

T h e k n o w l e d g e base . The domain knowledge base
is depicted in Figure 3.

R e f i n e m e n t . Design (sub)problems are solved ei
ther direct ly, using a single implementat ion rule (e.g.,
for subgoal 4 in Figure 4, " Implement (A N D u v) ") or
ind i rect ly by (imp l ic i t l y) decomposing the problem. In
the lat ter case, the subproblems are determined recur
sively. CPS finds al l refinement rules tha t apply to the
current expression (in i t ia l ized to be the entire problem).
Of these applicable refinement rules, CPS chooses one
whose "left hand side" is maximally specific, i.e., one
tha t applies to the largest possible sub-expression of the
current expression.3 Thus rules tha t refine expressions

2 The ARGO circuit design system [Huhns and Acosta,
1989] uses a similar heuristic.

of the f o rm (O R (A N D x y) (A N D w ■)) w i l l be selected
over more general rules tha t refine expressions of the
fo rm (O R x y) . In our example, based on the refine
ment rules in the i n i t i a l knowledge base (al l of whose
"left hand sides" are p r im i t i ve funct ions), the only rules
tha t apply to the top-level OR s imply have (OR x y) as
their le f t -hand side. Subgoal 1 is created in response and
added to the implementat ion goal hierarchy (see Figure
4). Then for each non- l i tera l argument , the same process
is repeated, creat ing subgoals 2 th rough 7.

In general, the result of refinement can i tself be de
composable. However, in our simple boolean funct ion
domain , the subproblems of the or ig inal problem are d i
rect ly implement able, because the refinement rules that
imp l i c i t l y construct the decomposit ion are al l implemen
ta t ion rules. The implementat ions chosen for each sub-
problem (after some search) are i l lust rated in Figure 4.

E v a l u a t i o n f u n c t i o n . Faced w i t h a choice among
different refinement alternatives for the same subgoal,
CPS w i l l prefer the al ternat ive tha t is locally opt imal
w i t h respect to a given evaluat ion func t ion . In our exam
ples, the evaluat ion funct ion is one tha t prefers N A N D
gate implementat ions:

Selecting local ly op t ima l refinement alternatives does
not guarantee a global ly op t ima l solut ion. The refine
ment choices tha t do lead to the op t ima l cost solution
are i l lust rated in Figure 4. On ly 5 of the 7 are locally
optimal.

P a t c h i n g . Af ter CPS constructs a global solut ion, i f
i t detects a budget v io la t ion, it repeatedly selects and
executes applicable patch rules un t i l no more patching
is possible. Figure 4 i l lustrates the patching process for
the subproblems in our example.

B a c k t r a c k i n g . Backtrackable choice points are cre
ated whenever a part icular implementat ion task has al
ternat ive solutions. Chronological backtracking occurs
whenever a design has been completely implemented
(and patched) and the global budget has not been met;
an implementat ion choice and al l patches tha t depend
on it are retracted. CPS stops at the f irst complete so
lu t i on tha t meets the budget. In the boolean funct ion
domain, given only the (easily acquired) knowledge in
the in i t i a l knowledge base (Figure 3), we cannot back
t rack when par t ia l solutions violate the budget because,
in many cases, fur ther patching opportuni t ies (leading
to an op t ima l cost design) may become available only
after additional choices have been made.

In our example (Figure 4), the par t ia l solut ion after
the implementat ion of subproblem 6 has a cost of 7, ex
ceeding the global budget. On ly when the f inal sub-
problem is implemented and the solut ion patched does
the implementat ion meet the budget.

T e r m i n a t i o n . When a l l the implementat ion goals
have been achieved, and the result ing design does not
violate the budget, the design process is completed.

3 T h e learn ing m e t h o d

S C A L E is the learning component of our system. After
CPS solves a problem, SCALE'S learning method rat io-

1442 Knowledge Representation

nal ly reconstructs the problem decomposit ion by ana
lyzing dependencies. I t then generalizes f rom the non-
interact ing subproblems in the reformulated decomposi
t i on ; new refinement rules tha t ident i fy and opt imal ly
implement simi lar non- interact ing subproblems are cre
ated. The inpu t to S C A L E is a CPS problem-solving
trace. The trace includes the or ig inal problem, the se
quence of refinement and patch operations which led to
the opt imal solut ion, and the f inal implementat ion. To
i l lustrate SCALE'S behavior, we w i l l use the example of
Section 1.

