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Abstract 

This research was motivated by the fol lowing 
question: What is the inherent computational d i f f i ­
culty of the visual search experimental paradigm in 
psychology? This is an important issue since so 
many computational models have recently appeared 
that use visual search data as mot ivat ion. How can 
these results be properly used if the computational 
nature of the experiment itself is not understood? 
A computational def ini t ion of the visual search task 
is presented, and the bottom-up case is distinguished 
f rom the task-directed case. Then, a proof is given 
showing that the bottom-up case is NP-Complete in 
the size of the image, while the task-directed case 
has linear t ime complexity in the number of items in 
the display. The NP-Completeness of the bottom-up 
case is due solely to the inabil i ty to predict which 
pixels of a test image correspond to objects in a 
non-exponential manner. This provides the strong­
est possible evidence for the abandonment of purely 
bottom-up schemes that address the ful l generality of 
v is ion. It is thus necessary to sacrifice generality in 
order to re-shape the vision problem and to opt im­
ize the resources dedicated to visual information 
processing so that a tractable problem is addressed. 

Introduction 

In this paper, the general task of visual 
search wi l l be shown to be inherently intractable in 
the formal sense. Given the ubiquity of visual 
search tasks in everyday percept ion, it may be true 
that visual perception in general is also intractable. 
Ye t , human vision is an effortless and exquisitely 
precise sense. H o w can this be? Anc ient philoso­
phers were aware of the fact that humans could at­
tend to the relevant and ignore the irrelevant. More 
recently, psychologists have studied attent ion, and 
have proposed that there must be some k ind of pro­
cessing l imi t in the brain to lead to such a 
phenomenon. Helmhol tz claimed that a conscious 
or voluntary effort may focus attention on a particu­

lar spot in the visual field [Helmholtz 1925], and this 
led to the 'attentional spotlight' idea that is 
widespread in models of perception. Neisser first 
claimed that any model of vision that was based on 
spatial parallelism alone was doomed to fai lure, sim­
ply because the brain was not large enough [Neisser, 
1967]. Stating that the brain is simply not large 
enough does not yield any useful constraints on tne 
architecture of the visual system. Arguments such 
as this, namely that a given fixed resource is not 
large enough to accommodate a specified problem 
lead naturally wi th in the computational paradigm to 
consideration of computational complexity. 
Neisser's claim hinted at the diff icult issues of com­
putational complexity that must be addressed, even 
though when it was made complexity theory was 
barely in its infancy. 

Complexity considerations are commonplace 
in the computational vision l iterature. Many 
researchers (for example, [Mackworth and Freuder, 
1985], [Poggio, 1982], [Gr imson, 1984] and others) 
routinely provide an analysis of the complexity of 
their proposed algorithms - this is simply good com­
puter science. It is important to demonstrate that 
specific algorithms have tractable requirements in 
terms of computer size and execution t ime. But this 
is not the same as addressing the complexity issues 
of vision in general. 

The task of visual search has not been de­
fined in computational terms by the psychology com­
munity. According to the defini t ion provided in 
Rabbitt [Rabbitt, 1978], a visual search task is a 
categorization task in which a subject must distin­
guish between at least two classes of signals, goal 
signals which must be located and reported and 
background signals which must be ignored. This de­
finition does not specify how signals arc located, 
how signals are represented, nor how goal and back­
ground are distinguished. In most, but not quite a l l , 
experiments of this type, the subject knows the goal 
before viewing the stimulus. The goal is most often 
simply shown visually, although in some experiments 
verbal descriptions are given instead. Visual search 
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experiments typically measure response times for the 
categorization of signals. Categorization yields a 
yes/no answer; other types of experiments ask sub­
jects to report on other aspects of the stimulus as 
wel l , but these are not considered in this paper. In 
experiments where the subject knows the goal before 
viewing the stimulus, observed response times give 
linear functions of the size of the display (or number 
of items in the display). Moreover, the search is a 
linear one because the slope of the negative case is 
twice that of the positive case. The literature docu­
menting this is large (see [Nakayama & Silverman 
86] or [Treisman 88] for example). The data on 
response time characteristics if the goal is unknown 
is less conclusive and rather sparse. Treisman and 
Sato report that unknown goal search produces 
overall increase in response times, but some show 
no changes in slope while others show large changes 
[personal communication]. It is as if features were 
inhibited in several successive passes, allowing un­
known goals to emerge at different points in the 
search sequence. The former experimental setup 
corresponds to my definitions of Task-Directed 
Visual search while the latter is Bottom-Up Visual 
Search, both of which are presented later. 

