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A b s t r a c t 

Generate-and-test a lgor i thms to solve con­
s t ra in t sat is fact ion problems are of ten ineff i ­
cient , b u t can be const ructed fa i r l y easily by 
knowledge comp i la t i on techniques t h a t con­
ver t declarat ive p rob lem knowledge and do­
ma in knowledge i n t o a procedura l f o rma t [Liew 
and Tong , 1987]. Cu r ren t research is focus­
ing on methods to improve the efficiency o f 
generate-and-test a lgor i thms by complete ly i n ­
co rpora t ing local constra ints i n t o generators of 
parts of composi te solut ions [Braudaway, 1988]. 
More global const ra in ts on mu l t i p l e par ts can­
not necessarily be incorpora ted i n t o the par t 
generators. The i r sat is fact ion must be ensured 
in a di f ferent way. 

We describe an (un imp lemented) me thod for 
t rans fo rm ing a generate-and-test a l go r i t hm 
i n t o a generate-test-and-patch a lgo r i t hm t h a t 
ef f ic ient ly h i l l c l imbs t o w a r d a so lu t ion satisfy­
i ng a par t i cu la r g lobal cons t ra in t . Ou r me thod 
is based on cons t ruc t ing an evaluat ion func t ion 
f r o m the g lobal cons t ra in t , t ha t reflects the "de­
gree" to wh ich the const ra in t has been satisf ied. 
Some of the steps in th is me thod rely on cat­
egorizing the g lobal const ra in t i n to a generic 
class. In th is paper, the const ra in t classes on 
wh ich we focus are quota-meet ing and covering 
const ra in ts . 

We i l lus t ra te the general approach by apply­
ing i t to a s imple generate-and-test a l go r i t hm 
for house f loorplanning. We prov ide empi r ica l 
results t ha t cor roborate our c la im tha t the ef­
f ic iency of the a l g o r i t h m has been s igni f icant ly 
imp roved . 
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Room lengths must be at least minValue. 
Room widths must be at least minValue. 
Rooms have to be inside the house. 
Rooms must be adjacent to the house boundary. 
Rooms must not overlap. 
The rooms must completely f i l l the house space. 

( C l ) 
( C 2 ) 
( C 3 ) 
(C4 ) 
(C5 ) 
( C 6 ) 

F igure 1: Const ra in ts on house f loorplans 

1 I n t r o d u c t i o n 

In th is paper, we address par t of the p rob lem of compil­
ing a declarat ive representat ion of a class of problems 
and knowledge relevant to solv ing i t i n to an efficient 
prob lem-so lv ing system. 

E x a m p l e d o m a i n . We w i l l use the doma in o f house 
f loorplanning to i l lus t ra te several domain- independent 
ideas for addressing th is research p rob lem. Floorplans 
are arrangements of rectangular rooms in a rectangu­
lar house space. Rooms and houses are al igned w i t h 
an integer-valued g r id of po in ts in a plane. The con­
st ra ints in F igure 1 define a par t i cu la r class of f loorp lan­
n ing problems. The number o f rooms, the dimensions of 
the house space, and m i n i m u m values for room lengths 
and w id ths are problem-specific parameters. [Liew and 
T o n g , 1987] h as shown how to au tomat i ca l l y construct 
a s imple bu t ineff icient generate-and-test a lgo r i t hm tha t 
solves par t i cu la r problems for a p rob lem class such as 
th is one. Given the leng th and w i d t h of the house, and 
n, the number of rooms, the a lgo r i t hm generates n room 
rectangles, and then tests the candidate so lu t ion against 
each of the above const ra in ts . Fai lure results in chrono­
logical back t rack ing . 

