Tuning

To Create Good Circuit Designs

Chris Tong”
Department of Computer Science
Rutgers University
New Brunswick, NJ 08903

Abstract

The efficiency and optimality of a divide-
and-conquer approach to design depends upon
the associated hierarchy of implementation
goals having sibling subgoals that interact only
weakly or not at all. Unfortunately, in many
domains the only easily acquirable design re-
finement knowledge leads to the formation of
goal hierarchies that violate this assumption.

In this paper, we describe a learning method
that incrementally transforms a search-based
design system that spends much of its time re-
covering from the implicit (and mistaken) as-
sumption that subproblems do not interact,
iInto a compiler-like system that decomposes
the original design problem into truly non-
interacting subproblems. The improved system
finds locally optimal solutions to its subprob-
lems, which are composed into globally opti-
mal solutions. By analyzing dependencies, the
learning method re-parses a poor design de-
composition into one with no subproblem in-
teractions; it then generalises from the result-
ing decomposition, adding new refinement rules
to the knowledge base.

We have implemented a design system called
CPS that solves design problems of implement-
iIng boolean expressions as gate-level circuits.
We have also implemented a learning program
called SCALE that incrementally transforms
CPS into an optimizing compiler.

*currently on leave at IBM Watson Research Center

*The research reported here was supported in part by
the Defense Advanced Research Projects Agency (DARPA)
under Contract Number N00014-85-K-0116, in part by the
National Science Foundation (NSF) under Grant Number
DMC-8610507, and in part by the Center for Computer Aids
to Industrial Productivity (CAIP), Rutgers University, with
funds provided by the New Jersey Commission on Science
and Technology and by CAIP's industrial members. The
opinions expressed in this paper are those of the authors and
do not reflect any policies, either expressed or implied, of any
granting agency.

Phil Franklin+
Department of Computer Science

Rutgers University
New Brunswick, NJ 08903

Optimally implement in TTL:
(OR (AND (NOT (AND u v)) w)
(AND (OR x (NOT y)) z))

SN, Sl B
1 2 3

Optimallv Optimally Optimally
Implement : Implement sl: Implement a2:
(OR (AND 81 w) (AND 82 z)})) (NOT (AND u v)) (OR x (NOT y)})

| | |

refinement
and patching

¢ J

(Y . i BT g
@QL{_ (L

- 2

Figure 1: An implementation goal hierarchy

1 Introduction

In principle, design efficiency and solution optimality can
be impacted by three factors: choice of design process
model; the accuracy of the (possibly implicit) assump-
tions made by that design process about subproblem in-
teractions; and the contents of the knowledge base. We
will discuss these factors in turn, finally concluding that
if a learning method focuses on improving the last of
these, using a fixed, search-based model of design, the
second issue will disappear over time.

1.1 Some simple models of design

Much research in knowledge-based design [Kant and
Barstow, 1978, Stefik, 1981, Mittal, 1986, Steinberg,
1987, Tong, 1988, Brown and Chandrasekaran, 1989] has
concentrated on design involving some form of top-down
refinement. In many knowledge-based design systems,
top-down refinement proceeds by repeatedly applying
refinement rules that flesh out or decompose abstract
functional specifications, until the leaves ofthe generated
hierarchy are functions that are directly implementable
iIn the target technology (using refinement rules we will
call implementation rules). The functional component
hierarchy is isomorphic to a goal hierarchy containing
implementation goals and subgoals of the form, "Opti-
mally implement component x". Figure 1 illustrates such
a hierarchy in the domain which we will use to illustrate
our ideas: boolean expression design.

In this paper, we will consider design processes that

Tong and Franklin 1439

perform not only refinement, but also patching and back-
tracking; we presume a depth-first search strategy. In
the boolean function domain, a patcher might use a rule
base containing patching rules such as P1: "If the cir-
cuit iIs a combinational circuit, and two inverters are
In sequence, they can be replaced by a wire." Patch-
Ing Is used to correct constraint violations, and to op-
timise the design. If patching is insufficient for resolv-
ing some problem, backtracking will retract refinement
and patching choices that have been made. Models that
include other design operations are also possible. For
example, many of the ideas about patching apply more
generally to subproblem composition processes (includ-
iIng constraint-based reasoning). However, the simple
elements just mentioned will suffice to demonstrate the
basic intuitions behind our learning method.

