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A b s t r a c t 

T h e eff iciency and o p t i m a l i t y of a d iv ide-
and-conquer approach to design depends upon 
the associated h ierarchy o f imp lemen ta t i on 
goals hav ing s ib l ing subgoals t h a t in teract only 
weak ly or not a t a l l . Un fo r tuna te l y , in many 
domains the on ly easily acquirable design re­
f inement knowledge leads to the f o rma t i on o f 
goal hierarchies t h a t v io la te th is assumpt ion . 

In th is paper , we describe a learn ing me thod 
t h a t i nc rementa l l y t rans fo rms a search-based 
design system t h a t spends much of i ts t ime re­
cover ing f r o m the i m p l i c i t (and mis taken) as­
s u m p t i o n t h a t subproblems do no t in te rac t , 
i n t o a compi le r - l i ke system t h a t decomposes 
the or ig ina l design p rob lem i n t o t r u l y non-
i n te rac t i ng subprob lems. T h e improved system 
f inds loca l ly o p t i m a l so lut ions to i ts subprob­
lems, wh i ch are composed i n t o g lobal ly op t i ­
ma l solut ions. By ana lyz ing dependencies, the 
learn ing m e t h o d re-parses a poor design de­
compos i t i on i n t o one w i t h no subprob lem i n ­
teract ions; i t t hen generalises f r o m the result­
i n g decompos i t i on , add ing new ref inement rules 
to the knowledge base. 

We have imp lemen ted a design system called 
CPS t h a t solves design prob lems of imp lement ­
i ng boo lean expressions as gate- level c i rcu i ts . 
We have also imp lemen ted a learn ing p rog ram 
cal led S C A L E t h a t i nc rementa l l y t ransforms 
CPS i n t o an o p t i m i z i n g compi ler . 
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1 I n t r o d u c t i o n 

In pr inc ip le , design efficiency and solut ion op t ima l i t y can 
be impacted by three factors: choice of design process 
mode l ; the accuracy of the (possibly imp l i c i t ) assump­
t ions made by tha t design process about subproblem in ­
teract ions; and the contents of the knowledge base. We 
w i l l discuss these factors in t u r n , f ina l ly concluding tha t 
i f a learn ing me thod focuses on i m p r o v i n g the last of 
these, using a f ixed, search-based model of design, the 
second issue w i l l disappear over t ime . 

1.1 S o m e s i m p l e m o d e l s o f d e s i g n 

M u c h research in knowledge-based design [Kan t and 
Bars tow, 1978, Stefik, 1981, M i t t a l , 1986, Steinberg, 
1987, Tong , 1988, B r o w n and Chandrasekaran, 1989] has 
concentrated on design invo lv ing some f o rm of top-down 
refinement. In many knowledge-based design systems, 
top -down ref inement proceeds by repeatedly app ly ing 
refinement rules t ha t flesh out or decompose abstract 
func t iona l specif ications, u n t i l the leaves of the generated 
hierarchy are funct ions t ha t are d i rec t ly implementab le 
in the target technology (using ref inement rules we w i l l 
cal l implementation rules). T h e func t iona l component 
hierarchy is isomorphic to a goal h ierarchy conta in ing 
imp lemen ta t i on goals and subgoals o f the f o r m , " O p t i ­
ma l ly imp lement component x " . F igure 1 i l lust rates such 
a hierarchy in the domain wh ich we w i l l use to i l lus t ra te 
our ideas: boolean expression design. 

In th is paper, we w i l l consider design processes tha t 
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perform not only refinement, but also patching and back­
tracking; we presume a depth-first search strategy. In 
the boolean funct ion domain, a patcher might use a rule 
base containing patching rules such as P1: " I f the cir­
cuit is a combinational circuit , and two inverters are 
in sequence, they can be replaced by a wire." Patch­
ing is used to correct constraint violations, and to op­
timise the design. If patching is insufficient for resolv­
ing some problem, backtracking wi l l retract refinement 
and patching choices that have been made. Models that 
include other design operations are also possible. For 
example, many of the ideas about patching apply more 
generally to subproblem composition processes ( includ­
ing constraint-based reasoning). However, the simple 
elements just mentioned wi l l suffice to demonstrate the 
basic intui t ions behind our learning method. 