C o n s t r a i n t i n c o r p o r a t i o n . Var ious methods have 
been developed for au tomat i ca l l y i m p r o v i n g the effi­
ciency of a generate-and-test a l go r i t hm [Mostow, 1983, 
Tappe l , 1980, Braudaway, 1988]. One of the best i m ­
provements is to completely incorporate the constra ints 
in the generator, t ha t is, to mod i f y the generator so tha t 
i t on ly produces objects sat is fy ing the const ra in ts . W h e n 
a const ra in t has been complete ly i nco rpo ra ted , the test 
cor responding to the cons t ra in t can be removed. The 
m e t h o d descr ibed in [Braudaway, 1988] complete ly i n ­
corporates those const ra in ts wh i ch are local to i nd i v i dua l 
r o o m generat ion ( C l - C4 ) , or t h a t can be local ized to 
the set of rooms generated thus far (C5) . 
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Unfo r tuna te ly , the more g lobal constra ints (e.g., C6) 
are no t readi ly incorpora ted i n t o generators by such 
methods. M o d i f y i n g a generator t ha t on ly generates a 
so lu t ion pari (e.g., an i n d i v i d u a l room) general ly is i n ­
suff icient to guarantee sat is fact ion of a const ra in t on the 
ent i re so lu t ion . 

T h e r e s e a r c h p r o b l e m . We define local constra ints 
to be those wh ich can be incorpora ted i n t o a so lut ion 
generator in such a way t h a t the resu l t ing generator runs 
in po l ynom ia l t i m e . Global const ra in ts are constra ints 
t ha t are not loca l . Our research is a imed at const ruc t ing 
an efficient p rocedura l embedding for global const ra in ts : 

G I V E N 
a set CSET of constraints on the solution; declara-
tively represented domain knowledge elucidating the 
constraints CSET; a constrained generator in which 
all constraints in CSET' CCSET have been completely 
incorporated; 

F I N D 
a procedural embedding of the unincorporated con­
straints CSET - CSET' such that the resulting algo­
r i t h m is significantly more efficient than embedding 
CSET - CSET' solely as tests. 

The doma in knowledge is p rov ided by a human know l ­
edge engineer, whose task we a i m to s imp l i f y by on ly 
requ i r ing t h a t the knowledge be in a declarat ive f o r m . 
Our m e t h o d requires knowledge about the solution part 
hierarchy (e.g., solut ions are f loorp lans; floorplans are 
houses hav ing rooms as par ts ; rooms have four parame­
ters as par ts : l eng th , w i d t h , x C o o r d , and y C o o r d ) , solu­
tion part typing (e.g., rooms and houses are rectangles; 
the x C o o r d of a room is a coord inate; rooms and g r i d -
points inside rooms are space-f i l l ing un i ts ; the house and 
gr idpo in ts inside the house are space un i t s , 1 and generic 
knowledge (e.g., def in i t ions of predicates such as i n s i d e ; 
i tems of t ype "coord ina te " can take on any integer value 
between [ -max ln t ,max ln t ] ) . 

T h e constra ined generator is produced by the R I C K 
knowledge compi ler described in [Braudaway, 1989]; 
C S E T - C S E T ' are const ra in ts wh ich tha t compi ler 
could not complete ly incorpora te . 

In th is paper , we i l lus t ra te a m e t h o d tha t opt imizes a 
generate-and-test f loorplanner i n t o a generate-test-and-
patch f loorplanner. W h e n a candidate so lut ion fails to 
satisfy a global cons t ra in t , it is passed to a patcher, 
wh ich h i l l c l imbs i ts way to solut ions t h a t are increasingly 
bet ter w i t h respect to t h a t cons t ra in t . For instance, fa i l ­
ure to satisfy the const ra in t C6 means the house space 
contains "holes" unassigned to any r o o m . The patcher 
inc rementa l l y reduces the amoun t of unassigned space 
by ex tend ing rooms. 

2 Categorization of global constraints 

T h e Eng l ish s ta tement o f C6, " T h e rooms mus t com­
plete ly f i l l the house space", seems "g loba l " in t ha t i t 
appears we mus t s imul taneous ly consider a l l the rooms 
to determine whether i t is sat isf ied. However, when we 

1 The u t i l i t y of this k ind of domain knowledge wi l l become 
clear in section 3. 

express the constra int more fo rma l l y . 