1.2 The accuracy ofassumptions about
subproblem interactions

Suppose we want the design process to create an imple-
mentation of a boolean expression design problem that
IS optimal with respect to gate count. We will consider
three different solutions to the design problem of Fig-
ure 1; one has 10 gates, another, 8 gates, and a third,
6 gates. The 6 gate solution is an optimal one for this
design problem. What sort of design processes might
produce the suboptimal solutions?

"Non-interacting subproblems” assumption. A
10 gate solution could be produced by a purely
refinement-based process. The design process creates the
subproblem decomposition in Figure 2, and selects the
(locally) best solution to each subproblem (depicted in
the figure). Such a design process implicitly' makes the
mistaken assumption that subproblems do not interact]
that is, it assumes that locally correct and optimal so-
lutions to the subproblems compose to form a globally
correct and optimal solution.

"Weakly interacting subproblems” assump-
tion. An 8 gate solution could be produced by a design
process that supplements top-down refinement with op-
timization. Many programming language compilers have
this sort of behavior. Repeated application of patching
rule Py in the boolean function domain is an example
of a linear time optimizer, a procedure that iteratively
modifies solutions until it produces an optimal solution
(in linear time). "Peephole optimization" is another ex-
ample of a linear time optimizer. Both of these patching
processes are applied to the flat, composed solution; hi-
erarchical patching (e.g., the merge step of mergesort)

can increase the complexity by a factor of d, the depth
of the hierarchy.

Top-down refinement would initially produce the same
10 gate implementation as before. Subsequent hillclimb-
iIng toward a more optimal design via patching finds only
a single opportunity to apply patching rule P1 (to sub-
problems 3 and 4), resulting in an 8 gate solution. This
design process implicitly makes the mistaken assumption
that the subproblems only weakly interact, i.e., it is pos-
sible to take any combination of subproblem solutions

"We only consider design processes that do not explicitly
reason about such assumptions.

1440 Knowledge Representation

and patch it into a globally correct and optimal solution
in linear time.

Strongly interacting subproblems. Subproblems
strongly interact if some combination of subproblem solu-
tions cannot be patched into a globally optimal solution
In linear time. The subproblems in Figure 2 strongly
interact (as illustrated by the particular solutions in the
figure). Given the possibility of strongly interacting sub-
problems, we use a search-based model of design that
permits backtracking to guarantee that an optimal solu-
tion is produced. We assume that the search is trying to
optimize an evaluation function f (e.g., gate count), and
that one of the problem inputs is a budget that must be
met: f(design) < bu.

Because the search-based design process still divides
problems into subproblems (via refinement) it still be-
haves as though the subproblems do not interact or only
weakly interact, and only backtracks when that (im-
plicit) assumption is proven wrong. Thus like the previ-
ous design processes, it selects the locally best solution
to each subproblem it tries. Suppose it solves the sub-
problems of Figure 2 in the order {1,2,...,7}. If we set
a budget of 6 gates, it will search about half the design
space before it retracts the initial choice it makes for
subproblem 1, and begins to converge on the optimal so-
lution (Figure 1). The optimal solution is produced by
selecting the locally worst solutions for subproblems 1
and 6, implementing each of these two ORs as a NAND
gate and two inverters. This produces a design in which
patch rule Pl can be applied three times, bringing the
gate count down to 6. As illustrated by this example,
search finally finds the optimal solution, but generally
does so in exponential time. Thus no leverage in effi-
ciency was gained from the "problem decomposition”.

1.3 The contents of the knowledge base

Mistaken assumptions are due to inappropriate
rules. Problems of suboptimal designs or inefficient de-
sign processes occur when the goal hierarchy is inappro-
priate; the subproblems it creates interact, thus mislead-
Ing a design process that presumes otherwise. Inappro-
priate goal hierarchies are evidence that the knowledge
base contains inappropriate rules. For instance, pure
top-down refinement would be sufficient for the boolean
expression design task ifthe refinement rules were guar-
anteed to produce non-interacting subproblems. Instead
of changing the nature of the design process, we can try
to change the rules which produce the subproblems, so
that they produce subproblems whose worst-case inter-
actions are guaranteed to fall into a particular category
(e.g., "weakly interacting subproblems”).