Response times are intimately connected to 
the speed of processing, the amount of processing 
machinery devoted to the task and the algorithm 
that is used to solve the task. The study of compu­
tational complexity measures the cost of solving 
problems, and is thus it is natural to ask whether the 
tool of complexity can be productively applied to the 
understanding of visual search performance in hu­
mans. 

An earlier paper describes some of the pos­
sible approximations and optimizations that human 
vision may be using [Tsotsos 1988a] while a compan­
ion paper provides supporting neurophysiological 
and psychophysical evidence for this position [Tsot­
sos 1988b]. It should be noted that there is nothing 
inherent in the problem or the proof procedure that 
prohibits the applicability of the proof for signals of 
a different dimension or modality, for example, 
speech. It wi l l be claimed therefore, without explicit 
proof that auditory or other perceptual search tasks 
are also NP-Complete for bottom-up strategies and 
have linear time complexity for task-directed stra­
tegies. 

A Computational Definition of 
Visual Search 

The general version of visual search seeks 
to f ind the subset of the test image that matches the 
goal, using some definition of 'match', and in its ful l 
generality includes the possibility of noisy or partial 

15 72 Vision and Robotics 

matches. The problem is viewed as a pure informa­
tion processing task, with no assumptions made 
about how the data may be presented or organized. 
The description presented is an abstract one, and is 
not intended as an implementation level characteri­
zation. Further, the problem may be of arbitrary 
size and may use arbitrary stimulus qualities. Other 
characterizations of visual search may be possible; 
however, it is suggested that all useful ones wi l l in­
clude the notions of images, measurements over im­
ages, and constraints that must be satisfied. 

A test image containing an instance of the 
goal is created by translating, rotating, and/or scal­
ing the goal, and then placing it in the test image. 
The test image may also contain confounding infor­
mation, such as other items, noise, and occluding 
objects, or other processes may distort or corrupt 
the goal. Due to image discretization, there are a 
finite but large number of possible transforms for a 
given image: the goal may be translated to anywhere 
in the test image; the goal may be rotated about its 
origin by any angular amount; and, the goal may be 
scaled in two directions by arbitrary amounts. Since 
images are discretized, there are only a finite 
number of possibilities along each of these dimen­
sions that would lead to distinct images. 2D spatial 
transforms are well-known. 

The question posed by visual search has two 
variants: a bottom-up and a task-directed version. 
In the bottom-up case, the goals are either not 
known in advance or even if they are they are not 
used, except to determine when the search ter­
minates. The task-directed case uses the goal to as­
sist in optimizing the solution to the problem. Both 
wi l l be addressed by the following analysis. 

The solution to visual search involves solv­
ing a sub-problem, which we call Visual Match. 
Given a 2D spatial transformation of the goal, the 
Visual Match procedure measures the fit of goal to 
test image and makes a yes/no decision as to its sui­
tability. Therefore, an algorithm for Visual Search 
may be the following: 

1. For each goal: 
2. If transform hypotheses not exhausted then 

hypothesize a new 2D spatial transformation 
else exit this loop and return 'no' 
3. Apply transform to hypothesize location, 

orientation and scale of goal in test image 
4. Execute the Visual Match procedure 
5. If Visual Match returns 'yes' exit and 

return 'yes' 
else go back to step 2. 

