
A u t o m a t i n g t he C o n s t r u c t i o n o f
Patchers T h a t Sat isfy G loba l Cons t ra in ts

K e r s t i n V o i g t *
Department of Computer Science

Rutgers University
New Brunswick, NJ 08903

ARPAnet : vo ig t@aramis . ru tgers .edu

Chris T o n g *
Department of Computer Science

Rutgers University
New Brunswick, NJ 08903

ARPAnet : c tong@aramis . ru tgers .edu

A b s t r a c t

Generate-and-test a lgor i thms to solve con­
s t ra in t sat is fact ion problems are of ten ineff i ­
cient , b u t can be const ructed fa i r l y easily by
knowledge comp i la t i on techniques t h a t con­
ver t declarat ive p rob lem knowledge and do­
ma in knowledge i n t o a procedura l f o rma t [Liew
and Tong , 1987]. Cu r ren t research is focus­
ing on methods to improve the efficiency o f
generate-and-test a lgor i thms by complete ly i n ­
co rpora t ing local constra ints i n t o generators of
parts of composi te solut ions [Braudaway, 1988].
More global const ra in ts on mu l t i p l e par ts can­
not necessarily be incorpora ted i n t o the par t
generators. The i r sat is fact ion must be ensured
in a di f ferent way.

We describe an (un imp lemented) me thod for
t rans fo rm ing a generate-and-test a l go r i t hm
i n t o a generate-test-and-patch a lgo r i t hm t h a t
ef f ic ient ly h i l l c l imbs t o w a r d a so lu t ion satisfy­
i ng a par t i cu la r g lobal cons t ra in t . Ou r me thod
is based on cons t ruc t ing an evaluat ion func t ion
f r o m the g lobal cons t ra in t , t ha t reflects the "de­
gree" to wh ich the const ra in t has been satisf ied.
Some of the steps in th is me thod rely on cat­
egorizing the g lobal const ra in t i n to a generic
class. In th is paper, the const ra in t classes on
wh ich we focus are quota-meet ing and covering
const ra in ts .

We i l lus t ra te the general approach by apply­
ing i t to a s imple generate-and-test a l go r i t hm
for house f loorplanning. We prov ide empi r ica l
results t ha t cor roborate our c la im tha t the ef­
f ic iency of the a l g o r i t h m has been s igni f icant ly
imp roved .

*The research reported here was supported in part by the
Defense Advanced Research Projects Agency (D A R P A) un­
der Contract Number N00014-85-K-0116 in part by the Na­
t ional Science Foundation (NSF) under Grant Number D M C -
8610507, and in part by the Center for Computer Aids to In­
dustr ial Product iv i ty (CA IP) , Rutgers University, w i th funds
provided The opinions expressed in this paper are those of
the authors and do not reflect any policies, either expressed
or impl ied, of any granting agency.

Current ly on leave at I B M Watson Research Center.

Room lengths must be at least minValue.
Room widths must be at least minValue.
Rooms have to be inside the house.
Rooms must be adjacent to the house boundary.
Rooms must not overlap.
The rooms must completely f i l l the house space.

(C l)
(C 2)
(C 3)
(C4)
(C5)
(C 6)

F igure 1: Const ra in ts on house f loorplans

1 I n t r o d u c t i o n

In th is paper, we address par t of the p rob lem of compil­
ing a declarat ive representat ion of a class of problems
and knowledge relevant to solv ing i t i n to an efficient
prob lem-so lv ing system.

E x a m p l e d o m a i n . We w i l l use the doma in o f house
f loorplanning to i l lus t ra te several domain- independent
ideas for addressing th is research p rob lem. Floorplans
are arrangements of rectangular rooms in a rectangu­
lar house space. Rooms and houses are al igned w i t h
an integer-valued g r id of po in ts in a plane. The con­
st ra ints in F igure 1 define a par t i cu la r class of f loorp lan­
n ing problems. The number o f rooms, the dimensions of
the house space, and m i n i m u m values for room lengths
and w id ths are problem-specific parameters. [Liew and
T o n g , 1987] h as shown how to au tomat i ca l l y construct
a s imple bu t ineff icient generate-and-test a lgo r i t hm tha t
solves par t i cu la r problems for a p rob lem class such as
th is one. Given the leng th and w i d t h of the house, and
n, the number of rooms, the a lgo r i t hm generates n room
rectangles, and then tests the candidate so lu t ion against
each of the above const ra in ts . Fai lure results in chrono­
logical back t rack ing .