Acquisition of design knowledge. The most ob-
vious response to this observation would be to acquire
rules that only create non-interacting subproblems; we
will call these good refinement rules. One or more such
rules might decompose our example design problem in
the manner depicted in Figure 1 (instead of the decom-
position of Figure 2). Because they are non-interacting,
the locally optimal solutions to these subproblems com-
pose to form a globally optimal 6 gate solution. We may
arrive at these locally optimal solutions either by ap-

Optimally implement in TTL:
(OR (AND (NOT (AND u v)) w)

(AND (OR x (NOT y)) z))
1 2 3 4 5 6 7
Opt. Opt . Opt. Opt . Opt. Opt. Opt.
Impl: Impl sl: Impl s3: Impl s4: Impl s2: Impl s5: Impl s6:
(OR s1 s2) (AND s83 W) (NOT s4) (AND u v) (AND s5 z) (OR x s6) (NOT vy)
' I I Patching | |

-

— s3 7

s] ' :
sl sB«toq- s4s4q :
s 2 — w -)

“dpportunity

-- U — SO : X
5
Y — 2 5650 <| Y

Figure 2: A poor implementation goal hierarchy

plying the "design as search" approach locally to solve
each subproblem, or by acquiring three additional imple-
mentation rules that tell us how to optimally implement
these subproblems.

In contrust, however, most prototype knowledge-based
design tools or compilers that have been created for "real
world" problems such as circuit or software design do
not follow this strategy. Most create an initial, poor
design based on an inappropriate goal hierarchy, and
then optimize (e.g., [Knapp and Parker, 1986, Kowal-
ski, 1985]). Far fewer (e.g., [Kant and Barstow, 1978,
Steinberg, 1987]) actually use refinement rules that en-
able a polynomial time, divide-and-conquer approach.

The reason seems clear. Acquiring implementation
rules sufficient for forming (probably inappropriate) goal
hierarchies is generally a relatively easy and constrained
task (see, e.g., Figure 3). Acquiring patching rules suf-
ficient for limited optimisation is also relatively easy.
On the other hand, acquiring good refinement rules is
a rather unconstrained task. A combinatorial number
of such rules may be necessary to get broad coverage.
Such rules may not exist, may not be easily obtainable
from domain experts, or may not be expressible in any
intuitive form.

Learning good refinement rules from design ex-
perience. Let us reconsider the problem ofinappropri-
ate goal hierarchies from the standpoint of human de-
signers. In a poorly understood design domain, human
designers do not usually start out doing top-down design.
Instead, they first do alot of "exploratory design", using
processes such as composition, hillclimbing, or analogical
reasoning (see, e.g., [Kowalski, 1985]). We hypothesise
that one of the primary purposes of such exploratory de-
sign is to form a more appropriate goal hierarchy out
of an initially poor one, so that a reasonably efficient
top-down refinement based approach to design can be
pursued subsequently, and so that the process is reason-
ably likely to produce an optimal (or satisficing) solu-
tion. Human designers appear to learn appropriate goal
decomposition hierarchies both while solving a particu-
lar problem, and more generally, so that later problem-
solving behavior for a similar problem seems less search-
like. We have modelled the "within-task" learning skill
(given an initial budget for an evaluation function),
in a circuit design program called DONTE [Tong, 1988].

This paper focuses on modelling across-task learning of
appropriate goal decomposition hierarchies that are fine-
tuned for optimizing a particular evaluation function.
Implicit vs. explicit decomposition. The prob-
lem decompositions we have been discussing can be cre-
ated directly by decomposition rules that match a design
problem and produce a set of subproblems to be solved.
Alternatively, a decomposition can be created indirectly
by applying refinement rules that only match a subex-
pression S (e.g., (AND u v)) of the design problem P
(e.g., (NOT (AND u v))). Such a rule implicitly decom-
poses P into two problems: "Implement S” and "Imple-
ment everything in P but S" (e.g., (NOT expr)). If P
can be "parsed" into subexpressions all of which match
some refinement rule, we say that P is implicitly decom-
posed by the set of matching rules. Ambiguity in the
parse corresponds to alternative decompositions. In this
paper, we will study the learning of good refinement rules
that implicitly decompose a problem into non-interacting
subproblems by matching its subexpressions.

Simplifying assumptions. Design subproblems can
interact in different ways. A functional interaction oc-
curs if some combination of choices for solving the sub-
problems leads to a global design that fails to function
correctly. A resource usage interaction occurs if some
combination of choices for solving the subproblems leads
to a design that is suboptimal with respect to a given re-
source budget. In this paper, we focus on resource usage
Interactions between subproblems, and presume that no
functional interactions between subproblems can occur.