VF,P {f loorplan(F) A gridpoint(P,F) A inside(P,house,F)(C6) 
=> 3R [room(R,F) A inside(P,R,F)]} 

we notice tha t the const ra in t is only ex istent ia l ly (and 
not universal ly) quant i f ied over rooms R. Ignoring CI 
th rough C5 wou ld a l low C6 to be satisf ied by a single 
r o o m tha t covered the ent i re house. W h a t is more ac­
curate ly called a "g loba l " constra int is the conjunction: 
C7 <=> C3 A C5 A C6. Together, these three constraints 
define a covering re lat ionship t ha t must be satisf ied. C6, 
by itself, could also be called "g loba l " w i t h respect to a 
constrained generator in wh ich C3 and C5 have already 
been incorpora ted . 

One of our ma jo r long- te rm goals is to construct global 
constraint schemas or normal forms for a diverse range 
of global constra ints. Such const ra in t schemas may con­
ta in mu l t i p l e components (e.g., F igure 2 contains three 
components) . A successful match of a constra int schema 
S to a set of constra ints occurs when each schema com­
ponent matches a const ra in t in the set. The con junct ion 
of the ma tch ing constra ints (e.g., C7) is "a global con­
s t ra in t of type S" . Cons t ra in t schemas S can have asso­
ciated knowledge for he lp ing to construct a patcher tha t 
eventual ly produces a so lu t ion t ha t satisfies a constra int 
of type S. 

In th is paper, we focus on g lobal constra ints tha t can 
be viewed as constra ints on global resources. In par­
t icu lar , cer ta in parts of our approach are cur rent ly re­
s t r ic ted to f i t two generic g lobal constra int schemas: 
quota-meeting constraints and covering constraints. 

Q u o t a - m e e t i n g c o n s t r a i n t s . Quota-meet ing con­
st ra ints have the fo l lowing schema: 

(QNF) 
VS [solution(S) => cardinal i ty(unitsOfType(t,S)) = quota] 

where q u o t a is an integer, q u o t a > 0 , t is a given un i t 
t ype , and the number of uni ts of type t is always less 
t han or equal to q u o t a . Quota-meet ing constraints re­
quire t ha t the so lut ion conta in exact ly q u o t a uni ts o f 
type t . C7 is an example of a const ra in t f r om which we 
can const ruct another const ra in t C8 such tha t C8 and 
C7 are logical ly equivalent and C8 matches Q N F (Quota 
N o r m a l F o r m ) ; for instance, C8 could be " the number of 
g r idpo in ts in the f i l led par t of the house must equal the 
t o ta l number o f g r idpo in ts in the house." 

C o v e r i n g c o n s t r a i n t s . Sat isfy ing a covering con­
s t ra in t involves const ruc t ing an assignment: 

Assign un i ts o f type T S F
 t o un i ts o f type T 5 

so tha t the uni ts of type T5 are covered. 

We w i l l cal l un i ts of type TSF space-filling units} and 
un i ts of type T5 space units. Cover ing constra ints have 
the no rma l f o rm given in Figure 2, consist ing of the 
con junc t ion of three constra ints . The number of space 
un i ts and space-f i l l ing un i ts is f in i te , a l l candidate solu­
t ions share the same set of space un i ts , and the space­
f i l l i ng un i ts (and how they are assigned) varies, depend­
ing on the so lu t ion. The predicate c o r r e s p o n d s defines 
the assignment. Examples of constra ints tha t could be 

2 We wi l l use the notational convention of capitalizing vari­
able names. 
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matched to SNF (Space-fil l ing Normal Form) include: 
" A l l available jobs must be assigned a person to carry 
them ou t " ; " A l l available t ime slots must be assigned a 
j ob" ; etc. 