1.2 T h e accu racy o f a s s u m p t i o n s a b o u t 
s u b p r o b l e m i n t e r a c t i o n s 

Suppose we want the design process to create an imple­
mentation of a boolean expression design problem that 
is opt imal w i th respect to gate count. We wi l l consider 
three different solutions to the design problem of Fig­
ure 1; one has 10 gates, another, 8 gates, and a th i rd , 
6 gates. The 6 gate solution is an opt imal one for this 
design problem. Wha t sort of design processes might 
produce the suboptimal solutions? 

" N o n - i n t e r a c t i n g s u b p r o b l e m s " a s s u m p t i o n . A 
10 gate solution could be produced by a purely 
refinement-based process. The design process creates the 
subproblem decomposition in Figure 2, and selects the 
(locally) best solution to each subproblem (depicted in 
the figure). Such a design process impl ic i t ly 1 makes the 
mistaken assumption that subproblems do not interact] 
that is, it assumes that locally correct and opt imal so­
lutions to the subproblems compose to form a globally 
correct and opt imal solution. 

" W e a k l y i n t e r a c t i n g s u b p r o b l e m s " assump­
t i o n . An 8 gate solution could be produced by a design 
process that supplements top-down refinement w i t h op­
t imizat ion. Many programming language compilers have 
this sort of behavior. Repeated application of patching 
rule P1 in the boolean funct ion domain is an example 
of a linear time optimizer, a procedure that i teratively 
modifies solutions un t i l i t produces an opt imal solution 
(in linear t ime). "Peephole opt imizat ion" is another ex­
ample of a linear t ime optimizer. Both of these patching 
processes are applied to the f lat, composed solution; h i ­
erarchical patching (e.g., the merge step of mergesort) 
can increase the complexity by a factor of d, the depth 
of the hierarchy. 

Top-down refinement would in i t ia l ly produce the same 
10 gate implementat ion as before. Subsequent hi l lc l imb-
ing toward a more opt imal design via patching finds only 
a single opportuni ty to apply patching rule P1 (to sub-
problems 3 and 4), resulting in an 8 gate solution. This 
design process impl ic i t ly makes the mistaken assumption 
that the subproblems only weakly interact, i.e., it is pos­
sible to take any combination of subproblem solutions 

1We only consider design processes that do not explicitly 
reason about such assumptions. 
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and patch it in to a globally correct and opt imal solution 
in linear t ime. 

S t r o n g l y i n t e r a c t i n g s u b p r o b l e m s . Subproblems 
strongly interact if some combination of subproblem solu­
tions cannot be patched into a globally opt imal solution 
in linear t ime. The subproblems in Figure 2 strongly 
interact (as i l lustrated by the particular solutions in the 
figure). Given the possibil i ty of strongly interacting sub-
problems, we use a search-based model of design that 
permits backtracking to guarantee that an opt imal solu­
t ion is produced. We assume that the search is t ry ing to 
optimize an evaluation funct ion f (e.g., gate count), and 
that one of the problem inputs is a budget that must be 
met: f(design) < bu. 

Because the search-based design process st i l l divides 
problems in to subproblems (via refinement) it st i l l be­
haves as though the subproblems do not interact or only 
weakly interact, and only backtracks when that ( im­
pl ic i t ) assumption is proven wrong. Thus like the previ­
ous design processes, it selects the locally best solution 
to each subproblem it tries. Suppose it solves the sub-
problems of Figure 2 in the order {1,2,...,7}. If we set 
a budget of 6 gates, it wi l l search about half the design 
space before it retracts the in i t ia l choice it makes for 
subproblem 1, and begins to converge on the opt imal so­
lu t ion (Figure 1). The opt imal solution is produced by 
selecting the locally worst solutions for subproblems 1 
and 6, implementing each of these two ORs as a N A N D 
gate and two inverters. This produces a design in which 
patch rule PI can be applied three t imes, bringing the 
gate count down to 6. As i l lustrated by this example, 
search finally finds the opt imal solution, but generally 
does so in exponential t ime. Thus no leverage in effi­
ciency was gained from the "problem decomposition". 

1.3 T h e con ten t s o f t h e k n o w l e d g e base 

M i s t a k e n a s s u m p t i o n s a re d u e t o i n a p p r o p r i a t e 
r u l e s . Problems of subopt imal designs or inefficient de­
sign processes occur when the goal hierarchy is inappro­
priate; the subproblems it creates interact, thus mislead­
ing a design process that presumes otherwise. Inappro­
priate goal hierarchies are evidence that the knowledge 
base contains inappropriate rules. For instance, pure 
top-down refinement would be sufficient for the boolean 
expression design task if the refinement rules were guar­
anteed to produce non-interacting subproblems. Instead 
of changing the nature of the design process, we can t ry 
to change the rules which produce the subproblems, so 
that they produce subproblems whose worst-case inter­
actions are guaranteed to fal l in to a particular category 
(e.g., "weakly interact ing subproblems"). 