2 The desigh method

Choice of design process model. |[f the same de-
sign process model is to be used at any point during the
course of learning, that model must be robust enough
to recover from mistaken assumptions about subprob-
lem interactions. On the other hand, after its knowledge
base has been improved, the design process must be able
to use the learned knowledge in such a way that its per-
formance is improved. In this section, we describe a
simple design process model that has both of these prop-
erties. This model has been implemented in a program
called CPS. CPS is a search-based design system that
performs top-down refinement, patching, and chronolog-

Tong and Franklin 1441

Refinements: (AND Dbfl bf2) {(NOT bf1l)

bl
e D1 r— bf)
*’Q—{_ bf2 _(;,..... br2 C :]

cost : 4 S 3

(OR Dbfl Dbf2)

& T— o~
S G i

2

cost:

Patches: 1.
| l br
TE R —{
!
— 1
cost: 0 2
IT.
___ bfl j b1
e 1 z
cost: 1 3

Figure 3: Initial knowledge base for CPS

ical backtracking. We will illustrate the behavior of CPS
In solving the problem in Figure 1.

Input. The input to CPS is a boolean expression
(composed of binary AND and OR functions, and the
NOT function), an evaluation function that defines de-
sign optimality, and a global resource budget that must
be achieved. For the purpose of simplifying the learning
method (so it needn't verify that the design produced
by the performance system is optimal), the budget we
give CPS is the cost of an optimal solution. By opti-
mal solution we mean the circuit in the space of circuits
defined by the refinement and patching rule base (see be-
low) that costs the least (with respect to the evaluation
function).

Output. The output is an optimal cost, TTL gate-
level circuit, composed of binary AND-gates, OR-gates,
and NAND-gates, as well as inverters. Figure 1 gives an
optimal solution to our example problem.

The knowledge base. The domain knowledge base
IS depicted in Figure 3.

Refinement. Design (sub)problems are solved ei-
ther directly, using a single implementation rule (e.g.,
for subgoal 4 in Figure 4, "Implement (AND u v)") or
indirectly by (implicitly) decomposing the problem. In
the latter case, the subproblems are determined recur-
sively. CPS finds all refinement rules that apply to the
current expression (initialized to be the entire problem).
Of these applicable refinement rules, CPS chooses one
whose "left hand side" is maximally specific, i.e., one
that applies to the largest possible sub-expression of the
current expression.” Thus rules that refine expressions

° The ARGO circuit design system [Huhns and Acosta,
1989] uses a similar heuristic.

1442 Knowledge Representation

of the form (OR (AND x y)(AND w m)) will be selected
over more general rules that refine expressions of the
form (OR x y). In our example, based on the refine-
ment rules in the initial knowledge base (all of whose
"left hand sides" are primitive functions), the only rules
that apply to the top-level OR simply have (OR x y) as
their left-nand side. Subgoal 1 is created in response and
added to the implementation goal hierarchy (see Figure
4). Then for each non-literal argument, the same process
IS repeated, creating subgoals 2 through 7.

In general, the result of refinement can itself be de-
composable. However, in our simple boolean function
domain, the subproblems of the original problem are di-
rectly implement able, because the refinement rules that
implicitly construct the decomposition are all implemen-
tation rules. The implementations chosen for each sub-
problem (after some search) are illustrated in Figure 4.

Evaluation function. Faced with a choice among
different refinement alternatives for the same subgoal,
CPS will prefer the alternative that is locally optimal
with respect to a given evaluation function. |In our exam-
ples, the evaluation function is one that prefers NAND
gate implementations:

5X#ANDGates+5x#ORGates+3Ix#INVs+#NANDGates

Selecting locally optimal refinement alternatives does
not guarantee a globally optimal solution. The refine-
ment choices that do lead to the optimal cost solution
are illustrated in Figure 4. Only 5 of the 7 are locally
optimal.

Patching. After CPS constructs a global solution, if
it detects a budget violation, it repeatedly selects and
executes applicable patch rules until no more patching
Is possible. Figure 4 illustrates the patching process for
the subproblems in our example.