C7 can be wr i t t en in SNF fo rm because C3, C5, and 
C6 can be shown to match I I , I , and I I I , respectively. Af­
ter being re-wr i t ten in SNF, C7 is a covering constraint 
where the space uni ts are the gr idpoints in the house 
rectangle, and the space-fil l ing units are the gr idpoints 
in all the rooms. The assignment is the obvious one: if 
a room gr idpoint is "on top of" a house gr idpo in t , the 
two gr idpoints correspond. 

C o n s t r a i n t s c h e m a s , l o g i c a l l y e q u i v a l e n t c o n ­
s t r a i n t s , a n d r e f o r m u l a t i o n p r o c e d u r e s . Given any 
constraint Ca of type SNF, we can construct a logically 
equivalent constraint Cb of type Q N F . This is because 
SNF- I I and S N F - I I I together imp ly tha t the to ta l num­
ber of space uni ts and the to ta l number of space-fil l ing 
units must be the same (cal l i t n ) ; if Ca is satisfied, then 
all the space uni ts have been covered by space-filling 
units and therefore the number of covered space units is 
n. Thus by defining Cb to be "The number of covered 
space units equals the to ta l number of space un i ts " , Cb 

is impl ied by Ca and Cb matches the Q N F schema. Con­
versely, if Cb is t rue, then al l the space units have been 
covered, and covering constraint Ca is satisfied. 

Thus we can associate w i th schema SNF a procedure 
tha t takes a constraint matching SNF and constructs a 
logically equivalent constraint match ing Q N F . The use of 
such procedures w i l l be demonstrated in the next section. 

3 Incremental Construction of a 
Patcher 

Our approach to the research problem is to compile the 
unincorporated constraints in to a knowledge-based solu-
tion patcher. The key steps in our approach are now 
out l ined (see also [Voigt, 1988]). We have begun i m ­
plementing this method in a program called M E N D E R . 
We i l lustrate the steps of our approach on the constraint 
C6, and presume the existence of a constrained generator 
in which constraints CI through C5 have already been 
completely incorporated. 
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S T E P 1 . E x t r a c t a n e v a l u a t i o n f u n c t i o n f r o m 
t h e g l o b a l c o n s t r a i n t . Constraints per se are predi­
cates; when they are evaluatable, they are either "satis­
fied" or ' 'not sat isf ied". A key to mak ing effective use of 
a global constraint is to be able to recognize the degree 
to which it has been satisfied (e.g., to what degree has 
the house space been fil led by rooms?). Thus we want 
to convert a predicate in to an evaluation funct ion, which 
can be used to guide a h i l lc l imbing patcher. 

Some constraint schemas (e.g., Q N F ) contain proce­
dures for creating an evaluation funct ion corresponding 
to a constraint (or set of constraints) tha t fit the schema. 
However, we may discover tha t a constraint Ca is ex­
pressed in a fo rm that does match a schema S (e.g., 
SNF) , but S does not contain a procedure for construct­
ing an evaluation funct ion. 

However, S may have an associated procedure for con­
st ruct ing a constraint Cb tha t is logical ly equivalent to 
Ca bu t which matches S', a constraint schema that does 
contain a procedure for construct ing an evaluation func­
t ion f measuring improvement w i th respect to satisfac­
t ion of Cb . The impor tan t observation is tha t , i f f takes 
on i ts max imum value only in states when Cb is t rue, 
then f w i l l also aid in h i l lc l imbing to a solution that 
completely satisfies C a , because Cb and Ca are logically 
equivalent. The purpose of the patcher, is to eventually 
produce a state in which Ca is completely t rue. Thus we 
don' t insist that Ca necessarily become "more and more 
t rue" as f increases i ts value, so long as Ca is completely 
true when f takes on its max imum value. 

We w i l l now i l lustrate these points by matching con­
straints to the SNF schema, re-expressing them in Q N F , 
and then construct ing an evaluat ion funct ion. 