A c q u i s i t i o n o f des ign k n o w l e d g e . The most ob­
vious response to this observation would be to acquire 
rules that only create non-interacting subproblems; we 
wi l l call these good refinement rules. One or more such 
rules might decompose our example design problem in 
the manner depicted in Figure 1 (instead of the decom­
posit ion of Figure 2). Because they are non-interacting, 
the locally opt imal solutions to these subproblems com­
pose to form a globally opt imal 6 gate solution. We may 
arrive at these locally opt imal solutions either by ap-



plying the "design as search" approach locally to solve 
each subproblem, or by acquiring three addit ional imple­
mentation rules that tel l us how to opt imal ly implement 
these subproblems. 

In contrust, however, most prototype knowledge-based 
design tools or compilers that have been created for "real 
wor ld" problems such as circuit or software design do 
not follow this strategy. Most create an in i t ia l , poor 
design based on an inappropriate goal hierarchy, and 
then optimize (e.g., [Knapp and Parker, 1986, Kowal-
ski, 1985]). Far fewer (e.g., [Kant and Barstow, 1978, 
Steinberg, 1987]) actually use refinement rules that en­
able a polynomial t ime, divide-and-conquer approach. 

The reason seems clear. Acquir ing implementation 
rules sufficient for forming (probably inappropriate) goal 
hierarchies is generally a relatively easy and constrained 
task (see, e.g., Figure 3). Acquir ing patching rules suf­
ficient for l imi ted opt imisat ion is also relatively easy. 
On the other hand, acquiring good refinement rules is 
a rather unconstrained task. A combinatorial number 
of such rules may be necessary to get broad coverage. 
Such rules may not exist, may not be easily obtainable 
f rom domain experts, or may not be expressible in any 
intu i t ive form. 

L e a r n i n g g o o d r e f i n e m e n t ru les f r o m des ign ex­
p e r i e n c e . Let us reconsider the problem of inappropri­
ate goal hierarchies f rom the standpoint of human de­
signers. In a poorly understood design domain, human 
designers do not usually start out doing top-down design. 
Instead, they first do a lo t of "exploratory design", using 
processes such as composit ion, hi l lc l imbing, or analogical 
reasoning (see, e.g., [Kowalski, 1985]). We hypothesise 
that one of the pr imary purposes of such exploratory de­
sign is to form a more appropriate goal hierarchy out 
of an in i t ia l ly poor one, so that a reasonably efficient 
top-down refinement based approach to design can be 
pursued subsequently, and so that the process is reason­
ably l ikely to produce an opt imal (or satisficing) solu­
t ion. Human designers appear to learn appropriate goal 
decomposition hierarchies bo th while solving a part icu­
lar problem, and more generally, so that later problem-
solving behavior for a similar problem seems less search-
like. We have modelled the "wi th in- task" learning skill 
(given an in i t ia l budget for an evaluation function f), 
in a circuit design program called D O N T E [Tong, 1988]. 

This paper focuses on model l ing across-task learning of 
appropriate goal decomposit ion hierarchies that are fine-
tuned for opt imiz ing a part icular evaluation funct ion. 

I m p l i c i t v s . e x p l i c i t d e c o m p o s i t i o n . The prob­
lem decompositions we have been discussing can be cre­
ated direct ly by decomposition rules that match a design 
problem and produce a set of subproblems to be solved. 
Al ternat ively, a decomposit ion can be created indirect ly 
by apply ing refinement rules tha t only match a subex­
pression S (e.g., ( A N D u v)) of the design problem P 
(e.g., ( N O T ( A N D u v ) ) ) . Such a rule impl ic i t l y decom­
poses P in to two problems: " Implement Sn and " Imple­
ment everything in P but Sn (e.g., ( N O T expr)) . If P 
can be "parsed" in to subexpressions al l of which match 
some refinement rule, we say tha t P is implicitly decom-
posed by the set of matching rules. Ambigu i ty in the 
parse corresponds to al ternat ive decompositions. In this 
paper, we w i l l study the learning of good refinement rules 
that implicitly decompose a problem in to non-interacting 
subproblems by matching its subexpressions. 

