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Abstract 

In this paper, an implicit numerical scheme of diffusion 
smoothing is given for both intensity and depth images, 
which uses a changeable time step to reduce the 
computation. Emphasised is a "small leakage" diffusion 
model as an efficient way to maintain both boundary 
position and curvature signs along the surface boundary in 
smoothing, which wi l l be useful for approximation and 
segmentation of sculptured surfaces. 

1 In t roduc t ion 

In early visual processing, Gaussian convolution (smoothing) is wcll-
suitcd for reducing image noise owing to its elegant properties [Yuillc 
and Poggio, 1983]. A widely used and efficient algorithm of Gaussian 
convolution in computation is the repeated averaging smoothing [Brady 
et ai, 1985J,[Canny, 1983J. As an equivalence to Gaussian convolution, 
diffusion smoothing has also been investigated by many papers 
[Rosenfcld and Kak, 1976],[Kocnderink, 19841,[Gourlay, 1985],[Babaud 
et al., 1986j,[Cai, 1987a,b],. 

There arc two problems for the effective application of diffusion 
smoothing: the first is to construct an efficient algorithm; and the second 
is to treat the boundary condition properly according to different 
requirements. For the first problem, [Cai, 1987a] proposed an implicit 
algorithm (DISCT) to complete diffusion smoothing with a lower 
computational complexity than Gaussian smoothing's; and [Cai, 1987bI 
further showed that the repeated averaging smoothing mask (as well as 
some other masks) can be easily derived from the explicit diffusion 
smoothing. For the second problem, a "small leakage" diffusion model 
is proposed in this paper as an efficient way to maintain both boundary 
position and curvature signs along the surface boundary in smoothing. 
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There are several ways to prevent the surface boundary "melting" 
into the background. For instance, the "computational molecules" 
technique [Terzopoulos, 19851 is adopted in the repeated averaging 
smoothing [Brady et ai, 1985]; and, similarly, "one pixel horizontal 
extension" of the surface boundary is used in diffusion smoothing [Cai, 
1987a]. 

However, under the above treatments, the depth variation at the 
boundary is not consistent with that in the inner area. As shown in 
Figure 1, the depth at a cylindrical surface boundary will not be reduced 
but be raised while the depth in the inner area is decreased, which 
makes the marginal area of surface flatten rapidly and change the 
surface concavity/convexity there. This tendency will further propagate 
to the central area during the smoothing process until the whole surface 
becomes flat. So Gaussian convolution in 2.5-D space cannot preserve 
the shape of a cylindrical surface as it does in 3-D space [Brady et al, 
1985], nor the diffusion smoothing with "one pixel horizontal extension" 
boundary treatment. Both of them will introduce a side-effect: the signs 
of curvatures (Gaussian curvature and mean curvature) at many pixels 
along the surface boundary might be changed although the surface 
boundary position now can be maintained in the smoothing process. 

From the viewpoint of diffusion smoothing, this effect can be 
explained intuitively with a "no leakage" diffusion (heat conduction) 
model shown in Figure 2., where "no heat energy on the domain D wil l 
leak out through the boundary L which is surrounded by some 
absolutely heat-isolated medium whose heat conduct coefficient b0 is 
zero." Hence, when the temperature distribution finally becomes flat, it 
wi l l not be a zero-flat one on the whole x-y plane as in the case of 
surface smoothing without boundary preservation but wil l be a non-zero 
flat one over the domain D. The value of the final flat distribution wil l 
be higher than the initial (depth) value at the boundary and lower than 
that in the central area, which leads to the above surface distortion. 

To avoid introducing errors of curvature signs near the boundary, 
[Ponce and Brady, 1987] suggested smoothing in intrinsic coordinates 
that "instead of smoothing z, the surface point is moved along its 
normal a distance that depends upon the projected distances of the 
point's neighbours from the tangent plane." This method is expensive 
in computation as it needs calculating all normal vectors on the surface. 

To maintain both the boundary position and curvature signs along 
the surface boundary, wc propose a modified diffusion model — the 
"small leakage" model to treat the boundary pixels: a small part of heat 
energy is allowed to be leaked out to an ideal good conductor through a 
thin, partially heat-isolated medium at the slant boundary so that the 
depth of, e.g., a cylindrical surface boundary will be slightly reduced 
rather than being raised, whereas no heat energy is leaked out through 
the horizontal surface boundary. Therefore, both the boundary position 
and surface shape can be preserved at most of pixels along the surface 
boundary. 

Speaking mathematically, the "small leakage" model applies a so-
called "natural boundary condition" 

Where D is the surface domain; L is the boundary of D, L+ is the 
internal side and L, the external side; n is the outward normal vector at 
the boundary L; b is the heat conduction coefficient: b+ for the surface 

material, e.g. 0.5, b_ for the thin heat-isolated medium, about 10% of 

the b+, e.g., 0.05, and b for ideal heat conductor. 

This means the heat conduction coefficient b has a discontinuity 

across the surface boundary and different media; so does the 

temperature gradient - ~ . Meanwhile, the heat energy exchanged across 

the boundary is always continuous due to the law of conservation of 

energy. 

In practice, to avoid computing the normal vector at each 
boundary pixel, this natural boundary condition is further simplified. It 
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smoothing and the right sides for KH sign imges from Gaussian 

smoothing. 

As is shown in these figures, Gaussian smoothing with the 
"computational molecules" technique introduces undesired changes in 
curvature sign in the marginal area, which forms a strip along the 
surface boundary which expands along with the increment of the scale; 
whereas diffusion smoothing with the "small leakage" model preserves 
the curvature signs quite well along the surface boundary, which wil l be 
very helpful for approximation and segmentation of sculptured surface. 

A better result might be expected by using a diffusion model with 
a picccwise continuous coefficient b(x,y) over the whole xy-planc. 
Experiments on how to construct such a function b(x,y) are still in 
progress. 

Obviously, these coefficient vectors are compatible with the 
DISCT scheme's tridiagonal coefficient matrix (8). Hence, when the 
natural boundary condition is applied to a diffusion equation, only a 
small revision to A corresponding to the slant boundary pixels is 
needed, and it requires little computation. Matrix A is still a 
diagonal-dominant one and the lower computational complexity of the 
DISCT algorithm in [Cai, 1987a] is still available. 

7 Exper imenta l Results and Fur ther W o r k 

Six figures are shown in this section as the experimental results of the 
range data processed in scale space using the "small leakage" diffusion 
smoothing and the Gaussian smoothing with "computational molecules", 
where the diffusion time t = 0, 1,4 and 9 correspond to Gaussian scale 
a = 0, 1, 2 and 3. 

Figure 4 is for a cylindrical oil bottle and Figure 5 is for a light 
bulb, where the side-view is used to compare the smoothing effects at 
the boundary. Figure 6 is for the same light bulb, but using KH sign 
image [Best and Jain, 1986] to compare the results from both smoothing 
methods. Similar are the rest three figures for a Renault car part, a drill 
and a human face using respectively. Each grey level in the KH sign 
image corresponds one of the eight surface types listed in Table 1. 

In each figure, the object from raw data is shown at the top part, 
where the left side is for cosine-shading image and the right side for 
KH sign image; the smoothed objects are shown at the rest parts, where 
the left sides are for KH sign images from "small leakage" diffusion 
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