We use an explanation-based learning (EBL) approach
[Mi tchel l et a/., 1986] to explain the t ra in ing example
and justifiably generalize from it one or more refinement
rules:

• The training example (the inpu t to SCALE) is a
design problem and the trace of CPS solving i t .

• The domain theory is the knowledge base and an
evaluat ion funct ion / .

• The goal concept is one or more "good" refinement
rules, LHS—>RHS, where LHS is a generalized clus
ter (see below), and RHS is an implementat ion of
LHS tha t i s op t ima l w i t h respect to / .

• The operationality criterion requires the LHS of the
rule to be a boolean expression, and the RHS to be
a network of gates.

E x p l a i n i n g s u b p r o b l e m i n t e r a c t i o n s u s i n g c lus
t e r s . By analysing dependencies in the f inal opt imal
design, S C A L E identif ies clusters of in teract ing subprob-
lems. These clusters consist of one or more of the sub
expressions tha t were created when the problem was

original ly decomposed by refinement rules that matched
its sub-expressions. A cluster consists of more than one
sub-expression when the successful appl icat ion of a patch
depends upon the existence of several sub-expressions.
The patches can be thought of as "g lu ing" the sub
expressions together. If the same sub-expression is in
volved in several patches, all the "g lued" sub-expressions
are clustered. The cluster is a single sub-expression in
the special case when CPS has derived a better imple
mentat ion for a pr imi t ive funct ion (A N D , OR, N O T)
than was original ly provided by the in i t ia l set of refine
ment rules.

In our example, three clusters of interact ing subprob
lems are detected (see the circled subproblem implemen
tations in Figure 4, which match the subproblems in Fig
ure 1). The first cluster groups subproblems 1, 2, and
5. Patch II converts two inverters created by the im
plementations for subproblems 1 and 2 into two N A N D
gates; since these two gates are in series, they are then
el iminated by Patch I. These two patching rules apply
in a similar way to subproblems 1 and 5. One cluster
is formed for bo th patch applications (rather than two
separate clusters) because both depend in part on sub-
problem 1. Several uncircled clusters are also formed;
these clusters correspond to new, opt imal implementa
tions for OR, A N D , and N O T .

The E B L goal concept requires that the RHS of a
learned rule be an opt imal implementat ion of the LHS.
The global implementat ion is known to be opt imal be
cause CPS is required to meet an "op t ima l cost" bud
get. By construct ion, the clusters do not interact ; the
opt imal i ty of the global implementat ion implies the op
t ima l i ty of the cluster implementat ions.

Tong and Franklin 1443

C l u s t e r g e n e r a l i s a t i o n . The explanat ion process
has parsed the solut ion tree in to subproblem clusters and
their op t ima l implementat ions. S C A L E generalises each
of these i n to a ref inement rule. For example, the rule
learned f rom the f irst cluster in Figure 4 has (O R (A N D
v a r l var2) (A N D var3 var 4)) as i ts generalised LHS and
(N A N D - G (N A N D - G v a r l var2) (N A N D - G var3 var4))
as i ts generalised RHS. The LHS generalises the func
t ion arguments f rom the or ig inal sub-expressions at the
leaves of the goal hierarchy, whi le the RHS generalizes
the implementat ions of those same arguments.

The long- term "goal concept" of SCALE'S learning is
a set of ref inement rules that imp l i c i t l y decompose any
problem in the domain in to non- interact ing subprob-
lems (and create op t ima l implementat ions for these).
SCALE'S goal concept is instead expressed in terms of
learning a single ru le, and cluster fo rmat ion. The next
section discusses some of the ideas behind why SCALE'S
goal concept leads to achieving the long-term goal con
cept in the boolean funct ion domain .

4 D i s c u s s i o n

C l o s u r e : c o m p l e t e l y l e a r n i n g a k n o w l e d g e base .
One view of S C A L E is tha t i t compiles the opt imisa
t ion knowledge of the patch rules in to new refinement
rules. Learning these "good" rules is at t ract ive when us
ing knowledge bases l ike tha t of our example, for which
only a f in i te number (a closure) of good rules exist. Af ter
a relat ively smal l number of examples (less than twenty,
on average, in f i f teen experiments invo lv ing randomly
generated boolean expressions), S C A L E converges to the
set of rules l isted in Table 1. These rules have the fo rm:
I F b o o l e a n e x p r e s s i o n T H E N implement a s c i r c u i t .
S C A L E forms the closure by adding these rules to CPS's
knowledge base.

