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Abst rac t 

This paper presents an application of the Minimum 
Description-Length (MDL) principle of inductive 
learning to the surface reconstruction problem of 
computer vision. The application demonstrates that 
the M D L principle can be applied to practical 
problems while preserving its convergence properties. 
It also illustrates how at least one aspect of computer 
vision (i.e., surface reconstruction) can be treated as 
an inductive inference problem using this principle. 
This has the advantage that the convergence properties 
of the M D L principle enable an exact surface 
reconstruction to be obtained asymptotically as the 
number of available data points increases. Moreover, 
convergence to the true surface occurs independent of 
the amount of error in the measurements. 

1. In t roduc t ion 

In its simplest form, the Minimum Description-Length 
(MDL) principle states that induction can be accomplished 
by finding the shortest description for a set of observations 
in a suitable language, where the description includes a 
theory that accounts for the observations. It has been proved 
mathematically that choosing the shortest description 
enables one to eventually converge on an "appropriate" 
theory, given a sufficient number of observations, where 
appropriateness is judged in terms of the ability to predict 
observations [Pednault 1988; Barron 1985; Barron and Cover 
1983; Rissanen 1978]. This convergence property gives the 
MDL principle tremendous potential for application to 
vision and other induction problems, since it guarantees 
robust inferences for sufficient amounts of data, even in the 
presence of noise. 

The M D L principle, though, is computationally 
intractable in its most general form. Its convergence 
properties have been studied with respect to languages that 
arc Turing-equivalent and thus allow any computable 
function to be represented. To actually apply the principle in 
this general context, one would have to solve the halting 
problem of Turing machines, which is clearly impossible. 

However, as I have argued elsewhere [Pednault 1984], the 
halting problem does not doom the M D L principle, since 
one can l imit the range of theories to a tractable subset, 
and/or employ approximation techniques that attempt to find 
theories that are as close to the optimum as is 
computationally feasible. This pragmatic approach enables 
one to construct efficient algorithms by tailoring the 
optimization to specific properties of interest. This leads to 
the following methodology for applying the MDL principle 
to computer vision and other induction problems: 

(1) Determine the kinds of structures that needs to be 
detected. 

(2) Develop a language well-suited for expressing these 
structures. 

(3) Develop algorithms that find short descriptions in 
the language. 

(4) Run tests to find inappropriate behavior. 
(5) Determine whether the problems lie with the 

language, the algorithms, or both. 
(6) Modify the language and/or algorithms accordingly 

and iterate. 
The question, though, is whether the convergence properties 
of the MDL principle can be preserved when using this 
methodology. 

This paper demonstrates experimentally that convergence 
can indeed be preserved in practical applications by applying 
the MDL principle to the surface reconstruction problem in 
computer vision. Surface reconstruction seeks to recover the 
mathematical functions that describe a surface given a set of 
points on the surface le.g., Terzopoulos 1988; Crimson 
1983; Barrow and Tenenbaum 1979]. The problem is 
compounded when dealing with real data, since the points 
usually wi l l not lie on the actual surface, but instead will be 
randomly displaced away from it due to measurement errors. 

Since the goal of surface reconstruction is to infer general 
properties (i.e., surfaces) from sets of observations (i.e., data 
points), it may be treated as a problem of induction. The 
MDL principle is especially well-suited to this problem, 
since it guarantees convergence of the inferences for any 
amount of noise in the measurements. As the number of 
available data points increases, the reconstructions obtained 
converge asymptotically to the true surface. This property is 
demonstrated in the examples presented in Section 4. 

Another important characteristic is that if the number of 
available points is insufficient for exact convergence, an 
approximation to the true surface is obtained in which the 
degree of approximation is adjusted automatically according 
to the number of data points and to the amount of error in 
the measurements. The effect is to choose coarser 
approximations when the measurement errors are large 
and/or the number of points is small, and finer 
approximations when the errors are small and/or the number 
of points large. This occurs automatically without the 
manual adjustment of parameters, such as the stiffness 
parameters used in thinplate interpolation (see [Tcrzopoulos 
1988] for a discussion of such parameters). This property is 
likewise demonstrated in the examples presented. 

2. The M i n i m u m Descr ipt ion-Length Pr inciple 

Let us first consider how the MDL principle applies in 
general to surface reconstruction and then to the specific case 
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considered in the examples. According to the principle, the 
theory that best accounts for a collection of observations is 
the one that yields the shortest description [Pednault 1988; 
Barron 1985; Barron and Cover 1983; Rissanen 1978]. A 
description consists of a machine-readable representation of 
the theory plus an encoding of the observations with respect 
to the theory. When applied to surface reconstruction, the 
"theory" is the function that defines the surface and the 
"observations" are the data points. These points are encoded 
in terms of the difference between the points and the 
reconstructed surface. The optimal reconstruction is then the 
function S that minimizes the sum 

where l(S) is the length in bits of a machine-readable 
description of 5, z1,.. .,zn are the data points, and l(zl zn 
S) is the number of bits needed to encode the difference 
between these points and 5. The combination of a function 
and an encoding of the difference constitutes an exact 
representation of the data points. The optimal surface is the 
one that minimizes the length of this representation. 

