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Abstract

Generate-and-test algorithms to solve con-
straint satisfaction problems are often ineffi-
cient, but can be constructed fairly easily by
knowledge compilation techniques that con-
vert declarative problem knowledge and do-
main knowledge into a procedural format [Liew
and Tong, 1987]. Current research is focus-
iIng on methods to improve the efficiency of
generate-and-test algorithms by completely in-
corporating local constraints into generators of
parts of composite solutions [Braudaway, 1988].
More global constraints on multiple parts can-
not necessarily be incorporated into the part
generators. Their satisfaction must be ensured
in a different way.

We describe an (unimplemented) method for
transforming a generate-and-test algorithm
iInto a generate-test-and-patch algorithm that
efficiently hillclimbs toward a solution satisfy-
ing a particular global constraint. Our method
IS based on constructing an evaluation function
from the global constraint, that reflects the "de-
gree" to which the constraint has been satisfied.
Some of the steps in this method rely on cat-
egorizing the global constraint into a generic
class. In this paper, the constraint classes on
which we focus are quota-meeting and covering
constraints.

We illustrate the general approach by apply-
iIng it to a simple generate-and-test algorithm
for house floorplanning. We provide empirical
results that corroborate our claim that the ef-
ficiency of the algorithm has been significantly
iImproved.
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Room lengths must be at least minValue. (Cl)
Room widths must be at least minValue. (C2)
Rooms have to be inside the house. (C3)
Rooms must be adjacent to the house boundary. (C4)
Rooms must not overlap. (CH)
The rooms must completely fill the house space. (CO)

Figure 1: Constraints on house floorplans

1 Introduction

In this paper, we address part of the problem of compil-
ing a declarative representation of a class of problems
and knowledge relevant to solving it into an efficient
problem-solving system.

Example domain. We will use the domain of house
floorplanning to illustrate several domain-independent
ideas for addressing this research problem. Floorplans
are arrangements of rectangular rooms in a rectangu-
lar house space. Rooms and houses are alignhed with
an integer-valued grid of points in a plane. The con-
straints in Figure 1 define a particular class of floorplan-
ning problems. The number of rooms, the dimensions of
the house space, and minimum values for room lengths
and widths are problem-specific parameters. [Liew and
Tong, 1987] h as shown how to automatically construct
a simple but inefficient generate-and-test algorithm that
solves particular problems for a problem class such as
this one. Given the length and width of the house, and
n, the number of rooms, the algorithm generates n room
rectangles, and then tests the candidate solution against
each of the above constraints. Failure results in chrono-
logical backtracking.

Constraint incorporation. Various methods have
been developed for automatically improving the effi-
ciency of a generate-and-test algorithm [Mostow, 1983,
Tappel, 1980, Braudaway, 1988]. One of the best im-
provements is to completely incorporate the constraints
in the generator, that is, to modify the generator so that
it only produces objects satisfying the constraints. When
a constraint has been completely incorporated, the test
corresponding to the constraint can be removed. The
method described in [Braudaway, 1988] completely in-
corporates those constraints which are Jlocalto individual
room generation (Cl| - C4), or that can be localized to
the set of rooms generated thus far (C5).



Unfortunately, the more global constraints (e.g., C6)
are not readily incorporated into generators by such
methods. Modifying a generator that only generates a
solution pari (e.g., an individual room) generally is in-
sufficient to guarantee satisfaction of a constraint on the
entire solution.

The research problem. We define Jlocal constraints
to be those which can be incorporated into a solution
generator in such a way that the resulting generator runs
in polynomial time. Global constraints are constraints
that are not local. Our research is aimed at constructing
an _efficient procedural embedding for global constraints:

GIVEN
a set CSET of constraints on the solution; declara-
tively represented domain knowledge elucidating the
constraints CSET; a constrained generator in which

all constraints in CSET' CCSET have been completely

Incorporated,;
FIND

a procedural embedding of the unincorporated con-
straints CSET - CSET' such that the resulting algo-

rithm is significantly more efficient than embedding
CSET - CSET' solely as tests.