D e s i g n as s e a r c h : e f f i c i ency s p e e d - u p . Figure 5
i l lustrates the results of our experiments to measure the
improvement in efficiency of a search-based design sys
tem due to repeated appl icat ion of our learning method.

The "before learn ing" curve i l lustrates the behavior
of CPS using the in i t i a l knowledge base (Figure 3) on
a set of randomly generated test problems. Chronolog
ical backtracking, opt imizat ion patching, and a target
op t ima l budget combine to contro l CPS's search for an
op t ima l c i rcu i t . As discussed in Section 1, the t ime com
p lex i ty of such a problem solver is exponential .

S C A L E increases the efficiency of CPS by t ransform

ing it f rom a search-oriented knowledge-based design
system (which is relat ively easy to bu i ld) in to an effi
cient (one pass) knowledge-based compiler which pro-
duces op t ima l designs. Because CPS uses the "max i
mal ly specific" heurist ic, and draws i ts ref inement rules
f rom the knowledge base closure (guaranteed to pro-
duce non- interact ing, local ly op t ima l solut ions), i t has
compiler- l ike behavior; because the resul t ing subprob-
lems do not in teract , CPS simply composes subproblem
solutions, producing a global solut ion without backtrack
ing or patching. The "after learn ing" curve in Figure 5
i l lustrates the behavior of CPS on the same problems as
the "before learning" curve after the closure has been
learned (the "after learn ing" knowledge base was ex
panded by learning f rom a separate, randomly generated
problem set). I t shows tha t CPS produces the target so
lut ions in l inear t ime by generat ing the fewest possible
nodes (one for each subproblem in the decomposit ion).

I n t e g r a t i o n o f k n o w l e d g e . S C A L E adds newly
learned rules to the knowledge base, bu t does not remove
exist ing rules. Th is raises two issues of knowledge inte
gration: How does S C A L E l im i t the new rules learned
so as to minimize redundancy in the rule base? After
new rules have been learned, how does the performance
system select among compet ing rules, so tha t the overall
performance after learning improves?

A common problem of rule learning is swamping,
learning rules tha t express the same knowledge redun
dant ly (see [Fikes et a/., 1981]). A centra l con t r ibu t ion
of our work is the selective learning of "good" refinement
rules tha t produce non- interact ing subproblems (rather
than al l possible rules for a knowledge base). S C A L E
l im i ts redundancy because good rules express knowledge
about refinement rule interact ions; thus no refinement
rule appl icat ion can be re-expressed s imply as an appl i
cat ion of other refinement rules. Of course, the refine
ment rules w i l l always be re-expressible as an appl icat ion
of the p r im i t i ve refinement rules and pa tch rules.

The use of the "max ima l l y specif ic" heurist ic

1444 Knowledge Representation

gives CPS the desirable proper ty of non-interference:
subsequently-learned rules never interfere w i t h CPS's
ab i l i t y to solve previously worked problems. This is
because S C A L E always learns rules from the maximal
clusters of a prob lem trace. On subsequent at tempts
at solving the same problem, the "max imal ly specific"
heurist ic ensures tha t i t w i l l choose the refinement rules
for the same max ima l clusters.

S o l u t i o n o p t i m a l i t y . When restr icted to boolean ex
pressions whose l i terals are d is t inct posit ive logic values
(i.e., as, y, z, etc.) , CPS generates gate-level implemen
tat ions of boolean expressions tha t are "op t ima l " w i th
respect to the space of a l l designs it can generate. CPS
cannot produce an op t ima l solut ion for all boolean ex
pressions because it does no structure-sharing; for ex
ample, i f there are two occurrences of (N A N D - G x y) in
the f inal imp lementa t ion of a c i rcu i t , the output of a sin
gle NAND-ga te could be directed to bo th inputs which
require i t .

Scope o f t h e l e a r n i n g m e t h o d . SCALE learns
about local resource usage interactions between subprob-
lems tha t do not interact funct ional ly . I t presumes that
the patch rules improve the design w i t h respect to the
evaluat ion func t ion . I t does not reason about opt imis ing
by global structure-shar ing.