C o n s t r a i n t i n c o r p o r a t i o n . Var ious methods have
been developed for au tomat i ca l l y i m p r o v i n g the effi­
ciency of a generate-and-test a l go r i t hm [Mostow, 1983,
Tappe l , 1980, Braudaway, 1988]. One of the best i m ­
provements is to completely incorporate the constra ints
in the generator, t ha t is, to mod i f y the generator so tha t
i t on ly produces objects sat is fy ing the const ra in ts . W h e n
a const ra in t has been complete ly i nco rpo ra ted , the test
cor responding to the cons t ra in t can be removed. The
m e t h o d descr ibed in [Braudaway, 1988] complete ly i n ­
corporates those const ra in ts wh i ch are local to i nd i v i dua l
r o o m generat ion (C l - C4) , or t h a t can be local ized to
the set of rooms generated thus far (C5) .

1446 Knowledge Representation

Unfo r tuna te ly , the more g lobal constra ints (e.g., C6)
are no t readi ly incorpora ted i n t o generators by such
methods. M o d i f y i n g a generator t ha t on ly generates a
so lu t ion pari (e.g., an i n d i v i d u a l room) general ly is i n ­
suff icient to guarantee sat is fact ion of a const ra in t on the
ent i re so lu t ion .

T h e r e s e a r c h p r o b l e m . We define local constra ints
to be those wh ich can be incorpora ted i n t o a so lut ion
generator in such a way t h a t the resu l t ing generator runs
in po l ynom ia l t i m e . Global const ra in ts are constra ints
t ha t are not loca l . Our research is a imed at const ruc t ing
an efficient p rocedura l embedding for global const ra in ts :

G I V E N
a set CSET of constraints on the solution; declara-
tively represented domain knowledge elucidating the
constraints CSET; a constrained generator in which
all constraints in CSET' CCSET have been completely
incorporated;

F I N D
a procedural embedding of the unincorporated con­
straints CSET - CSET' such that the resulting algo­
r i t h m is significantly more efficient than embedding
CSET - CSET' solely as tests.

The doma in knowledge is p rov ided by a human know l ­
edge engineer, whose task we a i m to s imp l i f y by on ly
requ i r ing t h a t the knowledge be in a declarat ive f o r m .
Our m e t h o d requires knowledge about the solution part
hierarchy (e.g., solut ions are f loorp lans; floorplans are
houses hav ing rooms as par ts ; rooms have four parame­
ters as par ts : l eng th , w i d t h , x C o o r d , and y C o o r d) , solu­
tion part typing (e.g., rooms and houses are rectangles;
the x C o o r d of a room is a coord inate; rooms and g r i d -
points inside rooms are space-f i l l ing un i ts ; the house and
gr idpo in ts inside the house are space un i t s , 1 and generic
knowledge (e.g., def in i t ions of predicates such as i n s i d e ;
i tems of t ype "coord ina te " can take on any integer value
between [-max ln t ,max ln t]) .

T h e constra ined generator is produced by the R I C K
knowledge compi ler described in [Braudaway, 1989];
C S E T - C S E T ' are const ra in ts wh ich tha t compi ler
could not complete ly incorpora te .

In th is paper , we i l lus t ra te a m e t h o d tha t opt imizes a
generate-and-test f loorplanner i n t o a generate-test-and-
patch f loorplanner. W h e n a candidate so lut ion fails to
satisfy a global cons t ra in t , it is passed to a patcher,
wh ich h i l l c l imbs i ts way to solut ions t h a t are increasingly
bet ter w i t h respect to t h a t cons t ra in t . For instance, fa i l ­
ure to satisfy the const ra in t C6 means the house space
contains "holes" unassigned to any r o o m . The patcher
inc rementa l l y reduces the amoun t of unassigned space
by ex tend ing rooms.

