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Abstract 
We study the role of visual reasoning as a 
computat iona l ly feasible heuristic too l in ge­
ometry prob lem solving. We use an algebraic 
nota t ion to represent geometric objects and to 
manipulate them. We show that this repre­
sentation captures powerfu l heuristics for 
p rov ing geometry theorems, and that it allows 
a systematic manipu la t ion of geometric fea­
tures in a manner similar to what may occur in 
human visual reasoning 

1 Introduction 
The quest ion of visual imagery in humans has been a 
controversial subject w i th in cognit ive psychology 
[Anderson , 1979, Koss lyn, 1980, Shepard and Cooper, 
1982, Pylyshyn, 197.1]. No one doubts the conscious 
phenomena of imagery, or the act of visualization. 
What is problemat ic is the ul t imate nature of images as 
mental representation [Johnson-La i rd , 1983]. Is there 
a single under ly ing fo rm of mental representation and 
are images on ly ep iphcnomina l ; or are images a distinct 
sort of mental representation? Regardless of the out­
come of this debate, that visual imagery as a natural 
means of dealing w i th spatial problems wi l l remain 
irrefutable. 

Visual imagery, or visual reasoning, as a useful tool 
for scientists and mathematic ians has been demon­
strated in the past [ M c K i m , 1980, Kosslyn, 1983, 
S imon , 1987]. Our goal is to explore visual reasoning 
as a computat iona l ly feasible too l in prob lem solving. 
We investigate its role in the classical AI domain , dis­
cover ing proofs for theorems in cuclidean plane geom­
etry. To discover a p roo f requires ingenuity, 
imaginat ion, and insights to a p rob lem. Considering a 
model of the prob lem generally provides most valuable 
insights to a p rob lem. In our doma in , the model is a 
d iagram, and through its manipu la t ion the problem 
starts unfo ld ing. Heurist ic values of a model , or a dia­
gram, are that it provides a counter-example of an 
unprovable theorem and more impor tan t ly that it serves 

as a vehicle for 'perceptual reasoning," perceptual in the 
sense that many facts are self-evident f rom the diagram 
and that they need not be established f rom fundamental 
axioms. 

Bui ld ing theorem-proving systems for geometry has 
been attempted frequently in the past [Gelernter, 1958, 
Gelernter, 1963, Goldstein, 1973, Nevins, 1974, 
Anderson, 1981, Anderson, 1983, Anderson, 1985, 
Coclho and Pcrcira, 1986, Lakin and Simon, 1987]. Sec 
[Coelho and Pcrcira, 1986] for a comparative study of 
previous work. Most notable system among them is 
the Geometry Theorem Prover [Gelernter, 1958, 
Gelernter, 1963], which was one of the earliest auto­
mated theorem provers and was distinguished by its re­
liance on a diagram to guide the p r o o f The prover used 
the diagram as the prun ing heuristic, e.g., it rejected as 
false any goal that was not true in the diagram. Its use 
of diagrams, however, was l imited in that diagrams 
supplied only yes or no answers to questions of the 
fo rm: Is segment AB equal to Segment CD in the f ig­
ure?' Note that f inite precision ari thmetic, applied to 
the diagram, occasionally caused a provable sub-goal to 
be pruned erroneously. Furthermore, constructions 
such as adding lines to the diagram were done only as 
the last resource, and the help lines were drawn by 
randomly connecting any unconnected points, when all 
else failed. 

Our aim is to further explore the heuristic values of 
the diagram, and show a method that allows the dia­
grams to be perrcived, or seen, and to be manipulated 
in a creative manner, similar to what may occur in h u ­
man visual reasoning. To represent geometric features, 
we use an algebraic notat ion and capture what may be 
the key computat ional efficiencies that occur in human 
visual reasoning. 

In the next section visual reasoning in plane geometry 
is discussed. In Section 3, a representation scheme by 
which geometric features are described is given. In 
Section 4, some useful patterns that are found in many 
geometry problems are identified and the methods by 
which they may be recognized are discussed. In Section 
5, we describe Machine's I, an early version of machine 
implementat ion, which may be used as a f ront-end 

Kim 1617 



heuristic device to a more general geometry theorem 
prover. Finally conclusions appear in Section 6. 