The domain knowledge is provided by a human knowl-
edge engineer, whose task we aim to simplify by only
requiring that the knowledge be in a declarative form.
Our method requires knowledge about the solution part
hierarchy (e.g., solutions are floorplans; floorplans are
houses having rooms as parts; rooms have four parame-
ters as parts: length, width, xCoord, and yCoord), solu-
tion part typing (e.g., rooms and houses are rectangles;
the xCoord of a room is a coordinate; rooms and grid-
points inside rooms are space-filling units; the house and
gridpoints inside the house are space units,” and generic
knowledge (e.g., definitions of predicates such as inside;
items of type "coordinate” can take on any integer value
between [-maxInt,maxlint]).

The constrained generator is produced by the RICK
knowledge compiler described in [Braudaway, 1989];
CSET - CSET' are constraints which that compiler
could not completely incorporate.

In this paper, we illustrate a method that optimizes a
generate-and-test floorplanner into a generate-test-and-
patch floorplanner. When a candidate solution fails to
satisfy a global constraint, it is passed to a patcher,
which hillclimbs its way to solutions that are increasingly
better with respect to that constraint. For instance, fail-
ure to satisfy the constraint C6 means the house space
contains "holes" unassigned to any room. The patcher
incrementally reduces the amount of unassigned space
by extending rooms.

2 Categorization of global constraints

The English statement of C6, "The rooms must com-
pletely fill the house space"”, seems "global" in that it
appears we must simultaneously consider all the rooms
to determine whether it is satisfied. However, when we

"The utility of this kind of domain knowledge will become
clear in section 3.

express the constraint more formally.

VF,P {floorplan(F) A gridpoint(P,F) A inside(P,house,F)(C6)
=> 3R [room(R,F) A inside(P,R,F)]}

we notice that the constraint is only existentially (and
not universally) quantified over rooms R. Ignoring CI
through C5 would allow C6 to be satisfied by a single
room that covered the entire house. What is more ac-
curately called a "global" constraint is the conjunction:
C7<=>C3 A C5 A C6. Together, these three constraints
define a covering relationship that must be satisfied. C6,
by itself, could also be called "global" with respect to a

constrained generator in which C3 and C5 have already
been incorporated.

One ofour major long-term goals is to construct global
constraint schemas or normal forms for a diverse range
of global constraints. Such constraint schemas may con-
tain multiple components (e.g., Figure 2 contains three
components). A successful match of a constraint schema
S to a set of constraints occurs when each schema com-
ponent matches a constraint in the set. The conjunction
of the matching constraints (e.g., C7) is "a global con-
straint of type S". Constraint schemas S can have asso-
ciated knowledge for helping to construct a patcher that

eventually produces a solution that satisfies a constraint
of type S.

In this paper, we focus on global constraints that can
be viewed as constraints on global resources. In par-
ticular, certain parts of our approach are currently re-
stricted to fit two generic global constraint schemas:

quota-meeting  constraints and covering  constraints.

Quota-meeting constraints. Quota-meeting con-
straints have the following schema:

(QNF)
VS [solution(S) => cardinality(unitsOfType(t,S)) = quota]

where quota is an integer, quota>0, t is a given unit
type, and the number of units of type t is always less
than or equal to quota. Quota-meeting constraints re-
quire that the solution contain exactly quota units of
type t. C7 is an example of a constraint from which we
can construct another constraint C8 such that C8 and
C7 are logically equivalent and C8 matches QNF (Quota
Normal Form); for instance, C8 could be "the number of
gridpoints in the filled part of the house must equal the
total number of gridpoints in the house.”

Covering constraints. Satisfying a covering con-
straint involves constructing an assignment:

Assign units of type Tse '° units of type Ts
so that the units of type TS are covered.

We will call units of type Tsg Space-filling units; and
units of type T5 space units. Covering constraints have
the normal form given in Figure 2, consisting of the
conjunction of three constraints. The number of space
units and space-filling units is finite, all candidate solu-
tions share the same set of space units, and the space-
filling units (and how they are assigned) varies, depend-
ing on the solution. The predicate corresponds defines
the assignment. Examples of constraints that could be

We will use the notational convention of capitalizing vari-
able names.
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Injection (SNF-I)
VX1,X2,Y,S [solution(S) A spaceUnit(Y,S)
A corresponds(X1,Y,S) A spaceFillingUnit(X1,S)
A spaceFillingUnit(X2,S) A corresponds(X2,Y,S)

= equal(X1,X2)] |
(SNF-II)

Complete assignment
VS, X {solution(S) A SpaceFillingUnit(X,S)

= 3Y [spaceUnit(Y,S) A corresponds(X,Y,S)]}
(SNF-III)

Complete coverin
VS,Y {solution(S) A spaceUnit(Y,S)
= 31X [spaceFillingUnit(X,S) A corresponds(X,Y,S)]}

Procedures
Re-express constraint to match QNF form.