Re-expressing constraints to match SNF. Because of 
the large number of possible matches, syntactic match­
ing is used to suggest plausible constra int /constra int 
schema component matches in a cost-effective manner. 
The matching leaves in the parse trees of these plausible 
matches correspond to theorems which are then proved 
to verify that the constraint f i ts the constraint schema 
(see, e.g., Figure 3). 

We i l lustrate this process by matching constraint C6 
against the components of the SNF schema. In general, 
schema components can contain special cases. If the 
prototyp ica l case fails to match , the special cases are 
t r ied. C6 does not match any of the SNF prototypical 
components. However, it does match a special case of 
S N F - I I I (see Figure 3): 

(SNF-III ' ) 

where the space uni ts and space fil l ing units arc drawn 
f rom the same set of objects, and corresponds(X,Y,S) is 
equals(X,Y). 

The f i t of C6 to S N F - I I I ' is then confirmed by proving 
the three theorems suggested by the match , using the 
domain knowledge ind icat ing tha t house gr idpoints are 
space uni ts and room gr idpoints are space-fil l ing units. 

Since one component of SNF has been successfully 
matched, the search for matches next tries to find do­
main constraints to match the remaining components. 
I t f inds that C3 matches S N F - I I and C5 matches SNF- I . 
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Moving a r oom l ( b y changing e i ther i ts x or y coor­
dinates) w i l l keep f ixed the amoun t o f the house t ha t 
is f i l led , since the room is no t al lowed to overlap any 
other rooms, or be placed outside the house. Shrink-
ing a r o o m (by decreasing either i ts leng th or i ts w i d t h ) 
w i l l decrease the amoun t of the house t ha t is f i l led. A f te r 
cons t ruc t ing proofs t h a t reflect these observations (based 
on the def in i t ions o f the predicates), the incorpora t ion 
me thod constrains the patcher to the on ly moves lef t , 
+ ∆ l e n g t h ( R ) and + ∆ w i d t h ( R ) . 

S T E P 3 . R e - e x p r e s s t h e e v a l u a t i o n f u n c t i o n i n 
r e l a t i v e a n d l o c a l t e r m s . W e can re-express the eval­
ua t ion f unc t i on f for a patched so lu t ion , pa tch(S,Par ) , 
as: 

where A f i s the improvement due to the pa tch . Rewr i t ­
ing th is , we have: 

The value of Af for a length- increasing pa tch of r oom R 
is der ived to be: 

Af(F,patch(F, length(R,F))) = wid th(R,F) x A length l (R,F) 

We compute Af for each possible pa tch ing move. In 
th is manner , we can evaluate po ten t ia l patches w i t h o u t 
hav ing to execute t hem. Th i s w i l l be needed for do ing 
greedy pa t ch ing , wh ich is described in S T E P 5. 

S T E P 4 . C o n s t r u c t a p a t c h e r i n w h i c h t h e l o ­
c a l c o n s t r a i n t s h a v e b e e n i n c o r p o r a t e d . Because 
we assumed in S T E P 2 tha t the pa tch ing moves do not 
v io late any complete ly incorpora ted constra in ts , we must 
restr ict the parameter value modi f icat ions of the patcher 
so as to guarantee th is . T h e patcher has several compo­
nents, one for each modi f iab le parameter . T h e "increase 
room l e n g t h " component o f the patcher must ensure tha t 
the longer r o o m is s t i l l inside the house (C3) , s t i l l does 
not over lap another r oom (C5) , s t i l l is adjacent to the 
house boundary (C4) , and s t i l l has dimensions at least 
m inVa luo long (C1,C2) . CI and C2 are obviously always 
t rue ; C4 is guaranteed to be t rue because the < X , Y > 
corner has not been moved off the house boundary. 