S C A L E could be appl ied to any in i t ia l knowledge base
of ref inement and monotonic patch rules for our exam
ple domain , inc lud ing one where the results of refine
ment rules are expressed as op t ima l NAND-gate configu
rat ions. We chose to start w i t h a sub-opt imal knowledge
base to show tha t we can relieve the human engineer of
the requirement of prov id ing an op t ima l base, and still
produce a l inear t ime opt imiz ing compiler.

5 Conc lus ions

S u m m a r y . Th is paper has presented a method that in
cremental ly t ransforms a search-based circui t design sys
tem (CPS) tha t uses only p r im i t i ve (and non-redundant)
refinement and patch rules in to a compiler-l ike design
system w i t h the fo l lowing propert ies:

• Non-redundant rule-set. No refinement rule appl i
cat ion can be re-expressed as an appl icat ion of other
refinement rules.

• No backtracking or patching. The system produces
a design tha t meets an in i t ia l l y specified resource
budget w i thou t patch ing or backtracking.

• Coincidence of local optimality with global optimal
ity. Composing local ly op t ima l solutions to sub-
problems created by refinement rules results in a
solut ion tha t is global ly op t ima l .

When and what to learn is based on analyzing design
step dependencies, and interact ions of design steps w i t h
respect to op t im iza t ion . Th is learning method has been
implemented in the S C A L E program, which converges
on the "best possible" knowledge base (the "closure")
f rom a simple i n i t i a l knowledge base, using (on the aver
age) less than twenty random design problems as t ra in
ing examples. For fu r ther details on the evolut ion of the
C P S / S C A L E system, see [Tong and Frank l in , 1989].

Acknow ledgemen ts
We thank Jack Mostow, Mike Barley, Wes Braudaway,
Dawn Cohen, Chun Liew, Sridhar Mahadevan, and Ar-
mand Priedit is for provid ing helpful comments on earlier
drafts of this paper. We also thank the members of the
Rutgers A I /Des ign Project for the s t imula t ing environ
ment they provide.

References

[Brown and Chandrasekaran, 1989] D. Brown
and B. Chandrasekaran. Invest igat ing rout ine design
problem solving. In C. Tong and D. Sr i ram, editors,
Artificial Intelligence Approaches To Engineering De
sign. Forthcoming, 1989.

[Fikes et al., 1981] Richard E. Fikes, Peter E. Har t , and
Nils J. Nilsson. Learning and executing generalized
robot plans. In B. L. Webber and N. J. Nilsson, edi
tors, Readings in Artificial Intelligence. Morgan Kauf-
mann, 1981.

[Huhns and Acosta, 1989] M. Huhns and R. Acosta.
Argo: An analogical reasoning system for solving de
sign problems. In C. Tong and D. Sr i ram, editors,
Artificial Intelligence Approaches To Engineering De
sign. Forthcoming, 1989.

[Kant and Barstow, 1978] E. Kan t and D. Barstow. The
refinement paradigm: The interact ion of coding and
efficiency knowledge in program synthesis. IEEE
Transactions on Software Engineering, 9, 1978.

[Knapp and Parker, 1986] D. Knapp and A. Parker. A
design u t i l i t y manager: the A D A M planning engine.
In Proceedings of the 23rd Design Automation Con
ference. I E E E , June 1986.

[Kowalski, 1985] T. Kowalski . An Artificial Intelligence
Approach to VLSI Design. Kluwer Academic Publ ish
ers, Boston, 1985.

[Mitchel l et al., 1986] T. Mi tche l l , R. Keller, and
S. Kedar-Cabel l i . Explanation-based generalization:
A uni fy ing view. Machine Learning, 1(1), 1986.

[M i t ta l , 1986] S. M i t t a l . Pr ide: An expert system for the
design of paper handl ing systems. IEEE Computer,
19(7), Ju ly 1986.

[Stefik, 1981] M. Stefik. Planning w i t h constraints
(M O L G E N : Part 1). Artificial Intelligence, 16(2),
May 1981.

[Steinberg, 1987] L. Steinberg. Design as refinement
plus constraint propagation: The V E X E D experience.
In Proceedings of the National Conference on A rtificial
Intelligence. A A A I , 1987.

[Tong and Frank l in , 1989] C. Tong and P. Frankl in . To
ward automated rat ional reconstruct ion: A case
study. In Proceedings of the Sixth International Ma
chine Learning Workshop, June 1989.

[Tong, 1988] C. Tong. Knowledge-based circuit design.
PhD thesis, Dept. of Computer Science, Stanford Un i
versity, 1988.

Tong and Franklin 1445