So, the input to the Visual Match procedure is two 
images (test and goal after a transformation) and a 
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4. Since a null I' satisfies any threshold in the above 
constraint, we must enforce the constraint that as 
many figure matches must be included in I' as possi­
ble. 2D spatial transforms that do not align the goal 
properly with the test items must also be eliminated 
because they would lead to many background to 
background matches. One way to do this is to f ind 
large enough values of the point-wise product of the 
goal and image. This is also the cross-correlation 
commonly used in computer vision to measure simi­
larity between a given signal and a template. A 
second threshold, Φ, provides a constraint on the ac­
ceptable size of the match. Therefore, 

Note that there is no claim here that the al­
gorithm necessarily corresponds to human perfor­
mance. The function definitions are given primarily 
for purposes of the proof and are claimed to be rea­
sonable ones. It is possible to provide other func­
tions for difference and correlation and reconstruct 
similar proofs using them. 

The Complexity of Bottom—Up 
Visual Matching 

The bottom-up visual match problem as stat­
ed above has exactly the same structure as a known 
NP-Complete problem, namely the Knapsack Prob­
lem [Garey & Johnson 1979]. Therefore, it would 
seem that a direct reduction (by local replacement) 
of Knapsack to Visual Match is the appropriate 
proof procedure. The formal statement of Knap­
sack follows: 

of the input may be the correct solution; and, two 
constraints must be satisfied simultaneously. Other 
aspects of the problem statement such as the specif­
ic form of the functions or the fact that real 
numbers of fixed precision are used do not lead to 
the NP-Completeness. 

One problem must first be solved before 
proceeding to the reduction. The statement of Visu­
al Match involves images whose measurements may 
be non-negative real numbers (of finite precision p 
as stated in the original problem). By stating a preci­
sion p, we mean that the significant digits whose 
value is less than p are not represented. Therefore, 
a fixed number of bits are required to represent each 
value. This is easily solved by first proving that 
Knapsack with non-negative real numbers is NP-
Complete. It should be stressed that the use of real 
numbers versus integers in no way leads to the NP-
Completeness of the problem - the inherent struc­
ture of the problem is the same as that of Knapsack, 
regardless of the representation. 
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z(a) 

for each a £ A. p is the point with location (x, y) 
within both images, and the location is set arbitrari­
ly, as long as each position is used and each unique 
position is associated with a unique element of A. 
It is clear f rom the above why the number 0 must be 
included as possible values for the functions w and z 
(it is not in Knapsack) because the difference func­
t ion may have value zero, and because the back­
ground has value zero and thus the correlation func­
t ion may be zero as well. A correspondence has 
now been set up between pixels in the test and goal 
image and elements of the set A. A subset of A has 
an associated subset of I, and the value of the differ­
ence and correlation functions correspond directly 
to values of the functions w and z for the 
corresponding element of A. Now one can solve for 
the values of g and i given the above pair of equa­
tions, for each spatial position. For ease of nota­
t ion, g wil l be used for gx,y,1 and similarly for i. 
Since i must be non-negative, if we wish g > i, then 

ror, then the correspondence between the Visual 
Match problem and Knapsack - Rf is complete and 
the proof is also complete. In fact, the approxima­
tions do not affect the diff function at al l , only the 
corr function. The diff function becomes 

It remains to be shown that there exists some non­
zero value of p that satisfies the above inequality. 
The value of p that satisfies the inequality is less 
than the root of: 
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Since the solution must be positive there is only one 
possible root (and it is real). A l l variables have 
values that are known before the computation of the 
image elements. The value of precision for the 
problem can then be stated as any value of p such 
that 0 < p < p'. Given this precision, which is 
less than that of the original K n a p s a c k - R f r o b l e m , 
and if Φ is set to D, it follows directly that the the 
subsets of the image that satisfy the second con­
straint are exactly those corresponding to the subsets 
of A that satisfy the second constraint of the 
K n a p s a c k - R f r o b l e m . Therefore, set A' exists if 
and only if I' exists and Bottom-Up Visual Match is 
NP-Complete. But, since Visual Match is a sub-
problem of visual search, the Bottom-up Visual 
Search problem is also NP-Complete. 