In general, S wi l l be a pieccwise-continuous function 
that can be decomposed into a collection of regions and 
continuous functions, with one function per region. l(S) 
will thus incorporate the number of bits needed to specify 
both the region boundaries and the functions within each 
region. If these functions form a collection of parametric 
families, the function associated with a region can be 
described by first specifying the family it belongs to and 
then specifying its parameters. The number of bits needed to 
supply this information is included in l(S). Note that l(S) 
will thus increase as the number of regions and function 
parameters increase. We can therefore view l(S) as 
measuring the complexity of the reconstructed surface. 

To encode the data points, the difference between their 
values and S is analyzed statistically by viewing the 
difference as a random process. This random process, 
together with the function 5, induces a probability 
distribution p on the data points. If we employ the Shannon 
coding technique developed in information theory [Gallager 
1968], we can use p to encode the points using no more 
than 

bits, /(z1 zn I S) can thus be thought of as a degree-of-fit 
term. If the S reproduces the data points exactly,p(z1...,zn) 
will equal one and l(zu...tzn I S) wi l l be zero. As the fit 
degrades, p(zu...yzn) wil l decrease and l(zXt...,zn I S) wil l 
increase. 

Since the degree of fit can vary from region to region, we 
are not justified in assuming that the probability distribution 
p remains constant. To allow it to vary, the distribution 
must be specified along with the interpolating function 
within each region. This can be accomplished by treating p 
as a member of a parametric family of distributions and then 
encoding its parameters. The number of bits needed to 
specify this information is included in l(S). 

The optimum surface is the one that achieves the 
minimal total coding length over all partitionings of the 
points into regions and all possible assignments of surfaces 
and noise models to each region. 

3. Polynomial Surface Reconstruction 

For the experiments reported in this paper, piecewise-
polynomial functions were used in conjunction with a 
Gaussian noise model to describe surfaces and the random 

displacement of the data points. The algorithms developed 
actually allow any linear combination of basis functions. 
Polynomials were used in the experiments because of their 
familiarity in order to facilitate the presentation of the 
results. A Gaussian noise model was selected, since optimal 
polynomial coefficients can then be determined using a 
computationally-efficient least-squares algorithm. Nonlinear 
families of interpolating functions can also be used within 
the framework, as can other noise models, but different 
techniques must then be employed to find optimal function 
parameters (the least-squares algorithm presumes a Gaussian 
noise model and linear combination of basis functions). 

A polynomial-time algorithm has been developed to find 
optimal reconstructions for one dimensional surfaces (i.e., 
curves). Finding an optimal reconstruction is 
computationally infeasible for a two dimensional surface, 
since an exponential number of regions must be examined in 
order to find the optimum. For a multidimensional surface, 
one has no choice but to use approximation techniques to 
find reconstructions that are as close to the optimum as is 
computationally feasible. One approach I am investigating 
is to use a series of optimal ID reconstructions to guide the 
reconstruction of 2D surfaces. Early experiments with this 
approximation technique have proved quite promising. 

With ID surface reconstruction, regions become intervals 
on a line. Polynomials are used to describe the surface 
(curve) within each region. To obtain an efficient algorithm, 
each interval is encoded independently and the resulting codes 
are then concatenated to form the encoding of the overall 
surface. This allows the total coding length to be minimized 
using dynamic programming techniques, which produces a 
polynomial-time algorithm. 

The data points are assumed to take on integer values 
from 0 to 255. This corresponds to range data quantized to 8 
bits accuracy. Because of the discrete nature of the data, the 
noise model employed is a bounded discrete Gaussian 
distribution having the probability mass function 

The parameter 5 represents the true height of the surface at a 
point, while y2 determines the distribution of errors when 
measuring 6. Note that 5 and y2 only loosely correspond to 
the mean and variance of the distribution. They arc not 
numerically equal to these statistics because the distribution 
is bounded and discrete. 

The underlying surface is assumed to be sampled at 
uniformly spaced increments so that z, represents the value 
of the i'th sample. The polynomials are then expressed as 
functions of i. The measurement errors for the samples 
within an interpolation interval are assumed to be 
statistically independent. The joint distribution is then the 
product of the marginal distributions for the points in the 
interval. The parameter y2 is a assumed to be constant over 
an interval, while 5 is given by the interpolating 
polynomial. Thus, if a0+......amim is the polynomial 
associated with the interval containing points i1 through ji, 
the joint distribution for these points is given by 
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the curves are sampled at 48 points and the standard 
deviation of the noise is increased from 0 to 32 in a 
logarithmic fashion. In Figures lb and 2b, the standard 
deviation of the noise is held constant at 32 and the number 
of data points is increased from 48 to 768 by factors of two 
in Figure lb , and from 48 to 384 in Figure 2b. 

Figure 3 presents the results of applying the algorithm to 
the rows of a 128 by 128 range image of a mechanical part. 
Figure 3a shows the original image, while Figure 3b shows 
the reconstruction. In Figure 3c, a row and a column from 
the original image are plotted along side their 
reconstructions. The positions of the row and column are 
indicated by horizontal and vertical marks along the borders 
of Figures 3a and 3b. 