2 Categorization of global constraints

T h e Eng l ish s ta tement o f C6, " T h e rooms mus t com­
plete ly f i l l the house space", seems "g loba l " in t ha t i t
appears we mus t s imul taneous ly consider a l l the rooms
to determine whether i t is sat isf ied. However, when we

1 The u t i l i t y of this k ind of domain knowledge wi l l become
clear in section 3.

express the constra int more fo rma l l y .

VF,P {f loorplan(F) A gridpoint(P,F) A inside(P,house,F)(C6)
=> 3R [room(R,F) A inside(P,R,F)]}

we notice tha t the const ra in t is only ex istent ia l ly (and
not universal ly) quant i f ied over rooms R. Ignoring CI
th rough C5 wou ld a l low C6 to be satisf ied by a single
r o o m tha t covered the ent i re house. W h a t is more ac­
curate ly called a "g loba l " constra int is the conjunction:
C7 <=> C3 A C5 A C6. Together, these three constraints
define a covering re lat ionship t ha t must be satisf ied. C6,
by itself, could also be called "g loba l " w i t h respect to a
constrained generator in wh ich C3 and C5 have already
been incorpora ted .

One of our ma jo r long- te rm goals is to construct global
constraint schemas or normal forms for a diverse range
of global constra ints. Such const ra in t schemas may con­
ta in mu l t i p l e components (e.g., F igure 2 contains three
components) . A successful match of a constra int schema
S to a set of constra ints occurs when each schema com­
ponent matches a const ra in t in the set. The con junct ion
of the ma tch ing constra ints (e.g., C7) is "a global con­
s t ra in t of type S" . Cons t ra in t schemas S can have asso­
ciated knowledge for he lp ing to construct a patcher tha t
eventual ly produces a so lu t ion t ha t satisfies a constra int
of type S.

In th is paper, we focus on g lobal constra ints tha t can
be viewed as constra ints on global resources. In par­
t icu lar , cer ta in parts of our approach are cur rent ly re­
s t r ic ted to f i t two generic g lobal constra int schemas:
quota-meeting constraints and covering constraints.

Q u o t a - m e e t i n g c o n s t r a i n t s . Quota-meet ing con­
st ra ints have the fo l lowing schema:

(QNF)
VS [solution(S) => cardinal i ty(unitsOfType(t,S)) = quota]

where q u o t a is an integer, q u o t a > 0 , t is a given un i t
t ype , and the number of uni ts of type t is always less
t han or equal to q u o t a . Quota-meet ing constraints re­
quire t ha t the so lut ion conta in exact ly q u o t a uni ts o f
type t . C7 is an example of a const ra in t f r om which we
can const ruct another const ra in t C8 such tha t C8 and
C7 are logical ly equivalent and C8 matches Q N F (Quota
N o r m a l F o r m) ; for instance, C8 could be " the number of
g r idpo in ts in the f i l led par t of the house must equal the
t o ta l number o f g r idpo in ts in the house."

C o v e r i n g c o n s t r a i n t s . Sat isfy ing a covering con­
s t ra in t involves const ruc t ing an assignment:

Assign un i ts o f type T S F
 t o un i ts o f type T 5

so tha t the uni ts of type T5 are covered.

We w i l l cal l un i ts of type TSF space-filling units} and
un i ts of type T5 space units. Cover ing constra ints have
the no rma l f o rm given in Figure 2, consist ing of the
con junc t ion of three constra ints . The number of space
un i ts and space-f i l l ing un i ts is f in i te , a l l candidate solu­
t ions share the same set of space un i ts , and the space­
f i l l i ng un i ts (and how they are assigned) varies, depend­
ing on the so lu t ion. The predicate c o r r e s p o n d s defines
the assignment. Examples of constra ints tha t could be

2 We wi l l use the notational convention of capitalizing vari­
able names.

Voigt and Tong 1447

matched to SNF (Space-fil l ing Normal Form) include:
" A l l available jobs must be assigned a person to carry
them ou t " ; " A l l available t ime slots must be assigned a
j ob" ; etc.