T h e R I C K p rog ram [Braudaway, 1989] au tomat ica l l y 
constructs a constra ined generator in wh ich several local 
constra ints have been incorpora ted . A func t ion g (Par ,F ) 
constructed by R I C K at compi le t ime is a t tached to 
each f loor p lan parameter 's range; th is func t ion d y n a m ­
ical ly recomputes the legal values for t ha t parameter . 
The patcher is const ructed by mod i f y i ng the constra ined 
generator produced by R I C K . T h e patcher differs f r o m 
the constrained generator on ly in t ha t the range of legal 
pa tch ing moves in a par t i cu la r d i rec t ion ( + / - ) is the sub­
set of the range of legal moves (computed by g (Par ,F ) ) 
bounded by ( bu t no t inc lud ing) the cur rent value and 
vary ing in the desired d i rect ion as far as possible, whi le 
s t i l l sat is fy ing the incorporated constra ints (C3 and C5) . 

S T E P 5 . C o n v e r t t h e p a t c h e r i n t o a g r e e d y 
p a t c h e r . S T E P 2 of th is m e t h o d only determines desir­
able di rect ions for changing parameter values, bu t does 
not constra in the amount by wh ich the parameter value 
should be var ied. One easily imp lement able idea is to 
take a greedy approach; for a par t i cu la r parameter , a 
greedy patcher s imp ly tr ies values f r om tha t parameter 's 

Since Af is p ropor t i ona l to A leng th ( r , s ) (w id th ( r ) is 
not changed by the pa tch ) , the greatest evaluat ion func­
t ion change occurs when the leng th change is greatest. 
Thus , the greedy patcher is made to select values in de­
creasing order o f l eng th . I f Af had been inversely pro­
po r t i ona l to w id th ( r , s ) then the greedy patcher wou ld be 
designed to select values in increasing order. In either of 
these special cases, no ex t ra work is requi red to sort the 
parameter range values using the evaluat ion func t ion . 
More general ly, we can compi le an expression for com­
p u t i n g A f and sor t ing the range elements a t run t ime. 

S T E P 6 . O f f s e t t h e n e g a t i v e a s p e c t s o f t h e 
g r e e d y p a t c h e r b y t r y i n g t o p r e v e n t b l o c k i n g 
m o v e s . T h e ma jo r p rob lem w i t h a greedy strategy is 
tha t i t neglects to check for long- te rm negative conse­
quences. T h u s , as is i l l us t ra ted in Figure 5, extending 
r o o m Rl as far as possible to the r i gh t inadver tent ly 
blocks r oom R5 f rom being extended max ima l l y in the 
downward d i rec t ion. Un fo r tuna te l y , the shaded area in 
F igure 5 is a hole tha t is only t i l lable by extending R5 
i n to i t . The prob lem w i t h a greedy st rategy is tha t i t 
may solve one subproblem (e.g. f i l l i ng in pa r t of a hole) 
at the expense of render ing some later subprob lem un-
solvable. 

For tunate ly , we can offset some of the negative aspects 
of a greedy pa tch ing s t ra tegy by i nc lud ing a look-ahead 
component in the strategy. T h e purpose of th is com­
ponent is to detect pa tch ing subproblems tha t can only 
be solved by a single move in one way (e.g. a max i ­
ma l increase in the w i d t h of r o o m R5) . As soon as we 
detect t ha t some patch ing move has th is p roper ty , we 
make tha t move, to prevent o ther pa tch ing moves f rom 
inadver ten t ly blocking such a necessary move. We w i l l 
cal l such moves block-preventing moves. For example, 
the unsolvable pa tch ing subprob lem in F igure 5 (a) can 
be avoided only by ex tend ing R5 d o w n to R4 (see Figure 
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5(b)). 
Description of the look-ahead component. G iven a 