Backtracking. Backtrackable choice points are cre-
ated whenever a particular implementation task has al-
ternative solutions. Chronological backtracking occurs
whenever a design has been completely implemented
(and patched) and the global budget has not been met;
an implementation choice and all patches that depend
on it are retracted. CPS stops at the first complete so-
lution that meets the budget. In the boolean function
domain, given only the (easily acquired) knowledge in
the initial knowledge base (Figure 3), we cannot back-
track when partial solutions violate the budget because,
In many cases, further patching opportunities (leading
to an optimal cost design) may become available only
after additional choices have been made.

In our example (Figure 4), the partial solution after
the implementation of subproblem 6 has a cost of 7, ex-
ceeding the global budget. Only when the final sub-
problem is implemented and the solution patched does
the implementation meet the budget.

Termination. When all the implementation goals
have been achieved, and the resulting design does not
violate the budget, the design process is completed.

3 The learning method

SCALE is the learning component of our system. After
CPS solves a problem, SCALE'S learning method ratio-

Optimally Implement in TTL:

Budget: 6

{AND

ﬁ.—

2 4

Opt . Opt . Opt. Opt.
Impl: Impl sl: Impl s83: Impl s4:
{OR 51 82) (AND 83 W) (NOI‘ s4) {AND u v)

{43

LGRS I

(OR (AND (NOT (AND u v)) w)
(OR x (NOT y)) z))

o

5 6 > 7
Opt . Opt. Opt .
Impl s82: Impl s85: Impl s6:
{AND 835 z) (OR x 56) (NOT vy)

oot
Y

36
J/Patch 11 (twice) Patch I1 J/Patch 11 Patch 171 \l/Patch 11 \Lpatch 11 (twice\)l;atch 1)
/ - s \ N f \ -)
53 u
= 1 85 e y
sl w v s 74 s6
. 82) ‘/ | 1 — 856 1
- " _ /
\l/ Patch I(twice) Patch 1I Patch 1
— 383 V V
=" x
u
s3 5 1
L 85 v v
— Z

Figure 4: Solution tree produced by CPS

nally reconstructs the problem decomposition by ana-
lyzing dependencies. It then generalizes from the non-
interacting subproblems in the reformulated decomposi-
tion; new refinement rules that identify and optimally
iImplement similar non-interacting subproblems are cre-
ated. The input to SCALE is a CPS problem-solving
trace. The trace includes the original problem, the se-
quence of refinement and patch operations which led to
the optimal solution, and the final implementation. To
Illustrate SCALE'S behavior, we will use the example of
Section 1.

We use an explanation-based learning (EBL) approach
[Mitchell et al/., 1986] to explain the training example
and justifiably generalize from it one or more refinement
rules:

The ftraining example (the input to SCALE) is
design problem and the trace of CPS solving it.

d

The domain theory is the knowledge base and an
evaluation function /.

The goal concept is one or more "good" refinement
rules, LHS—>RHS, where LHS is a generalized clus-
ter (see below), and RHS is an implementation of
LHS that is optimal with respect to /.

The operationality criterion requires the LHS of the
rule to be a boolean expression, and the RHS to be
a network of gates.

Explaining subproblem interactions using clus-
ters. By analysing dependencies in the final optimal
design, SCALE identifies clusters of interacting subprob-
lems. These clusters consist of one or more of the sub-
expressions that were created when the problem was

originally decomposed by refinement rules that matched
its sub-expressions. A cluster consists of more than one
sub-expression when the successful application ofa patch
depends upon the existence of several sub-expressions.
The patches can be thought of as "gluing" the sub-
expressions together. |If the same sub-expression is in-
volved in several patches, all the "glued” sub-expressions
are clustered. The cluster is a single sub-expression in
the special case when CPS has derived a better imple-
mentation for a primitive function (AND, OR, NOT)
than was originally provided by the initial set of refine-
ment rules.

In our example, three clusters of interacting subprob-
lems are detected (see the circled subproblem implemen-
tations in Figure 4, which match the subproblems in Fig-
ure 1). The first cluster groups subproblems 1, 2, and
5. Patch Il converts two inverters created by the im-
plementations for subproblems 1 and 2 into two NAND
gates; since these two gates are in series, they are then
eliminated by Patch |. These two patching rules apply
iIn a similar way to subproblems 1 and 5. One cluster
Is formed for both patch applications (rather than two
separate clusters) because both depend in part on sub-
problem 1. Several uncircled clusters are also formed;

these clusters correspond to new, optimal implementa-
tions for OR, AND, and NOT.