C7 can be wr i t t en in SNF fo rm because C3, C5, and
C6 can be shown to match I I , I , and I I I , respectively. Af­
ter being re-wr i t ten in SNF, C7 is a covering constraint
where the space uni ts are the gr idpoints in the house
rectangle, and the space-fil l ing units are the gr idpoints
in all the rooms. The assignment is the obvious one: if
a room gr idpoint is "on top of" a house gr idpo in t , the
two gr idpoints correspond.

C o n s t r a i n t s c h e m a s , l o g i c a l l y e q u i v a l e n t c o n ­
s t r a i n t s , a n d r e f o r m u l a t i o n p r o c e d u r e s . Given any
constraint Ca of type SNF, we can construct a logically
equivalent constraint Cb of type Q N F . This is because
SNF- I I and S N F - I I I together imp ly tha t the to ta l num­
ber of space uni ts and the to ta l number of space-fil l ing
units must be the same (cal l i t n) ; if Ca is satisfied, then
all the space uni ts have been covered by space-filling
units and therefore the number of covered space units is
n. Thus by defining Cb to be "The number of covered
space units equals the to ta l number of space un i ts " , Cb

is impl ied by Ca and Cb matches the Q N F schema. Con­
versely, if Cb is t rue, then al l the space units have been
covered, and covering constraint Ca is satisfied.

Thus we can associate w i th schema SNF a procedure
tha t takes a constraint matching SNF and constructs a
logically equivalent constraint match ing Q N F . The use of
such procedures w i l l be demonstrated in the next section.

3 Incremental Construction of a
Patcher

Our approach to the research problem is to compile the
unincorporated constraints in to a knowledge-based solu-
tion patcher. The key steps in our approach are now
out l ined (see also [Voigt, 1988]). We have begun i m ­
plementing this method in a program called M E N D E R .
We i l lustrate the steps of our approach on the constraint
C6, and presume the existence of a constrained generator
in which constraints CI through C5 have already been
completely incorporated.

1448 Knowledge Representation

S T E P 1 . E x t r a c t a n e v a l u a t i o n f u n c t i o n f r o m
t h e g l o b a l c o n s t r a i n t . Constraints per se are predi­
cates; when they are evaluatable, they are either "satis­
fied" or ' 'not sat isf ied". A key to mak ing effective use of
a global constraint is to be able to recognize the degree
to which it has been satisfied (e.g., to what degree has
the house space been fil led by rooms?). Thus we want
to convert a predicate in to an evaluation funct ion, which
can be used to guide a h i l lc l imbing patcher.

Some constraint schemas (e.g., Q N F) contain proce­
dures for creating an evaluation funct ion corresponding
to a constraint (or set of constraints) tha t fit the schema.
However, we may discover tha t a constraint Ca is ex­
pressed in a fo rm that does match a schema S (e.g.,
SNF) , but S does not contain a procedure for construct­
ing an evaluation funct ion.

However, S may have an associated procedure for con­
st ruct ing a constraint Cb tha t is logical ly equivalent to
Ca bu t which matches S', a constraint schema that does
contain a procedure for construct ing an evaluation func­
t ion f measuring improvement w i th respect to satisfac­
t ion of Cb . The impor tan t observation is tha t , i f f takes
on i ts max imum value only in states when Cb is t rue,
then f w i l l also aid in h i l lc l imbing to a solution that
completely satisfies C a , because Cb and Ca are logically
equivalent. The purpose of the patcher, is to eventually
produce a state in which Ca is completely t rue. Thus we
don' t insist that Ca necessarily become "more and more
t rue" as f increases i ts value, so long as Ca is completely
true when f takes on its max imum value.

We w i l l now i l lustrate these points by matching con­
straints to the SNF schema, re-expressing them in Q N F ,
and then construct ing an evaluat ion funct ion.

Re-expressing constraints to match SNF. Because of
the large number of possible matches, syntactic match­
ing is used to suggest plausible constra int /constra int
schema component matches in a cost-effective manner.
The matching leaves in the parse trees of these plausible
matches correspond to theorems which are then proved
to verify that the constraint f i ts the constraint schema
(see, e.g., Figure 3).