2 Visual Reasoning in Geometry 
Visual reasoning in geometry may be considered as a 
two-step process: patterning, and analysis. Patterning, 
or pattern-seeking, as an active nature of visual percep­
t ion has been formulated as a theory, known as Gestalt 
theory, by psychologists [ M c K i r n , 1980]. The pattern 
that we perceive in a problem strongly influences the 
manner by which we approach the problem. So pow­
erful is the perceptual tendency to perceive meaningful 
patterns, we wi l l f i l l in missing parts. This effect is 
known as closure. Seeking meaningful patterns or gen­
erating them, or closing-in, is a particularly effective aid 
in geometry theorem proving. Once a meaningful pat­
tern is found, its implications arc analyzed, or inferred. 

Consider the problem in Figure 1: ' 'Given a square 
{ABCD), take the midpoints of the four sides, and prove 
that the two triangles (EEH) and (GFH) are congruent 
to each other." 

Figure 1. Reflection 

To solve this problem, backward-chaining methods 
used by most of previous geometry-theorem proving 
systems [Gelernter, 1963, Goldstein, 1973, Coclho and 
Pereira, 1986] would first set up a goal to prove that the 
two triangles arc congruent, then set up sub-goals to 
prove that their corresponding sides are congruent, and 
then set up more sub-goals, repeatedly, to show that 
each pair of corresponding sides arc congruent, and so 
on. A human mathematician, given the problem, may 
perceive an apparent symmetry in the diagram by ob­
serving a reflection across (FH) or across (EG). As a 
symmetry is observed, it can be shown wi th l itt le effort 
that the two triangles are congruent, and thus repeated 
proofs can be avoided. 

Consider another problem as shown in Figure 2: 
'Prove that the midpoint of the hypotenuse of a right 
triangle is equidistant f rom the three vertices." To solve 
this problem, suppose the right triangle (ABC*) is half-
turned, or turned by 180 degrees, about the midpoint . 
This half-turn generates (DCB), which is a copy of 
(ABC) 180 degree turned about (M). The two triangles 
form a rectangle (ABCD). Once a rectangle is seen and 
its diagonals are computed, it can be trivially inferred 
that the two diagonals are congruent and that they 
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bisect one another, and thus, the four line segments are 
congruent, and so on. 

Figure 2. Half-turned right triangle 

Observe that we have obtained an out l ine, or a plan, 
for a proof by finding a line symmetry in Figure l. 
We have obtained useful informat ion for a proof in 
Figure 2 by turning the right triangle and transforming 
it to a rectangle. We show in the next section a nota­
t ion that can capture important heuristics for proving 
geometry theorems. The notat ion can suggest that 
there is a reflection in one problem, and that a half-turn 
maybe useful in another. 

3 Representing Geometric Features 
A good choice of representation can greatly facilitate the 
recognition task. Suppose we represent the square in 
Figure l, using the primitives a — } and b = —>, by the 
string (a@h) • (h(±)a), where © is to jo in a pair of 
primit ives, and • to describe a closed object (Definit ions 
fo l low below). This string is a palindrome. As we shall 
see later, a palindrome strongly suggests that there is 
some type of symmetry. It is this capacity that we are 
alter. The representation is simple. It is also syntactic, 
and thus geometric features can be manipulated easily 
and systematically. More important ly , this method to 
pattern seeking provides useful semantic informat ion 
despite its syntactic appearance. 

3.1 Shape Primitives and their Operations 

We define shape primitives as directional pairs 
(p.I, p.a), where p is the name of the pr imit ive, p.I is the 
length, p.a is the angle. The angle increases in the 
counter-clock wise direction, 0 < p.a < 180, thus allow­
ing a unique representation of a pr imit ive. 