Figure 2: The SNF constraint schema

matched to SNF (Space-filling Normal Form) include:
"All available jobs must be assigned a person to carry
them out”; "All available time slots must be assigned a

job"; etc.
C7 can be written in SNF form because C3, C5, and
C6 can be shown to match |ll, |, and Ill, respectively. Af-

ter being re-written in SNF, C7 is a covering constraint
where the space units are the gridpoints in the house
rectangle, and the space-filling units are the gridpoints
in all the rooms. The assignment is the obvious one: if
a room gridpoint is "on top of" a house gridpoint, the
two gridpoints correspond.

Constraint schemas, logically equivalent con-
straints, and reformulation procedures. Given any
constraint C, of type SNF, we can construct a logically
equivalent constraint C, of type QNF. This is because
SNF-Il and SNF-IIl together imply that the total num-
ber of space units and the total number of space-filling
units must be the same (call it n); if C, is satisfied, then
all the space units have been covered by space-filling
units and therefore the number of covered space units is
n. Thus by defining C, to be "The number of covered
space units equals the total number of space units”, C;
Is implied by C, and C, matches the QNF schema. Con-
versely, if Cy, is true, then all the space units have been
covered, and covering constraint C, is satisfied.

Thus we can associate with schema SNF a procedure
that takes a constraint matching SNF and constructs a
logically equivalent constraint matching QNF. The use of
such procedures will be demonstrated in the next section.

3 Incremental Construction of a
Patcher

Our approach to the research problem is to compile the
unincorporated constraints into a knowledge-based solu-
tion patcher. The Kkey steps in our approach are now
outlined (see also [Voigt, 1988]). We have begun im-
plementing this method in a program called MENDER.
We illustrate the steps ofour approach on the constraint
C6, and presume the existence ofa constrained generator
in which constraints Cl| through C5 have already been
completely incorporated.
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STEP 1. Extract an evaluation function from
the global constraint. Constraints per se are predi-
cates; when they are evaluatable, they are either "satis-
fied" or '"not satisfied". A key to making effective use of
a global constraint is to be able to recognize the degree
to which it has been satisfied (e.g., to what degree has
the house space been filled by rooms?). Thus we want
to convert a predicate into an evaluation function, which
can be used to guide a hillclimbing patcher.

Some constraint schemas (e.g., QNF) contain proce-
dures for creating an evaluation function corresponding
to a constraint (or set of constraints) that fit the schema.
However, we may discover that a constraint C, is ex-
pressed in a form that does match a schema S (e.g.,
SNF), but S does not contain a procedure for construct-
ing an evaluation function.

However, S may have an associated procedure for con-
structing a constraint C, that is logically equivalent to
C, but which matches S', a constraint schema that does
contain a procedure for constructing an evaluation func-
tion f measuring improvement with respect to satisfac-
tion of C,. The important observation is that, iff takes
on its maximum value only in states when C, is true,
then f will also aid in hillclimbing to a solution that
completely satisfies C,, because C, and C, are logically
equivalent. The purpose of the patcher, is to eventually
produce a state in which C, is completely true. Thus we
don't insist that C, necessarily become "more and more
true" as fincreases its value, so long as C; is completely
true when f takes on its maximum value.

We will now illustrate these points by matching con-
straints to the SNF schema, re-expressing them in QNF,
and then constructing an evaluation function.

Re-expressing constraints to match SNF. Because of
the large number of possible matches, syntactic match-
iIng is used to suggest plausible constraint/constraint
schema component matches in a cost-effective manner.
The matching leaves in the parse trees of these plausible
matches correspond to theorems which are then proved
to verify that the constraint fits the constraint schema
(see, e.g., Figure 3).