We i l lustrate this process by matching constraint C6
against the components of the SNF schema. In general,
schema components can contain special cases. If the
prototyp ica l case fails to match , the special cases are
t r ied. C6 does not match any of the SNF prototypical
components. However, it does match a special case of
S N F - I I I (see Figure 3):

(SNF-III ')

where the space uni ts and space fil l ing units arc drawn
f rom the same set of objects, and corresponds(X,Y,S) is
equals(X,Y).

The f i t of C6 to S N F - I I I ' is then confirmed by proving
the three theorems suggested by the match , using the
domain knowledge ind icat ing tha t house gr idpoints are
space uni ts and room gr idpoints are space-fil l ing units.

Since one component of SNF has been successfully
matched, the search for matches next tries to find do­
main constraints to match the remaining components.
I t f inds that C3 matches S N F - I I and C5 matches SNF- I .

VoigtandTong 1449

Moving a r oom l (b y changing e i ther i ts x or y coor­
dinates) w i l l keep f ixed the amoun t o f the house t ha t
is f i l led , since the room is no t al lowed to overlap any
other rooms, or be placed outside the house. Shrink-
ing a r o o m (by decreasing either i ts leng th or i ts w i d t h)
w i l l decrease the amoun t of the house t ha t is f i l led. A f te r
cons t ruc t ing proofs t h a t reflect these observations (based
on the def in i t ions o f the predicates), the incorpora t ion
me thod constrains the patcher to the on ly moves lef t ,
+ ∆ l e n g t h (R) and + ∆ w i d t h (R) .

S T E P 3 . R e - e x p r e s s t h e e v a l u a t i o n f u n c t i o n i n
r e l a t i v e a n d l o c a l t e r m s . W e can re-express the eval­
ua t ion f unc t i on f for a patched so lu t ion , pa tch(S,Par) ,
as:

where A f i s the improvement due to the pa tch . Rewr i t ­
ing th is , we have:

The value of Af for a length- increasing pa tch of r oom R
is der ived to be:

Af(F,patch(F, length(R,F))) = wid th(R,F) x A length l (R,F)

We compute Af for each possible pa tch ing move. In
th is manner , we can evaluate po ten t ia l patches w i t h o u t
hav ing to execute t hem. Th i s w i l l be needed for do ing
greedy pa t ch ing , wh ich is described in S T E P 5.

S T E P 4 . C o n s t r u c t a p a t c h e r i n w h i c h t h e l o ­
c a l c o n s t r a i n t s h a v e b e e n i n c o r p o r a t e d . Because
we assumed in S T E P 2 tha t the pa tch ing moves do not
v io late any complete ly incorpora ted constra in ts , we must
restr ict the parameter value modi f icat ions of the patcher
so as to guarantee th is . T h e patcher has several compo­
nents, one for each modi f iab le parameter . T h e "increase
room l e n g t h " component o f the patcher must ensure tha t
the longer r o o m is s t i l l inside the house (C3) , s t i l l does
not over lap another r oom (C5) , s t i l l is adjacent to the
house boundary (C4) , and s t i l l has dimensions at least
m inVa luo long (C1,C2) . CI and C2 are obviously always
t rue ; C4 is guaranteed to be t rue because the < X , Y >
corner has not been moved off the house boundary.

T h e R I C K p rog ram [Braudaway, 1989] au tomat ica l l y
constructs a constra ined generator in wh ich several local
constra ints have been incorpora ted . A func t ion g (Par ,F)
constructed by R I C K at compi le t ime is a t tached to
each f loor p lan parameter 's range; th is func t ion d y n a m ­
ical ly recomputes the legal values for t ha t parameter .
The patcher is const ructed by mod i f y i ng the constra ined
generator produced by R I C K . T h e patcher differs f r o m
the constrained generator on ly in t ha t the range of legal
pa tch ing moves in a par t i cu la r d i rec t ion (+ / -) is the sub­
set of the range of legal moves (computed by g (Par ,F))
bounded by (bu t no t inc lud ing) the cur rent value and
vary ing in the desired d i rect ion as far as possible, whi le
s t i l l sat is fy ing the incorporated constra ints (C3 and C5) .