covering cons t ra in t , the func t i on of the patcher der ived 
in S T E P 1 t h r o u g h S T E P 5 is to const ruct a complete 
assignment: "Ass ign space-f i l l ing un i ts o f t ype T S F to 
space un i t s of t ype T s so t h a t the un i ts of t ype T5 
are covered." T h e space un i ts are invar ian t (e.g., the 
gr idpo in ts in the house), whi le the space-f i l l ing un i ts are 
created (and i m p l i c i t l y assigned) by the generator and 
patcher. We use a da ta s t ruc tu re D (e.g., an ar ray) t ha t 
contains a single e lement for each space u n i t . D w i l l rep­
resent the cur ren t assignment. Before t r y i n g to detect 
possible b lock-prevent ing moves, we in i t ia l ize D so tha t 
the space un i ts cu r ren t l y f i l led by rooms are recorded. 
M a k i n g a pa tch move involves m a r k i n g those space un i ts 
in D t ha t are f i l led in by the pa tch move; in par t i cu la r , 
we place po in ters to the pa tch ing move i tse l f in the ap­
propr ia te elements of D. We detect space un i ts tha t can 
only be f i l led in by a single pa tch ing move in two steps. 
F i rs t , we upda te D to reflect the result of app ly ing all 
patches appl icable in the current state to the current 
state; then we look for elements of D tha t only have one 
associated pa tch ing move. 

Construction of the look-ahead component. The most 
d i f f icu l t pa r t o f au tomat i ca l l y compi l ing the look-ahead 
component is to const ruct procedures tha t define and 
ma in ta in the da ta s t ruc ture D. Comp i l i ng a procedure 
for def in ing D is re la t ive ly s t ra igh t fo rward . The car­
d ina l i t y C of the space uni ts is presumed to be f ixed 
and was compu ted in S T E P 1. For our example, C is 
leng th(house,s )xw id th (house,s ) . D is an array w i t h C 
records (one for each space u n i t ) , each hav ing a "space 
u n i t " f ie ld (con ta in ing a po in te r to the space un i t t ha t 
t ha t record represents) and a "space f i l lers" f ield (a l ist of 
a l l space-f i l l ing un i ts cover ing t ha t space u n i t ) . Comp i l ­
i ng a procedure to in i t ia l ize D is based on the fo l lowing 
i n fo rma t i on de termined in S T E P 1 : 

4 Empirical Results 
We empir ica l ly evaluated and compared the perfor­
mances of generate-and-test, generate-test-and-patch, 
generate-test-and-greedy-patch, and generate-test-and-
greedy-patch w i t h b lock-prevent ing patches on a test set 
o f f loorp lans in wh ich the rooms d id not ent i re ly f i l l the 
house area. We manua l l y const ructed the test set of 
f loorplans to have vary ing degrees of difficulty (which we 
defined as the length of the shortest path of patch ing op­
erations tha t wou ld convert the f loorp lan in to one that 
f i l led the house). In our s tudy, the degree of d i f f icu l ty of 
the example floorplans ranged between 1 and 4. The rel­
at ive performances of the a lgor i thms were measured by 
the number of nodes ( f loorplans) generated before f ind­
ing a so lu t ion. Note tha t the cost of generat ing a node 
can be shown to take t ime po lynomia l in the area of the 
house. 

The graph in Figure 6 clearly depicts tha t the three 
generate-test-and-patch a lgor i thms explore consistently 
fewer nodes than generate-and-test. Generate-test-and-
greedy patch w i t h b lock-prevent ing patches performed 
best. For the examined degrees of d i f f icu l ty , the number 
of generated nodes increased only l inear ly , ref lect ing the 
fact t ha t block prevent ion succeeded in to ta l l y e l iminat­
ing backt rack ing. A l t h o u g h block prevent ion may not 
achieve to ta l e l im ina t ion of back t rack ing in general, we 
have demonstrated i ts po ten t ia l for s igni f icant ly reduc­
ing backt rack ing. 