S i m p l i f y i n g a s s u m p t i o n s . Design subproblems can 
interact in different ways. A functional interaction oc­
curs if some combinat ion of choices for solving the sub-
problems leads to a global design that fails to funct ion 
correctly. A resource usage interaction occurs if some 
combinat ion of choices for solving the subproblems leads 
to a design that is suboptimal w i t h respect to a given re­
source budget. In this paper, we focus on resource usage 
interactions between subproblems, and presume that no 
funct ional interactions between subproblems can occur. 

2 The design method 

C h o i c e o f des ign p rocess m o d e l . I f the same de­
sign process model is to be used at any point dur ing the 
course of learning, that model must be robust enough 
to recover f rom mistaken assumptions about subprob-
lem interactions. On the other hand, after i ts knowledge 
base has been improved, the design process must be able 
to use the learned knowledge in such a way that i ts per-
formance is improved. In this section, we describe a 
simple design process model that has bo th of these prop­
erties. This model has been implemented in a program 
called CPS. CPS is a search-based design system that 
performs top-down refinement, patching, and chronolog-
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ical backtracking. We w i l l i l lustrate the behavior of CPS 
in solving the problem in Figure 1. 

I n p u t . The inpu t to CPS is a boolean expression 
(composed of b inary A N D and OR funct ions, and the 
N O T funct ion) , an evaluat ion funct ion tha t defines de­
sign opt imal i ty , and a global resource budget tha t must 
be achieved. For the purpose of s impl i fy ing the learning 
method (so i t needn't ver i fy tha t the design produced 
by the performance system is op t ima l ) , the budget we 
give CPS is the cost of an op t ima l solut ion. By opti­
mal solution we mean the c i rcui t in the space of circuits 
defined by the refinement and patching rule base (see be-
low) tha t costs the least (w i th respect to the evaluat ion 
funct ion) . 

O u t p u t . The ou tpu t i s an op t ima l cost, T T L gate-
level c i rcui t , composed of b inary AND-gates, OR-gates, 
and NAND-gates, as well as inverters. Figure 1 gives an 
op t ima l solut ion to our example prob lem. 

T h e k n o w l e d g e base . The domain knowledge base 
is depicted in Figure 3. 

R e f i n e m e n t . Design (sub)problems are solved ei­
ther direct ly, using a single implementat ion rule (e.g., 
for subgoal 4 in Figure 4, " Implement ( A N D u v ) " ) or 
ind i rect ly by ( imp l ic i t l y ) decomposing the problem. In 
the lat ter case, the subproblems are determined recur­
sively. CPS finds al l refinement rules tha t apply to the 
current expression ( in i t ia l ized to be the entire problem). 
Of these applicable refinement rules, CPS chooses one 
whose "left hand side" is maximally specific, i.e., one 
tha t applies to the largest possible sub-expression of the 
current expression.3 Thus rules tha t refine expressions 

2 The ARGO circuit design system [Huhns and Acosta, 
1989] uses a similar heuristic. 

of the f o rm ( O R ( A N D x y ) ( A N D w ■)) w i l l be selected 
over more general rules tha t refine expressions of the 
fo rm ( O R x y ) . In our example, based on the refine­
ment rules in the i n i t i a l knowledge base (al l of whose 
"left hand sides" are p r im i t i ve funct ions), the only rules 
tha t apply to the top-level OR s imply have (OR x y) as 
their le f t -hand side. Subgoal 1 is created in response and 
added to the implementat ion goal hierarchy (see Figure 
4). Then for each non- l i tera l argument , the same process 
is repeated, creat ing subgoals 2 th rough 7. 

In general, the result of refinement can i tself be de­
composable. However, in our simple boolean funct ion 
domain , the subproblems of the or ig inal problem are d i ­
rect ly implement able, because the refinement rules that 
imp l i c i t l y construct the decomposit ion are al l implemen­
ta t ion rules. The implementat ions chosen for each sub-
problem (after some search) are i l lust rated in Figure 4. 