We illustrate this process by matching constraint CG6
against the components of the SNF schema. In general,
schema components can contain special cases. If the
prototypical case fails to match, the special cases are
tried. C6 does not match any of the SNF prototypical

components. However, it does match a special case of
SNF-IIl (see Figure 3):

VS,X [solution(S) A spaceUnit(X,S)
=> spaceFillingUnit(X,S)]

(SNFE-111")

where the space units and space filling units arc drawn
from the same set of objects, and corresponds(X,Y,S) is
equals(X,Y).

The fit of C6 to SNF-I111"is then confirmed by proving
the three theorems suggested by the match, using the
domain knowledge indicating that house gridpoints are
space units and room gridpoints are space-filling units.

Since one component of SNF has been successfully
matched, the search for matches next tries to find do-

main constraints to match the remaining components.
It finds that C3 matches SNF-1l and C5 matches SNF-I.
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Figure 3: Matching constraint C6 and schema SNF-III'

setOf(Spaceji?ill_i;gUnit(X,s))
room(R,f) A inside(P,R,f)

match:
type definstion:
Al. P is of type gridpoint: gridpoint(P,f) « P=<X,Y>
where X and Y are of type coordinate
tl: <X,Y> | X€[-maxInt,maxInt] A
Y €[-maxInt,maxInt]
A2. room(R,f):
t2: R € rooms in floorplan f
A3. inside(<X,Y> r,f):
t3(r,f): <X, Y> | X€[xCoord(r,f),xCoord(r,f)
+ lcngth(r,f)] A
Y¢€[yCoord(r,f),yCoord(r,f)
+ width(r 1))
AINA2AAIL:
t4: URB, <X, Y>€et3(R,f)

cardinality of types:

t] 4 x maxInt x maxInt

t2 cardinality(input set of rooms)
t3(r,f) length(r,f) x width(r,f)

t4 Enen length(R,f) x width(R,f)

Figure 4: Converting predicates into types with cardi-
nality

Matching has thus constructed constraint C7 (the con-

junction of C3, C5, C6) and shown that it fits the SNF
schema.

Re-expressing SNF constraints to match QNF. Our
method next re-expresses C7 to match QNF using the
following pre-compiled correspondence between SNF and

QNF:

set Of(spaceFillingUnit(X,S))
cardinality(set Of(spaceUnit(Y,S)))

The re-expression 1s done by converting predicate defini-
tions into type definitions and then finding an expression
for the cardinality of these types, as illustrated in Figure

4. The first half of re-expressing constraint C7 in QNF
1s thus given by:

cardinality(unitsOfType(t4,s))
= cardinality(setOf(spaceFillingUnit(X,s)))
=) . length(R,f) x width(R,f)

REroomsin floorplany

unitsOfType(T,S)
quota

In a similar, tightly focused manner, we derive the other
half (not shown here):

quota = cardinality(setOf(spaceUnit(Y,s)))
= length(house,f) x width(house,f)

Finally, the QNF schema contains the information that
the desired evaluation function {(S) is given by f(S) =
cardinality (unitsOfType(t4,S)). The derived evaluation
function for measuring progress in satisfying C7 is “the
number of gridpoints 1n the filled part of the house”:

f(F) = ZREraomaiu}loarplanF lcngth(R’F) X Wldth(R,F)

STEP 2. Eliminate <parameter,direction>
pairs that do not immediately improve a solution
with respect to the evaluation function. We as-
sume the patcher eventually constructed by this method
will make paiching moves that vary only one parame-
ter value at a time, either increasing or decreasing its
value by some quantity. This patcher will hillclimb, thus
requiring repeated improvement of the solution with re-
spect to the evaluation function. We could easily con-
struct an “unintelligent” patcher which simply allows
any parameter to be varied, in any direction, by any
amount. In the floorplanning example, these parame-
ters and directions are:

+AxCoord(R), £AyCoord(R), £ Alength(R), £Awidth(R)

Such a patcher wastes time repeatedly determining that

most patching moves do not improve the solution.

Fortunately, in many cases, we can prove (at compile
time) that changing certain parameters in certain direc-
tions (e.g. increasing) never (immediately) improves the
solution. The “theorems” we would like to prove take a
very restricted form:

VS [state(S) = £(S) < f(patch(S,Par))]

where patch(S,Par) is the result of applying the patcher
to parameter Par in state S. Where we can prove such
theorems, we achieve a compile time speed-up by sim-
ply not including these patching moves in the patcher.
The number of such prunable “silly parameter changes”
tends to increase if we assume that certain local problem
constraints (1.e. the ones that can be fully incorporated
by other methods, as, for example, in [Braudaway, 1988])
are true before the patchmg move and must remain true

after the patching move.