The EBL goal concept requires that the RHS of a
learned rule be an optimal implementation of the LHS.
The global implementation is known to be optimal be-
cause CPS is required to meet an "optimal cost" bud-
get. By construction, the clusters do not interact; the
optimality of the global implementation implies the op-
timality of the cluster implementations.

Tong and Franklin 1443

Boolean exgrusiom Circuits

1.(AND x y) 1. (NAND-G (NAND-G x y) 1)
2.(ORxy) 2. (NAND-G (NAND-G x 1) (NAND-G y 1))
3. (NOT x) 3. (NAND-Gx 1)

4. (OR (AND x y) 7)

5. (OR (AND x y) (NOT z))

6. (OR x (AND y 2))

7. (OR (NOT x) (AND y z))

8. (OR (AND x y) (AND w 2))
9. (OR (NOT x) y)

10. (OR x (NOT y))

11. (OR (NOT x) (NOT y)) 11. NAND-G x y)
12. (NOT (AND x y)) 12 NAND-G x y)

Table 1: Rules added to the initial knowledge base to
form the closure

4. (NAND-G (NAND-G x y) (NAND-G z 1))
S. NAND-G (NAND-G x y) z)
6. (NAND-G (NAND-G x 1) (NAND-G y z))
7. (NAND-G x (NAND-G y z))
8. (NAND-G (NAND-G x y) (NAND-G w z))
9. (NAND-G x (NAND-G y 1))
10. NAND-G (NAND-G x 1) y)

Cluster generalisation. The explanation process
has parsed the solution tree into subproblem clusters and
their optimal implementations. SCALE generalises each
of these into a refinement rule. For example, the rule
learned from the first cluster in Figure 4 has (OR (AND
varl var2) (AND var3 var 4)) as its generalised LHS and
(NAND-G (NAND-G varl var2) (NAND-G var3 var4))
as its generalised RHS. The LHS generalises the func-
tion arguments from the original sub-expressions at the
leaves of the goal hierarchy, while the RHS generalizes
the implementations of those same arguments.

The long-term "goal concept" of SCALE'S learning is
a set of refinement rules that implicitly decompose any
problem in the domain into non-interacting subprob-
lems (and create optimal implementations for these).
SCALE'S goal concept is instead expressed in terms of
learning a single rule, and cluster formation. The next
section discusses some of the ideas behind why SCALE'S
goal concept leads to achieving the long-term goal con-
cept in the boolean function domain.

4 Discussion

Closure: completely learning a knowledge base.
One view of SCALE is that it compiles the optimisa-
tion knowledge of the patch rules into new refinement
rules. Learning these "good" rules is attractive when us-
ing knowledge bases like that of our example, for which
only a finite number (a closure) of good rules exist. After
a relatively small number of examples (less than twenty,
on average, in fifteen experiments involving randomly
generated boolean expressions), SCALE converges to the
set of rules listed in Table 1. These rules have the form:
|IF boolean expression THEN implement as circuit.
SCALE forms the closure by adding these rules to CPS's
knowledge base.

Design as search: efficiency speed-up. Figure 5
illustrates the results of our experiments to measure the
iImprovement in efficiency of a search-based design sys-
tem due to repeated application of our learning method.

The "before learning” curve illustrates the behavior
of CPS using the initial knowledge base (Figure 3) on
a set of randomly generated test problems. Chronolog-
ical backtracking, optimization patching, and a target
optimal budget combine to control CPS's search for an
optimal circuit. As discussed in Section 1, the time com-
plexity of such a problem solver is exponential.