S T E P 5 . C o n v e r t t h e p a t c h e r i n t o a g r e e d y
p a t c h e r . S T E P 2 of th is m e t h o d only determines desir­
able di rect ions for changing parameter values, bu t does
not constra in the amount by wh ich the parameter value
should be var ied. One easily imp lement able idea is to
take a greedy approach; for a par t i cu la r parameter , a
greedy patcher s imp ly tr ies values f r om tha t parameter 's

Since Af is p ropor t i ona l to A leng th (r , s) (w id th (r) is
not changed by the pa tch) , the greatest evaluat ion func­
t ion change occurs when the leng th change is greatest.
Thus , the greedy patcher is made to select values in de­
creasing order o f l eng th . I f Af had been inversely pro­
po r t i ona l to w id th (r , s) then the greedy patcher wou ld be
designed to select values in increasing order. In either of
these special cases, no ex t ra work is requi red to sort the
parameter range values using the evaluat ion func t ion .
More general ly, we can compi le an expression for com­
p u t i n g A f and sor t ing the range elements a t run t ime.

S T E P 6 . O f f s e t t h e n e g a t i v e a s p e c t s o f t h e
g r e e d y p a t c h e r b y t r y i n g t o p r e v e n t b l o c k i n g
m o v e s . T h e ma jo r p rob lem w i t h a greedy strategy is
tha t i t neglects to check for long- te rm negative conse­
quences. T h u s , as is i l l us t ra ted in Figure 5, extending
r o o m Rl as far as possible to the r i gh t inadver tent ly
blocks r oom R5 f rom being extended max ima l l y in the
downward d i rec t ion. Un fo r tuna te l y , the shaded area in
F igure 5 is a hole tha t is only t i l lable by extending R5
i n to i t . The prob lem w i t h a greedy st rategy is tha t i t
may solve one subproblem (e.g. f i l l i ng in pa r t of a hole)
at the expense of render ing some later subprob lem un-
solvable.

For tunate ly , we can offset some of the negative aspects
of a greedy pa tch ing s t ra tegy by i nc lud ing a look-ahead
component in the strategy. T h e purpose of th is com­
ponent is to detect pa tch ing subproblems tha t can only
be solved by a single move in one way (e.g. a max i ­
ma l increase in the w i d t h of r o o m R5) . As soon as we
detect t ha t some patch ing move has th is p roper ty , we
make tha t move, to prevent o ther pa tch ing moves f rom
inadver ten t ly blocking such a necessary move. We w i l l
cal l such moves block-preventing moves. For example,
the unsolvable pa tch ing subprob lem in F igure 5 (a) can
be avoided only by ex tend ing R5 d o w n to R4 (see Figure

1450 Knowledge Representation

5(b)).
Description of the look-ahead component. G iven a

covering cons t ra in t , the func t i on of the patcher der ived
in S T E P 1 t h r o u g h S T E P 5 is to const ruct a complete
assignment: "Ass ign space-f i l l ing un i ts o f t ype T S F to
space un i t s of t ype T s so t h a t the un i ts of t ype T5
are covered." T h e space un i ts are invar ian t (e.g., the
gr idpo in ts in the house), whi le the space-f i l l ing un i ts are
created (and i m p l i c i t l y assigned) by the generator and
patcher. We use a da ta s t ruc tu re D (e.g., an ar ray) t ha t
contains a single e lement for each space u n i t . D w i l l rep­
resent the cur ren t assignment. Before t r y i n g to detect
possible b lock-prevent ing moves, we in i t ia l ize D so tha t
the space un i ts cu r ren t l y f i l led by rooms are recorded.
M a k i n g a pa tch move involves m a r k i n g those space un i ts
in D t ha t are f i l led in by the pa tch move; in par t i cu la r ,
we place po in ters to the pa tch ing move i tse l f in the ap­
propr ia te elements of D. We detect space un i ts tha t can
only be f i l led in by a single pa tch ing move in two steps.
F i rs t , we upda te D to reflect the result of app ly ing all
patches appl icable in the current state to the current
state; then we look for elements of D tha t only have one
associated pa tch ing move.