For example, suppose we assume that constraints Cl
through C5 must hold before and after the patching
move. We can then prove that the following patching
moves will not (immediately) improve the solution:

+AxCoord(R), £AyCoord(R), -Alength(R), ~-Awidth(R)
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Moving a room |(by changing either its x or y coor-
dinates) will keep fixed the amount of the house that
Is filled, since the room is not allowed to overlap any
other rooms, or be placed outside the house. Shrink-
ing a room (by decreasing either its length or its width)
will decrease the amount ofthe house that is filled. After
constructing proofs that reflect these observations (based
on the definitions of the predicates), the incorporation
method constrains the patcher to the only moves left,
+Alength(R) and +Awidth(R).

STEP 3. Re-express the evaluation function in
relative and local terms. We can re-express the eval-

uation function f for a patched solution, patch(S,Par),
as:

f(patch(S,Par)) = f{S) + Af(S,patch(S,Par))

where Afis the improvement due to the patch. Rewrit-
ing this, we have:

Af(S,patch(S,Par)) = f{patch(S,Par)) - {(S)

The value of Af for a length-increasing patch of room R
Is derived to be:

Af(F,patch(F,length(R,F))) = width(R,F) x Alengthl(R,F)

We compute Af for each possible patching move. In
this manner, we can evaluate potential patches without
having to execute them. This will be needed for doing
greedy patching, which is described in STEP 5.

STEP 4. Construct a patcher in which the lo-
cal constraints have been incorporated. Because
we assumed in STEP 2 that the patching moves do not
violate any completely incorporated constraints, we must
restrict the parameter value modifications ofthe patcher
so as to guarantee this. The patcher has several compo-
nents, one for each modifiable parameter. The "increase
room length" component ofthe patcher must ensure that
the longer room is still inside the house (C3), still does
not overlap another room (C5), still is adjacent to the
house boundary (C4), and still has dimensions at least
minValuo long (C1,C2). Cl and C2 are obviously always
true; C4 is guaranteed to be true because the <X,Y>
corner has not been moved off the house boundary.

The RICK program [Braudaway, 1989] automatically
constructs a constrained generator in which several local
constraints have been incorporated. A function g(Par,F)
constructed by RICK at compile time is attached to
each floor plan parameter's range; this function dynam-
ically recomputes the legal values for that parameter.
The patcher is constructed by modifying the constrained
generator produced by RICK. The patcher differs from
the constrained generator only in that the range of legal
patching moves in a particular direction (+/-) is the sub-
set of the range of legal moves (computed by g(Par,F))
bounded by (but not including) the current value and
varying in the desired direction as far as possible, while
still satisfying the incorporated constraints (C3 and C5).

STEP 5. Convert the patcher into a greedy
patcher. STEP 2 of this method only determines desir-
able directions for changing parameter values, but does
not constrain the amount by which the parameter value
should be varied. One easily implement able idea is to
take a greedy approach; for a particular parameter, a
greedy patcher simply tries values from that parameter's
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Figure 5: (a) Greedy patch creating an unsolvable sub-
problem (shaded area); (b) the corresponding block-
preventing patch.

legal range, in decreasing order of improvement with re-
spect to the evaluation function. From the re-expressed
evaluation function created in STEP 3, we see that, for
a proposed increase in the length of room r in state s,
<r,Alength>, the change in evaluation function value is:

Af = width(r,s) x Alength(r,s)

Since Af is proportional to Alength(r,s) (width(r) is
not changed by the patch), the greatest evaluation func-
tion change occurs when the length change is greatest.
Thus, the greedy patcher is made to select values in de-
creasing order of length. If Af had been inversely pro-
portional to width(r,s) then the greedy patcher would be
designed to select values in increasing order. In either of
these special cases, no extra work is required to sort the
parameter range values using the evaluation function.
More generally, we can compile an expression for com-
puting Af and sorting the range elements at run time.