E v a l u a t i o n f u n c t i o n . Faced w i t h a choice among 
different refinement alternatives for the same subgoal, 
CPS w i l l prefer the al ternat ive tha t is locally opt imal 
w i t h respect to a given evaluat ion func t ion . In our exam­
ples, the evaluat ion funct ion is one tha t prefers N A N D 
gate implementat ions: 

Selecting local ly op t ima l refinement alternatives does 
not guarantee a global ly op t ima l solut ion. The refine­
ment choices tha t do lead to the op t ima l cost solution 
are i l lust rated in Figure 4. On ly 5 of the 7 are locally 
optimal. 

P a t c h i n g . Af ter CPS constructs a global solut ion, i f 
i t detects a budget v io la t ion, it repeatedly selects and 
executes applicable patch rules un t i l no more patching 
is possible. Figure 4 i l lustrates the patching process for 
the subproblems in our example. 

B a c k t r a c k i n g . Backtrackable choice points are cre­
ated whenever a part icular implementat ion task has al­
ternat ive solutions. Chronological backtracking occurs 
whenever a design has been completely implemented 
(and patched) and the global budget has not been met; 
an implementat ion choice and al l patches tha t depend 
on it are retracted. CPS stops at the f irst complete so­
lu t i on tha t meets the budget. In the boolean funct ion 
domain, given only the (easily acquired) knowledge in 
the in i t i a l knowledge base (Figure 3), we cannot back­
t rack when par t ia l solutions violate the budget because, 
in many cases, fur ther patching opportuni t ies (leading 
to an op t ima l cost design) may become available only 
after additional choices have been made. 

In our example (Figure 4), the par t ia l solut ion after 
the implementat ion of subproblem 6 has a cost of 7, ex­
ceeding the global budget. On ly when the f inal sub-
problem is implemented and the solut ion patched does 
the implementat ion meet the budget. 

T e r m i n a t i o n . When a l l the implementat ion goals 
have been achieved, and the result ing design does not 
violate the budget, the design process is completed. 

3 T h e learn ing m e t h o d 

S C A L E is the learning component of our system. After 
CPS solves a problem, SCALE'S learning method rat io-
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nal ly reconstructs the problem decomposit ion by ana­
lyzing dependencies. I t then generalizes f rom the non-
interact ing subproblems in the reformulated decomposi­
t i on ; new refinement rules tha t ident i fy and opt imal ly 
implement simi lar non- interact ing subproblems are cre­
ated. The inpu t to S C A L E is a CPS problem-solving 
trace. The trace includes the or ig inal problem, the se­
quence of refinement and patch operations which led to 
the opt imal solut ion, and the f inal implementat ion. To 
i l lustrate SCALE'S behavior, we w i l l use the example of 
Section 1. 

We use an explanation-based learning (EBL) approach 
[Mi tchel l et a/., 1986] to explain the t ra in ing example 
and justifiably generalize from it one or more refinement 
rules: 

• The training example ( the inpu t to SCALE) is a 
design problem and the trace of CPS solving i t . 

• The domain theory is the knowledge base and an 
evaluat ion funct ion / . 

• The goal concept is one or more "good" refinement 
rules, LHS—>RHS, where LHS is a generalized clus­
ter (see below), and RHS is an implementat ion of 
LHS tha t i s op t ima l w i t h respect to / . 

• The operationality criterion requires the LHS of the 
rule to be a boolean expression, and the RHS to be 
a network of gates. 

E x p l a i n i n g s u b p r o b l e m i n t e r a c t i o n s u s i n g c lus­
t e r s . By analysing dependencies in the f inal opt imal 
design, S C A L E identif ies clusters of in teract ing subprob-
lems. These clusters consist of one or more of the sub­
expressions tha t were created when the problem was 

original ly decomposed by refinement rules that matched 
its sub-expressions. A cluster consists of more than one 
sub-expression when the successful appl icat ion of a patch 
depends upon the existence of several sub-expressions. 
The patches can be thought of as "g lu ing" the sub­
expressions together. If the same sub-expression is in ­
volved in several patches, all the "g lued" sub-expressions 
are clustered. The cluster is a single sub-expression in 
the special case when CPS has derived a better imple­
mentat ion for a pr imi t ive funct ion ( A N D , OR, N O T ) 
than was original ly provided by the in i t ia l set of refine­
ment rules. 