SCALE increases the efficiency of CPS by transform-

1444 Knowledge Representation

lm —‘0.‘..-""'|il"'“""--“-vlllv'l.'-vit.ia N I-1tv"vv YRR vn--o-o...--‘..q.n.u
T IR R L Y ey R R LY T P Y I L R oo---tno-n LR . - ...lr..u--
T L L L r T Ty N TP R T T ey ¥ ERR) PO SN EEE] R L R e T R R I LR NI EER R
- . ' N
e e e g SERL RUNC
— -;- ll'lvl - .'4 . .
H +
ﬂ = - .1.‘! v cagrens
1 i
- | ‘ + :
® ' i .- -
103 n.-.-uu-nu.o-..-.a.nl*no.o-...-unu nvr---.f:‘l‘-u'!'-'T-f-.f-'-ft:‘_-:lll""o-ol":::::1::::T:r:?f-"':':i'-‘:::::.-:l_- an -v-nn-‘..-.-fﬂ
'6 o e i L ST LSNP ATHEET CTI 3
. . . X A ST TERE T senabin b -
: r.. TR XX ae aRTENE . * [TTX v o
u e - - - el - T ‘1
.. -
r. 11
U p . - -
b+ . - a.l;lballuhu!Q»rt-o-.a--.“.q..“..|.o..|--.--n. « o il
8 : i iB f Le : f
g ») : ! eiore urnlng :
(o) 102 e e e 3
e N T Ty t AP e boua. RytramaserennaamaadE BiToroNsacwimararc . LR setramae e R
z = e 4o T L R T e T I R R S L L R PRt . i
R e P O L e T T RS LR T I S R T I I R LT L L T
> oo -
4 LI TR PER RIS ST PRI =
o o . 4 - r
e .. T S P ST i o
]0' il o -’ LTI .- :i,':l.:lff:' OIS St S U DRSS A . T Tk -._'_'_a
I BT T e T e e L R woewnane
: ‘) M ’ L : .o -: .- MR S S '.---n-ﬂ‘!“\'.ﬂ".-.- -" -y
b . ca e Ve ey .. _;;.;_‘;.‘“'_.‘---n!., . e . -y
- IR -_”‘-vﬂ'--ﬂ'“. - .-,.-J:;..._.,.,,., e i mea e e e _1
z et PPy A VAR L . e -
[RO ..After Learning =~ N
- PP . .) _4
")0 A 4 s i 4

Optimal Solution Path Length

Figure 5: Design efficiency before and after learning the
closure: The z-axis represents length of shortest path to
an optimal solution in the search space defined by the
closure of CPS’s knowledge base. The y-axis is logarith-
mic.

ing it from a search-oriented knowledge-based design
system (which is relatively easy to build) into an effi-
cient (one pass) knowledge-based compiler which pro-
duces optimal designs. Because CPS uses the "maxi-
mally specific" heuristic, and draws its refinement rules
from the knowledge base closure (guaranteed to pro-
duce non-interacting, locally optimal solutions), it has
compiler-like behavior; because the resulting subprob-
lems do not interact, CPS simply composes subproblem
solutions, producing a global solution without backtrack-
ing or patching. The "after learning" curve in Figure 5
illustrates the behavior of CPS on the same problems as
the "before learning" curve after the closure has been
learned (the "after learning” knowledge base was ex-
panded by learning from a separate, randomly generated
problem set). It shows that CPS produces the target so-
lutions in linear time by generating the fewest possible
nodes (one for each subproblem in the decomposition).

Integration of knowledge. SCALE adds newly
learned rules to the knowledge base, but does not remove
existing rules. This raises two issues of knowledge inte-
gration. How does SCALE limit the new rules learned
so as to minimize redundancy in the rule base? After
new rules have been learned, how does the performance
system select among competing rules, so that the overall
performance after learning improves?

A common problem of rule learning is swamping,
learning rules that express the same knowledge redun-
dantly (see [Fikes et a/., 1981]). A central contribution
of our work is the selective learning of "good" refinement
rules that produce non-interacting subproblems (rather
than all possible rules for a knowledge base). SCALE
limits redundancy because good rules express knowledge
about refinement rule interactions; thus no refinement
rule application can be re-expressed simply as an appli-
cation of other refinement rules. Of course, the refine-
ment rules will always be re-expressible as an application
of the primitive refinement rules and patch rules.

The wuse of the "maximally specific" heuristic

gives CPS the desirable property of non-interference:
subsequently-learned rules never interfere with CPS's
ability to solve previously worked problems. This is
because SCALE always learns rules from the maximal
clusters of a problem trace. On subsequent attempts
at solving the same problem, the "maximally specific"
heuristic ensures that it will choose the refinement rules
for the same maximal clusters.

Solutionoptimality. When restricted to boolean ex-
pressions whose literals are distinct positive logic values
(i.,e., as, y, z, etc.), CPS generates gate-level implemen-
tations of boolean expressions that are "optimal”™ with
respect to the space of all designs it can generate. CPS
cannot produce an optimal solution for all boolean ex-
pressions because it does no structure-sharing; for ex-
ample, if there are two occurrences of (NAND-G x y) in
the final implementation ofa circuit, the output of a sin-
gle NAND-gate could be directed to both inputs which
require it.