STEP 6. Offset the negative aspects of the
greedy patcher by trying to prevent blocking
moves. The major problem with a greedy strategy is
that it neglects to check for long-term negative conse-
quences. Thus, as is illustrated in Figure 5, extending
room Rl as far as possible to the right inadvertently
blocks room R5 from being extended maximally in the
downward direction. Unfortunately, the shaded area in
Figure 5 is a hole that is only tillable by extending RS
into it. The problem with a greedy strategy is that it
may solve one subproblem (e.g. filling in part of a hole)

at the expense of rendering some later subproblem un-
solvable.

Fortunately, we can offset some ofthe negative aspects
of a greedy patching strategy by including a /look-ahead
component in the strategy. The purpose of this com-
ponent is to detect patching subproblems that can only
be solved by a single move in one way (e.g. a maxi-
mal increase in the width of room RS5). As soon as we
detect that some patching move has this property, we
make that move, to prevent other patching moves from
inadvertently blocking such a necessary move. We will
call such moves block-preventing moves. For example,
the unsolvable patching subproblem in Figure 5 (a) can
be avoided only by extending R5 down to R4 (see Figure



5(b)).

Description of the Ilook-ahead component, Given a
covering constraint, the function of the patcher derived
in STEP 1 through STEP 5 is to construct a complete
assignment: "Assign space-filling units of type Tsg to
space units of type Ts so that the units of type T5
are covered." The space units are invariant (e.g., the
gridpoints in the house), while the space-filling units are
created (and implicitly assigned) by the generator and
patcher. We use a data structure D (e.g., an array) that
contains a single element for each space unit. D will rep-
resent the current assignment. Before trying to detect
possible block-preventing moves, we initialize D so that
the space units currently filled by rooms are recorded.
Making a patch move involves marking those space units
in D that are filled in by the patch move; in particular,
we place pointers to the patching move itself in the ap-
propriate elements of D. We detect space units that can
only be filled in by a single patching move in two steps.
First, we update D to reflect the result of applying all
patches applicable in the current state to the current
state; then we look for elements of D that only have one
associated patching move.

Construction of the look-ahead component. The most
difficult part of automatically compiling the look-ahead
component is to construct procedures that define and
maintain the data structure D. Compiling a procedure
for defining D is relatively straightforward. The -car-
dinality C of the space units is presumed to be fixed
and was computed in STEP 1. For our example, C is
length(house,s)xwidth(house,s). D is an array with C
records (one for each space unit), each having a "space
unit" field (containing a pointer to the space unit that
that record represents) and a "space fillers" field (a list of
all space-filling units covering that space unit). Compil-
ing a procedure to initialize D is based on the following
information determined in STEP 1:

set Of(spaceUnit(P,s)] = <X,Y> | X€[0,length(house,s)] A
Y €[0,width(house,s)]

The values for the “space unit” fields of the elements in
D are initialized from this set.

Compiling a procedure for maintaining D is based on
the following information determined in STEP 1:

set Of[spaceFillingUnit(P,s)] = Pet3(R,f

From this we determine the change in the covering re-
sulting from applying a patch:

URGroom sinfloorplanf

sct Of[spaceFillingUnit(P,patch(<r,length>,s)]
- setOf[spaceFillingUnit(P,s)] =
<X,Y> | X€[xCoord(r) + length(r,s),
xCoord(r
+ lengther,patch(<r,lcngth>,s))]
A Ye€[yCoord(r,s),yCoord(r,s) + width(r,s)]

After each patch, the maintenance procedure com-
putes the above set difference. For each space-filling unit
in the set difference, it looks for the element D[i] contain-
ing the corresponding space unit. (Automatic program-
ming techniques such as in [Kant and Barstow, 1978]
can be used to optimize this operation.) It then adds
the current patch to the value of D[i]’s “space fillers”
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Figure 6: Relative performance of algorithms

4 Empirical Results

We empirically evaluated and compared the perfor-
mances of generate-and-test, generate-test-and-patch,
generate-test-and-greedy-patch, and generate-test-and-
greedy-patch with block-preventing patches on a test set
of floorplans in which the rooms did not entirely fill the
house area. We manually constructed the test set of
floorplans to have varying degrees of difficulty (which we
defined as the length of the shortest path of patching op-
erations that would convert the floorplan into one that
filled the house). In our study, the degree of difficulty of
the example floorplans ranged between 1 and 4. The rel-
ative performances of the algorithms were measured by
the number of nodes (floorplans) generated before find-
ing a solution. Note that the cost of generating a node
can be shown to take time polynomial in the area of the
house.