In our example, three clusters of interact ing subprob­
lems are detected (see the circled subproblem implemen­
tations in Figure 4, which match the subproblems in Fig­
ure 1). The first cluster groups subproblems 1, 2, and 
5. Patch II converts two inverters created by the im­
plementations for subproblems 1 and 2 into two N A N D 
gates; since these two gates are in series, they are then 
el iminated by Patch I. These two patching rules apply 
in a similar way to subproblems 1 and 5. One cluster 
is formed for bo th patch applications (rather than two 
separate clusters) because both depend in part on sub-
problem 1. Several uncircled clusters are also formed; 
these clusters correspond to new, opt imal implementa­
tions for OR, A N D , and N O T . 

The E B L goal concept requires that the RHS of a 
learned rule be an opt imal implementat ion of the LHS. 
The global implementat ion is known to be opt imal be­
cause CPS is required to meet an "op t ima l cost" bud­
get. By construct ion, the clusters do not interact ; the 
opt imal i ty of the global implementat ion implies the op­
t ima l i ty of the cluster implementat ions. 
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C l u s t e r g e n e r a l i s a t i o n . The explanat ion process 
has parsed the solut ion tree in to subproblem clusters and 
their op t ima l implementat ions. S C A L E generalises each 
of these i n to a ref inement rule. For example, the rule 
learned f rom the f irst cluster in Figure 4 has ( O R ( A N D 
v a r l var2) ( A N D var3 var 4)) as i ts generalised LHS and 
( N A N D - G ( N A N D - G v a r l var2) ( N A N D - G var3 var4)) 
as i ts generalised RHS. The LHS generalises the func­
t ion arguments f rom the or ig inal sub-expressions at the 
leaves of the goal hierarchy, whi le the RHS generalizes 
the implementat ions of those same arguments. 

The long- term "goal concept" of SCALE'S learning is 
a set of ref inement rules that imp l i c i t l y decompose any 
problem in the domain in to non- interact ing subprob-
lems (and create op t ima l implementat ions for these). 
SCALE'S goal concept is instead expressed in terms of 
learning a single ru le, and cluster fo rmat ion. The next 
section discusses some of the ideas behind why SCALE'S 
goal concept leads to achieving the long-term goal con­
cept in the boolean funct ion domain . 

4 D i s c u s s i o n 

C l o s u r e : c o m p l e t e l y l e a r n i n g a k n o w l e d g e base . 
One view of S C A L E is tha t i t compiles the opt imisa­
t ion knowledge of the patch rules in to new refinement 
rules. Learning these "good" rules is at t ract ive when us­
ing knowledge bases l ike tha t of our example, for which 
only a f in i te number (a closure) of good rules exist. Af ter 
a relat ively smal l number of examples (less than twenty, 
on average, in f i f teen experiments invo lv ing randomly 
generated boolean expressions), S C A L E converges to the 
set of rules l isted in Table 1. These rules have the fo rm: 
I F b o o l e a n e x p r e s s i o n T H E N implement a s c i r c u i t . 
S C A L E forms the closure by adding these rules to CPS's 
knowledge base. 

D e s i g n as s e a r c h : e f f i c i ency s p e e d - u p . Figure 5 
i l lustrates the results of our experiments to measure the 
improvement in efficiency of a search-based design sys­
tem due to repeated appl icat ion of our learning method. 

The "before learn ing" curve i l lustrates the behavior 
of CPS using the in i t i a l knowledge base (Figure 3) on 
a set of randomly generated test problems. Chronolog­
ical backtracking, opt imizat ion patching, and a target 
op t ima l budget combine to contro l CPS's search for an 
op t ima l c i rcu i t . As discussed in Section 1, the t ime com­
p lex i ty of such a problem solver is exponential . 

S C A L E increases the efficiency of CPS by t ransform­

ing it f rom a search-oriented knowledge-based design 
system (which is relat ively easy to bu i ld) in to an effi­
cient (one pass) knowledge-based compiler which pro-
duces op t ima l designs. Because CPS uses the "max i ­
mal ly specific" heurist ic, and draws i ts ref inement rules 
f rom the knowledge base closure (guaranteed to pro-
duce non- interact ing, local ly op t ima l solut ions), i t has 
compiler- l ike behavior; because the resul t ing subprob-
lems do not in teract , CPS simply composes subproblem 
solutions, producing a global solut ion without backtrack­
ing or patching. The "after learn ing" curve in Figure 5 
i l lustrates the behavior of CPS on the same problems as 
the "before learning" curve after the closure has been 
learned (the "after learn ing" knowledge base was ex­
panded by learning f rom a separate, randomly generated 
problem set). I t shows tha t CPS produces the target so­
lut ions in l inear t ime by generat ing the fewest possible 
nodes (one for each subproblem in the decomposit ion). 