The Complexity of Task—Directed 
Visual Search 

If we consider task-directed optimizations 
using the goal i tem, it is easy to show that the prob­
lem has linear time complexity. The key is to direct 
the computation of the difference and correlation 
functions using the goal rather than the test image. 
However, we still seek the appropriate subset of the 
test image. If there is a match that satisfies the con­
straints, then its extent can be predicted in the test 
image; all locations are possible. The Task-Directed 
Visual Match task is stated as follows: 

Given a test image, a goal image, a difference func­
t ion, and a correlation function, is there a subset of 
pixels of the test image such that the difference 
between that subset and the corresponding subset 

Note that the definition of diff and corr have 
changed slightly in that the pixel locations and meas­
urement set used are that of the goal rather than the 
test image. The computation of the diff and con-
functions is driven by the goal image and the meas­
urements present in the goal. A simple algorithm is 
apparent. First, center the goal item over each pixel 
of the test image; compute the diff and corr meas­
ures between the test and goal image at that posi­
t ion; among all the positions possible, choose the 
solution that satisfies the constraints. The resulting 
time complexity function for visual match would be 
O { I G I X I M„ I ' In other words, the worst case 

number of computations of the dif f and corr func­
tions is determined by the product of the size of the 
goal image in pixels and the number of measure­
ments in the goal image. If the complexity of visual 
search (within which visual match is embedded) is 
considered, this would add only a multiplicative 
term | T | to the above function, where this 
represents the total number of possible rotations, 
translations and scalings. If display items can be lo­
calized, (via an attentional spotlight), the complexity 
is linear in the number of items in the display, but 
all rotations and scalings must still be considered. 
Since at least one linear algorithm exists, this leads 
to the second theorem: 

Theorem 2: 
Task—Directed Visual Search has Linear 

Time Complexity 

Note that no sacrifice of generality is necessary to 
deal with the task-directed problem. However, this 
is true only for the decision problem as stated in­
volving perfect matches. If the problem is stated as 
one required to ' f ind ' the matching image subset, the 
task-directed version is constrained to f ind subsets 
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that are the same size and shape as the goal, 
whereas the bottom-up version can find subsets of 
arbitrary sizes and shapes. The bottom-up case is 
still NP-Complete, and the task-directed case is still 
linear, but they are not as directly comparable. This 
is true even if partial matches are permitted. 

This provides a strong hypothesis: since visu­
al search experimentation in psychology presents a 
view of search performance as having linear time 
complexity, and not exponential, the inherent com­
putational nature of the problem strongly suggests 
that task-directed influences play an important role 
in human perception. 

Conclusions 

Complexity theory has not been previously 
applied to try and uncover the inherent difficulty of 
behavioral experimental paradigms (for a 
comprehensive overview of methods that have been 
applied to uncover the limits of perception see [van 
D o o m et al. 1984]), even though several researchers 
are attempting to incorporate the results of such ex­
periments into computational theories. Is it possible 
that the consideration of the computational diff icul­
ty of the experimental task alone could lend insight 
into the interpretation of response times of human 
subjects? This paper demonstrated that indeed ad­
ditional insight is possible. The results argue very 
strongly against purely bottom-up approaches to the 
general vision problem and to computational model­
ling of human perception. It is claimed without 
proof that the same results hold for perceptual 
search tasks in stimulus modalities other than vision. 

Visual search is a common if not ubiquitous 
sub-task of machine vision algorithms. For example, 
purely bottom-up versions of region growing, shape 
matching, structure f rom mot ion, the general align­
ment problem, and connectionist recognition pro­
cedures, etc., all are specialized versions of visual 
search in that the algorithms must determine which 
subset of pixels is the correct match to a given pro­
totype or description. The problems they attempt to 
solve are therefore NP-Complete. It must be 
stressed that the NP-Completeness does not depend 
on the specific functions used for the two con­
straints nor on the representation of images. NP-
Completeness results f rom the facts that a subset of 
pixels must be chosen whose extent cannot be 
predicted a pr ior i , that simultaneously satisfies (as 
opposed to optimizes) two constraints. 
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