The graph in Figure 6 clearly depicts that the three
generate-test-and-patch algorithms explore consistently
fewer nodes than generate-and-test. Generate-test-and-
greedy patch with block-preventing patches performed
best. For the examined degrees of difficulty, the number
of generated nodes increased only linearly, reflecting the
fact that block prevention succeeded in totally eliminat-
ing backtracking. Although block prevention may not
achieve total elimination of backtracking in general, we
have demonstrated its potential for significantly reduc-
ing backtracking.

5 Contributions and Limitations

Contributions. The approach we have presented is
based on viewing satisfaction of a global constraint as
an optimization process. The hillclimbing process is con-
fined to points in the space of "feasible solutions"” (i.e.,
those which satisfy the incorporated local constraints).
The novel contribution of this paper is an approach to
automatically compiling a global constraint satisfler (a
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"patcher") that is based on this hillclimbing viewpoint.
To help relate our work to that of others, we can think of
the compilation method as involving two major phases:
(STEP 1) derive an evaluation function that (implicitly)
defines a simple, operational patcher which varies one so-
lution parameter value at a time; and (STEP 2 through
STEP 6) optimize the patcher in various ways. We now
discuss work related to each of these two phases.

1. Constructing evaluation functions. Much research
has focused on constructing evaluation functions for al-
gorithms (e.g., A*) that search state spaces (e.g., [Pearl,
1983]). These approaches derive evaluation functions
from abstractions of state space operator preconditions.
In contrast, our patcher moves Iin a parameter value
space, where there are no restrictions on how to move
from one state to another; the moves are not restricted
by a given set of operators. Thus in some sense, our
problem involves not only constructing an evaluation
function, but also a set of patching operators to help
restrict the search for a satisfactory solution. STEP 1
of our method constructs the evaluation function, based
on categorizing the goal-defining conditions (constraints)
iInto one of several generic classes. STEP 2 through
STEP 6 can be thought of as constructing implicitly de-
fined patching operators that take restricted forms (e.g.,
"greedily increase the length ofroom R"). Note that our
approach to constructing evaluation functions could be
applied to state space problems like the 8-puzzle. It
would involve successfully classifying a problem into a
known generic type (e.g., part re-configuration), and
having associated with such generic problem types a
procedure for constructing an evaluation function (e.g.,
"number of misplaced parts").

2. Optimizing the hillclimbing algorithm.  Our research
on constructing hill-climbing patchers is similar to other
recent work [Lowry, 1987] on designing efficient opti-
mization algorithms. Lowry illustrates his approach by
deriving the simplex method for solving linear optimiza-
tion problems. His derivation greatly exploits the fact
that the space of feasible solutions is convex. If that
space were not convex (e.g., as in the nonlinear floor-
planning problem), many difficulties would arise: the
feasible region is not necessarily connected (e.g., con-
straints such as C5 are disjunctions); it is not always
possible to reach an optimal state starting from any fea-
sible state; etc. For such spaces, a more robust patcher
must be constructed.

Limitations and future research. We are in the
process of implementing this method in the MENDER
program, and applying it to global constraints drawn
from the house floorplanning domain. The research in
this paper has focused on covering constraints; the future
research will flesh out the taxonomy of global constraint
schemas that our approach can handle. Currently, we
have worked out the details of STEP 1 and STEP 6
only for the class of covering global constraints. STEP
2 through STEP 5, however, are expressed in terms in-
dependent of a particular type of constraint; they may
therefore apply to global constraints generally.
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§) Conclusions

We have developed a method for procedurally embed-
ding global constraints (that degrade the performance of
generate-and-test algorithms) into a generate-test-and-
patch algorithm. We have shown how the generate-test-
and-patch algorithm can be further improved by allowing
"greedy" patches, and by equipping the patcher with a
mechanism for heuristically detecting block-preventing
moves.

We have empirically shown that generate-test-and-
patch algorithms are more efficient than generate-and-
test for satisfying a covering constraint in the context
of a simple house floorplanning task; we used a manu-
ally constructed set oftest examples of varying difficulty.
Using the same examples, we also demonstrated that fur-
ther performance improvement is possible using a greedy
patching strategy, and block-preventing patches to offset
the disadvantages of greed.
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