Construction of the look-ahead component. The most
d i f f icu l t pa r t o f au tomat i ca l l y compi l ing the look-ahead
component is to const ruct procedures tha t define and
ma in ta in the da ta s t ruc ture D. Comp i l i ng a procedure
for def in ing D is re la t ive ly s t ra igh t fo rward . The car­
d ina l i t y C of the space uni ts is presumed to be f ixed
and was compu ted in S T E P 1. For our example, C is
leng th(house,s)xw id th (house,s) . D is an array w i t h C
records (one for each space u n i t) , each hav ing a "space
u n i t " f ie ld (con ta in ing a po in te r to the space un i t t ha t
t ha t record represents) and a "space f i l lers" f ield (a l ist of
a l l space-f i l l ing un i ts cover ing t ha t space u n i t) . Comp i l ­
i ng a procedure to in i t ia l ize D is based on the fo l lowing
i n fo rma t i on de termined in S T E P 1 :

4 Empirical Results
We empir ica l ly evaluated and compared the perfor­
mances of generate-and-test, generate-test-and-patch,
generate-test-and-greedy-patch, and generate-test-and-
greedy-patch w i t h b lock-prevent ing patches on a test set
o f f loorp lans in wh ich the rooms d id not ent i re ly f i l l the
house area. We manua l l y const ructed the test set of
f loorplans to have vary ing degrees of difficulty (which we
defined as the length of the shortest path of patch ing op­
erations tha t wou ld convert the f loorp lan in to one that
f i l led the house). In our s tudy, the degree of d i f f icu l ty of
the example floorplans ranged between 1 and 4. The rel­
at ive performances of the a lgor i thms were measured by
the number of nodes (f loorplans) generated before f ind­
ing a so lu t ion. Note tha t the cost of generat ing a node
can be shown to take t ime po lynomia l in the area of the
house.

The graph in Figure 6 clearly depicts tha t the three
generate-test-and-patch a lgor i thms explore consistently
fewer nodes than generate-and-test. Generate-test-and-
greedy patch w i t h b lock-prevent ing patches performed
best. For the examined degrees of d i f f icu l ty , the number
of generated nodes increased only l inear ly , ref lect ing the
fact t ha t block prevent ion succeeded in to ta l l y e l iminat­
ing backt rack ing. A l t h o u g h block prevent ion may not
achieve to ta l e l im ina t ion of back t rack ing in general, we
have demonstrated i ts po ten t ia l for s igni f icant ly reduc­
ing backt rack ing.

5 Contributions and Limitations
C o n t r i b u t i o n s . The approach we have presented is
based on v iewing sat isfact ion of a global constraint as
an optimization process. The h i l l c l imb ing process is con­
f ined to points in the space of "feasible solut ions" (i.e.,
those wh ich satisfy the incorpora ted local constra ints) .
The novel con t r i bu t i on of th is paper is an approach to
au tomat ica l l y compi l ing a global const ra in t satisfler (a

VoigtandTong 1451

"patcher") that is based on this hi l lc l imbing viewpoint.
To help relate our work to that of others, we can th ink of
the compilat ion method as involving two major phases:
(STEP 1) derive an evaluation function that (impl ic i t ly)
defines a simple, operational patcher which varies one so­
lut ion parameter value at a t ime; and (STEP 2 through
STEP 6) optimize the patcher in various ways. We now
discuss work related to each of these two phases.

1. Constructing evaluation functions. Much research
has focused on constructing evaluation functions for al­
gorithms (e.g., A *) that search state spaces (e.g., [Pearl,
1983]). These approaches derive evaluation functions
from abstractions of state space operator preconditions.
In contrast, our patcher moves in a parameter value
space, where there are no restrictions on how to move
f rom one state to another; the moves are not restricted
by a given set of operators. Thus in some sense, our
problem involves not only constructing an evaluation
funct ion, but also a set of patching operators to help
restrict the search for a satisfactory solution. STEP 1
of our method constructs the evaluation funct ion, based
on categorizing the goal-defining conditions (constraints)
into one of several generic classes. STEP 2 through
STEP 6 can be thought of as constructing impl ic i t ly de­
fined patching operators that take restricted forms (e.g.,
"greedily increase the length of room R") . Note that our
approach to constructing evaluation functions could be
applied to state space problems like the 8-puzzle. It
would involve successfully classifying a problem into a
known generic type (e.g., part re-configuration), and
having associated wi th such generic problem types a
procedure for constructing an evaluation function (e.g.,
"number of misplaced parts") .