Scope of the learning method. SCALE learns
about /ocal resource usage interactions between subprob-
lems that do not interact functionally. It presumes that
the patch rules improve the design with respect to the
evaluation function. It does not reason about optimising
by global structure-sharing.

SCALE could be applied to any initial knowledge base
of refinement and monotonic patch rules for our exam-
ple domain, including one where the results of refine-
ment rules are expressed as optimal NAND-gate configu-
rations. We chose to start with a sub-optimal knowledge
base to show that we can relieve the human engineer of
the requirement of providing an optimal base, and still
produce a linear time optimizing compiler.

5 Conclusions

Summary. This paper has presented a method that in-
crementally transforms a search-based circuit design sys-
tem (CPS) that uses only primitive (and non-redundant)
refinement and patch rules into a compiler-like design
system with the following properties:

* Non-redundant rule-set. No refinement rule appli-

cation can be re-expressed as an application ofother
refinement rules.

« No backtracking or patching. The system produces
a design that meets an initially specified resource
budget without patching or backtracking.

« Coincidence of local optimality with global optimal-
ity. Composing locally optimal solutions to sub-
problems created by refinement rules results in a
solution that is globally optimal.

When and what to learn is based on analyzing design
step dependencies, and interactions of design steps with
respect to optimization. This learning method has been
implemented in the SCALE program, which converges
on the "best possible” knowledge base (the "closure")
from a simple initial knowledge base, using (on the aver-
age) less than twenty random design problems as train-
ing examples. For further details on the evolution of the
CPS/SCALE system, see [Tong and Franklin, 1989].

Acknowledgements

We thank Jack Mostow, Mike Barley, Wes Braudaway,
Dawn Cohen, Chun Liew, Sridhar Mahadevan, and Ar-
mand Prieditis for providing helpful comments on earlier
drafts of this paper. We also thank the members of the
Rutgers Al/Design Project for the stimulating environ-
ment they provide.

References

[Brown and Chandrasekaran, 1989] D. Brown
and B. Chandrasekaran. Investigating routine design
problem solving. In C. Tong and D. Sriram, editors,
Artificial Intelligence Approaches To Engineering De-
sign. Forthcoming, 1989.

[Fikes et al., 1981] Richard E. Fikes, Peter E. Hart, and
Nils J. Nilsson. Learning and executing generalized
robot plans. In B. L. Webber and N. J. Nilsson, edi-
tors, Readings in Artificial Intelligence. Morgan Kauf-
mann, 1981.

[Huhns and Acosta, 1989] M. Huhns and R. Acosta.
Argo: An analogical reasoning system for solving de-
sign problems. In C. Tong and D. Sriram, editors,
Artificial Intelligence Approaches To Engineering De-
sign. Forthcoming, 1989.

[Kant and Barstow, 1978] E. Kantand D. Barstow. The
refinement paradigm: The interaction of coding and
efficiency knowledge in program synthesis. IEEE
Transactions on Software Engineering, 9, 1978.

[Knapp and Parker, 1986] D. Knapp and A. Parker. A
design utility manager: the ADAM planning engine.
In Proceedings of the 23rd Design Automation Con-
ference. |IEEE, June 1986.

[Kowalski, 1985] T. Kowalski.
Approach to VLS| Design.
ers, Boston, 1985.

[Mitchell et al., 1986] T. Mitchell, R. Keller, and
S. Kedar-Cabelli. Explanation-based generalization:
A unifying view. Machine Learning, 1(1), 1986.

[Mittal, 1986] S. Mittal. Pride: An expert system for the

design of paper handling systems. [EEE Computer,
19(7), July 1986.

[Stefik, 1981] M. Stefik.
(MOLGEN: Part 1).
May 1981.

[Steinberg, 1987] L. Steinberg. Design as refinement
plus constraint propagation: The VEXED experience.
In Proceedings of the National Conference on A rtificial
Intelligence. AAAIl, 1987.

[Tong and Franklin, 1989] C. Tong and P. Franklin. To-
ward automated rational reconstruction: A case

study. In Proceedings of the Sixth International Ma-
chine Learning Workshop, June 1989.

[Tong, 1988] C. Tong. Knowledge-based circuit design.
PhD thesis, Dept. of Computer Science, Stanford Uni-
versity, 1988.

An Artificial Intelligence
Kluwer Academic Publish-

Planning with constraints
Artificial Intelligence, 16(2),

Tong and Franklin 1445