5 Contributions and Limitations 
C o n t r i b u t i o n s . The approach we have presented is 
based on v iewing sat isfact ion of a global constraint as 
an optimization process. The h i l l c l imb ing process is con­
f ined to points in the space of "feasible solut ions" (i.e., 
those wh ich satisfy the incorpora ted local constra ints) . 
The novel con t r i bu t i on of th is paper is an approach to 
au tomat ica l l y compi l ing a global const ra in t satisfler (a 
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"patcher") that is based on this hi l lc l imbing viewpoint. 
To help relate our work to that of others, we can th ink of 
the compilat ion method as involving two major phases: 
(STEP 1) derive an evaluation function that ( impl ic i t ly) 
defines a simple, operational patcher which varies one so­
lut ion parameter value at a t ime; and (STEP 2 through 
STEP 6) optimize the patcher in various ways. We now 
discuss work related to each of these two phases. 

1. Constructing evaluation functions. Much research 
has focused on constructing evaluation functions for al­
gorithms (e.g., A * ) that search state spaces (e.g., [Pearl, 
1983]). These approaches derive evaluation functions 
from abstractions of state space operator preconditions. 
In contrast, our patcher moves in a parameter value 
space, where there are no restrictions on how to move 
f rom one state to another; the moves are not restricted 
by a given set of operators. Thus in some sense, our 
problem involves not only constructing an evaluation 
funct ion, but also a set of patching operators to help 
restrict the search for a satisfactory solution. STEP 1 
of our method constructs the evaluation funct ion, based 
on categorizing the goal-defining conditions (constraints) 
into one of several generic classes. STEP 2 through 
STEP 6 can be thought of as constructing impl ic i t ly de­
fined patching operators that take restricted forms (e.g., 
"greedily increase the length of room R") . Note that our 
approach to constructing evaluation functions could be 
applied to state space problems like the 8-puzzle. It 
would involve successfully classifying a problem into a 
known generic type (e.g., part re-configuration), and 
having associated wi th such generic problem types a 
procedure for constructing an evaluation function (e.g., 
"number of misplaced parts") . 

2. Optimizing the hillclimbing algorithm. Our research 
on constructing hi l l -c l imbing patchers is similar to other 
recent work [Lowry, 1987] on designing efficient opt i ­
mization algorithms. Lowry il lustrates his approach by 
deriving the simplex method for solving linear optimiza­
t ion problems. His derivation greatly exploits the fact 
that the space of feasible solutions is convex. If that 
space were not convex (e.g., as in the nonlinear floor-
planning problem), many difficulties would arise: the 
feasible region is not necessarily connected (e.g., con­
straints such as C5 are disjunctions); it is not always 
possible to reach an opt imal state start ing f rom any fea­
sible state; etc. For such spaces, a more robust patcher 
must be constructed. 

L i m i t a t i o n s a n d f u t u r e research . We are in the 
process of implementing this method in the M E N D E R 
program, and applying it to global constraints drawn 
from the house floorplanning domain. The research in 
this paper has focused on covering constraints; the future 
research wi l l flesh out the taxonomy of global constraint 
schemas that our approach can handle. Currently, we 
have worked out the details of STEP 1 and STEP 6 
only for the class of covering global constraints. STEP 
2 through STEP 5, however, are expressed in terms in ­
dependent of a part icular type of constraint; they may 
therefore apply to global constraints generally. 
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6 Conclusions 
We have developed a method for procedurally embed­
ding global constraints ( that degrade the performance of 
generate-and-test algorithms) in to a generate-test-and-
patch algori thm. We have shown how the generate-test-
and-patch algori thm can be further improved by allowing 
"greedy" patches, and by equipping the patcher w i th a 
mechanism for heuristically detecting block-preventing 
moves. 

We have empirically shown that generate-test-and-
patch algorithms are more efficient than generate-and-
test for satisfying a covering constraint in the context 
of a simple house floorplanning task; we used a manu­
ally constructed set of test examples of varying difficulty. 
Using the same examples, we also demonstrated that fur­
ther performance improvement is possible using a greedy 
patching strategy, and block-preventing patches to offset 
the disadvantages of greed. 
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