I n t e g r a t i o n o f k n o w l e d g e . S C A L E adds newly 
learned rules to the knowledge base, bu t does not remove 
exist ing rules. Th is raises two issues of knowledge inte­
gration: How does S C A L E l im i t the new rules learned 
so as to minimize redundancy in the rule base? After 
new rules have been learned, how does the performance 
system select among compet ing rules, so tha t the overall 
performance after learning improves? 

A common problem of rule learning is swamping, 
learning rules tha t express the same knowledge redun­
dant ly (see [Fikes et a/., 1981]). A centra l con t r ibu t ion 
of our work is the selective learning of "good" refinement 
rules tha t produce non- interact ing subproblems (rather 
than al l possible rules for a knowledge base). S C A L E 
l im i ts redundancy because good rules express knowledge 
about refinement rule interact ions; thus no refinement 
rule appl icat ion can be re-expressed s imply as an appl i ­
cat ion of other refinement rules. Of course, the refine­
ment rules w i l l always be re-expressible as an appl icat ion 
of the p r im i t i ve refinement rules and pa tch rules. 

The use of the "max ima l l y specif ic" heurist ic 
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gives CPS the desirable proper ty of non-interference: 
subsequently-learned rules never interfere w i t h CPS's 
ab i l i t y to solve previously worked problems. This is 
because S C A L E always learns rules from the maximal 
clusters of a prob lem trace. On subsequent at tempts 
at solving the same problem, the "max imal ly specific" 
heurist ic ensures tha t i t w i l l choose the refinement rules 
for the same max ima l clusters. 

S o l u t i o n o p t i m a l i t y . When restr icted to boolean ex­
pressions whose l i terals are d is t inct posit ive logic values 
(i.e., as, y, z, etc.) , CPS generates gate-level implemen­
tat ions of boolean expressions tha t are "op t ima l " w i th 
respect to the space of a l l designs it can generate. CPS 
cannot produce an op t ima l solut ion for all boolean ex­
pressions because it does no structure-sharing; for ex­
ample, i f there are two occurrences of ( N A N D - G x y) in 
the f inal imp lementa t ion of a c i rcu i t , the output of a sin­
gle NAND-ga te could be directed to bo th inputs which 
require i t . 

Scope o f t h e l e a r n i n g m e t h o d . SCALE learns 
about local resource usage interactions between subprob-
lems tha t do not interact funct ional ly . I t presumes that 
the patch rules improve the design w i t h respect to the 
evaluat ion func t ion . I t does not reason about opt imis ing 
by global structure-shar ing. 

S C A L E could be appl ied to any in i t ia l knowledge base 
of ref inement and monotonic patch rules for our exam­
ple domain , inc lud ing one where the results of refine­
ment rules are expressed as op t ima l NAND-gate configu­
rat ions. We chose to start w i t h a sub-opt imal knowledge 
base to show tha t we can relieve the human engineer of 
the requirement of prov id ing an op t ima l base, and still 
produce a l inear t ime opt imiz ing compiler. 

5 Conc lus ions 

S u m m a r y . Th is paper has presented a method that in ­
cremental ly t ransforms a search-based circui t design sys­
tem (CPS) tha t uses only p r im i t i ve (and non-redundant) 
refinement and patch rules in to a compiler-l ike design 
system w i t h the fo l lowing propert ies: 

• Non-redundant rule-set. No refinement rule appl i ­
cat ion can be re-expressed as an appl icat ion of other 
refinement rules. 

• No backtracking or patching. The system produces 
a design tha t meets an in i t ia l l y specified resource 
budget w i thou t patch ing or backtracking. 

• Coincidence of local optimality with global optimal­
ity. Composing local ly op t ima l solutions to sub-
problems created by refinement rules results in a 
solut ion tha t is global ly op t ima l . 

When and what to learn is based on analyzing design 
step dependencies, and interact ions of design steps w i t h 
respect to op t im iza t ion . Th is learning method has been 
implemented in the S C A L E program, which converges 
on the "best possible" knowledge base (the "closure") 
f rom a simple i n i t i a l knowledge base, using (on the aver­
age) less than twenty random design problems as t ra in­
ing examples. For fu r ther details on the evolut ion of the 
C P S / S C A L E system, see [Tong and Frank l in , 1989]. 
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