In all of these examples, the number of intervals, their 
locations, and the order of the polynomials were determined 
entirely by minimizing the total encoding length of the data 
points. The initial implementation allowed up to 15th order 
polynomials. Problems with numerical instability, however, 
required that the polynomials be limited to at most 5th order 
in the examples presented. Further work is being done to 
resolve these stability problems. 

5. Discussion 

The experimental results demonstrate that the 
convergence properties of the M D L principle can be 
preserved in practical applications. Figures lb and 2b clearly 
show that an exact surface reconstruction is obtained 
asymptotically when the true surface is a member of the 
subset considered (i.e., polynomials) and one is minimizing 
the description length over this subset. In both cases, the 
structures of the underlying curves are recovered at the 
highest data samplings. The use of a high noise level 
illustrates that convergence occurs independent of the 
amount of noise. The noise level does affect the rate of 
convergence (i.e., the higher the noise, the slower the 
convergence), but not the eventual convergence. Note that 
convergence is much faster for the discontinuous curve. 

Figures 1 and 2 together demonstrate that the degree to 
which the reconstruction approximates the true surface 
adjusts automatically to the number of data points and to the 
amount of error in the measurements when the number of 
points is insufficient for exact reconstruction. Coarser 
approximations arc made when the measurement errors are 
large and/or the number of points is small, and finer 
approximations are made when the errors arc small and/or 
the number of points large. The result is a graceful decrease 
in the accuracy of the reconstruction as measurement error 
increases or the number of data points decreases. This 
compensation occurs automatically without the manual 
adjustment of parameters. Note that the decrease in accuracy 
is more gradual for the discontinuous curve. 

The mechanical part shown in Figure 3 does not have 
polynomial surfaces, yet the reconstruction produced by the 
algorithm is quite accurate. Thus, even when the true surface 
lies outside of the subset considered, a good approximation 
to the surface can sti l l be obtained. The principal 
requirement is for the subset to have sufficient latitude for an 
adequate approximation. In addition, the noise model must 
adequately reflect the statistical properties of the 
measurement errors, which does happen to be the case for 
the mechanical part. 

The surfaces in Figure 3 are actually two dimensional, 
not one dimensional as is assumed by the algorithm. 
However, finding a minimal encoding of a 2D surface is 
computationally infeasible, since an exponential number of 
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Figure 3: Result of applying the algorithm to the rows of a 128 by 128 range image of a mechanical part. 
(A) The original image. (B) The row reconstruction. (C) A row and column selected from the original 
image together with their reconstructions. The position of the row and column are indicated by marks along 
the borders of the images. 
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regions would have be examined to find the optimum. I am 
investigating an approach to 2D reconstruction that utilizes 
a series of ID reconstructions determined through exact 
minimal encodings. The intuition is that high-quality ID 
reconstructions based on polynomials of sufficient degree 
wil l provide tight constraints on the 2D surface. The quality 
of the reconstructions obtained on the mechanical part 
strongly supports the viability of this approach. It also 
provides evidence that one need not necessarily find the 
absolute shortest description in order to obtain a good 
approximation to the true surface—a description that is short 
enough can do just as well. 

6. Conclusions 

The strength of the MDL principle lies in its 
convergence properties [Pednault 1988; Barron 1985; Barron 
and Cover 1983; Rissanen 1978]. The benefits of these 
properties provide strong motivation for discovering ways of 
overcoming the computational barriers posed by the 
principle in its most general form. The results presented here 
demonstrate that these barriers can be overcome in specific 
applications by limiting the range of admissible theories to 
a tractable subset and/or by employing approximation 
techniques that attempt to find theories that are as close to 
the optimum as is computationally feasible. 

The approach that I am exploring in applying the MDL 
principle to surface reconstruction illustrates one way of 
dealing with these computational issues. Different means are 
also being explored by other researchers in computer vision. 
Segen [1980, 1985, 1988] has applied the principle to 
several problems in vision and perception using various 
approximation techniques. Smith and Wolf [1984] have 
considered an approach closely related to the one presented 
here in applying the MDL principle to curve matching for 
image correspondence. Leclerc [1988] is investigating a 
distributed 2D approximation to the MDL principle for the 
purpose of image partitioning. Pentland [1988] has 
developed an algorithm motivated by the MDL principle for 
the reconstruction of superquadrics from binary images. 
Though different approaches to constructing approximation 
algorithms are taken in each instance, they all fall within the 
basic paradigm outlined above and in Section 1. 

This previous work focused primarily on the practical 
application of the MDL principle without considering its 
convergence properties. The results presented in this paper 
demonstrate that convergence is one of the key aspects of the 
MDL principle. Since convergence is not guaranteed when 
approximation techniques are employed, it should be 
included as one of the tests for inappropriate behavior when 
following the methodology described in Section 1. The 
variety of applications previously considered, together with 
the convergence properties examined here, demonstrate the 
flexibility and viability of the MDL principle. Undoubtedly, 
the future wil l see many more applications of this principle. 
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