2. Optimizing the hillclimbing algorithm. Our research
on constructing hi l l -c l imbing patchers is similar to other
recent work [Lowry, 1987] on designing efficient opt i ­
mization algorithms. Lowry il lustrates his approach by
deriving the simplex method for solving linear optimiza­
t ion problems. His derivation greatly exploits the fact
that the space of feasible solutions is convex. If that
space were not convex (e.g., as in the nonlinear floor-
planning problem), many difficulties would arise: the
feasible region is not necessarily connected (e.g., con­
straints such as C5 are disjunctions); it is not always
possible to reach an opt imal state start ing f rom any fea­
sible state; etc. For such spaces, a more robust patcher
must be constructed.

L i m i t a t i o n s a n d f u t u r e research . We are in the
process of implementing this method in the M E N D E R
program, and applying it to global constraints drawn
from the house floorplanning domain. The research in
this paper has focused on covering constraints; the future
research wi l l flesh out the taxonomy of global constraint
schemas that our approach can handle. Currently, we
have worked out the details of STEP 1 and STEP 6
only for the class of covering global constraints. STEP
2 through STEP 5, however, are expressed in terms in ­
dependent of a part icular type of constraint; they may
therefore apply to global constraints generally.

1452 Speech and Natural Language

6 Conclusions
We have developed a method for procedurally embed­
ding global constraints (that degrade the performance of
generate-and-test algorithms) in to a generate-test-and-
patch algori thm. We have shown how the generate-test-
and-patch algori thm can be further improved by allowing
"greedy" patches, and by equipping the patcher w i th a
mechanism for heuristically detecting block-preventing
moves.

We have empirically shown that generate-test-and-
patch algorithms are more efficient than generate-and-
test for satisfying a covering constraint in the context
of a simple house floorplanning task; we used a manu­
ally constructed set of test examples of varying difficulty.
Using the same examples, we also demonstrated that fur­
ther performance improvement is possible using a greedy
patching strategy, and block-preventing patches to offset
the disadvantages of greed.

A c k n o w l e d g e m e n t s . We are grateful to Lou Stein­
berg, Jack Mostow, and Don Smith for their helpful
comments. We would also like to thank the members
of the KBSDE group, the Knowledge Compilat ion Sem­
inar, and the Rutgers AI /Design Project.

References
[Braudaway, 1988] W. Braudaway. Constraint incorpo­

ration using constrained reformulation. Tech. Rpt.
LCSR-TR-100, Computer Science Dept., Rutgers Uni­
versity, Apr i l 1988.

[Braudaway, 1989] W. Braudaway. Automated synthesis
of constrained generators. In Proceedings IJCAI-89,
Detroi t , August 1989.

[Kant and Barstow, 1978] E. Kant and D. Barstow. The
refinement paradigm: The interaction of coding and
efficiency knowledge. IEEE Transactions on Software
Engineering, 9:287-306, 1978.

[Liew and Tong, 1987] C. Liew and C. Tong. Knowl­
edge compilation: A prototype system and a concep­
tual framework. AI /Design Project Working Paper
No. 47, Computer Science Dept., Rutgers University,
February 1987.

[Lowry, 1987] M. Lowry. A lgor i thm synthesis through
problem reformulation. In Proceedings AAAI87, Seat­
tle, WA, July 1987.

[Mostow, 1983] D. Mostow. Machine Transformation of
Advise into a Heuristic Search Procedure, chapter 12.
Morgan Kaufmann, Los Al tos, California, 1983.

[Pearl, 1983] J. Pearl. On the discovery and generation
of certain heuristics. The AI Magazine, IV (l) :23-33 ,
Winter /Spr ing 1983.

[Tappel, 1980] S. Tappel. Some algor i thm design meth­
ods. In Proceedings of the First National Conference
on Artificial Intelligence, pages 64-67, Stanford Uni­
versity, August 1980.

[Voigt, 1988] K. Voigt. Incorporating global constraints.
Tech. Rpt. LCSR-TR-114, Computer Science Dept.,
Rutgers University, Sept. 1988.