Shape primitives are connected to form and charac­
terize a structural pattern. We first define simple joining 
operations as shown in Figure 3. We show three ways 
of jo in ing a pair of primit ives, such that each of the 
primitives has two distinct connection points, a head 
and a tai l . These three binary operations, denoted by 
©. 0 , ®, al low a primit ive to be attached to the other 
pr imit ive only at its head or tai l . 0 and (g) operations 
are commutat ive, while © is not. Similar techniques 
have been used in the past in the pattern recognition 
research in computer vision [Shaw, 1972]. 



Figure 5. Structural jo in ing 

Most of geometric objects can now be represented 
using our shape primitives and their operations shown 
above. Note that the starting point may be added in the 
definition of a primit ive, or a rule may be defined that 
connects two disjoint primitives, etc., thus making the 
method more general. This extension can be made in 
a straightforward manner, and in this paper we have 
adopted a simplifying notation for a simpler discussion. 
In the next section we discuss visual reasoning, or pat­
tern seeking, using our representation. 

4 Patterning and Reasoning 
Geometric objects provide interesting abstractions of 
many patterns we find in nature, art, and industry. 
Symmetry and dilations, or scaling, are among them. 
Finding a line of symmetry or a point of symmetry 
provides important clues in the search of a proof. 
Where there is no apparent symmetry, it almost always 
pays to create one. As symmetry is to congruence, 
dilations is to similarity. A good many geometry 
problems like so many objects around us contain 
dilations. Identifying a dilation when it is present or 
by filling in missing parts when it is not apparent is as 
effective as finding symmetry. 

Observe that it is necessary to recognize or generate 
meaningful patterns in a systematic manner. We may 
interpret each shape primit ive as a symbol permissible 
in some grammar, then, the syntactic pattern recogni­
t ion process is a straightforward task. In this report, we 
do not establish a formal grammar, but provide an in­
formal description of the recognition process and show 
simple examples. For definitions of the patterns that 
we discuss below, and for more examples of using such 
patterns to guide the search of a proof, see [ K i m , 
1988]. 
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symmetry not a line symmetry, (6) the point of sym­
metry is the intersection of the two diagonals c and d, 
and so on. 

Having discussed the principles of finding useful pat­
terns using our representation, we show an example 
below, and provide a summary of what may occur in 
solving the problem. For more examples, sec [ K i m , 
1988]. 



5 An Implementation: Machine ' s I 
"Machine's I (for eye)" is a rule-based program that has 
been implemented in ECEPS [ I B M Enhanced Com­
mon Lisp Production System, I B M , 1988], as a front-
end heuristic device to a geometry theorem prover. A 
user presents a problem to Machine's I by declaring the 
premises and the goal. The program then builds a 
model, or a diagram, of the problem, draws it, and de­
scribes it in terms of shape primit ives and the oper­
ations. Shape primitives and structures have been 
represented by work ing memory elements, and their 
manipulations have been implemented as ECEPS rules. 

The program first starts to pattern: Obvious patterns 
arc detected, or a meaningful pattern is created. Note 
that in patterning, not only the premises but the goal 
may provide a useful clue. As patterning progresses, 
new facts arc inferred. In fact, this patterning phase 
may be considered as a mixture of backward and for­
ward chaining- Backward in the sense that the goal to 
prove may strongly influences the patterning, and for­
ward by the way reasoning proceeds f rom the premises. 
Having patterned, the results may be passed to a ge­
ometry theorem prover, so that a proof can be com­
pleted. It has been observed that for simple theorems 
the proof was often immediate after the patterning 
phase. 

Much of the proof procedures addressed in this paper 
can be efficiently implemented in ECEPS due to its 
power. Unl ike most resolution-based mechanical the­
orem proving systems in Prolog that lack operational 
semantics [Coelho and Pereira, 1986], E C U ' S provides 
powerful demand-driven pattern matching capabilities 
[Schor et al., 1986], which allow a dynamic pattern 
matching. More, it provides a flexible control strategy 
by pr ior i t iz ing rule firings. 

6 Conclusions 
We have shown that a simple syntactic method pro­
vided powerful heuristic informat ion for proving geom­
etry theorems. The representation is simple, easy to 
manipulate, and yet it captures what may be the key 
computat ional efficiencies that occur in human visual 
reasoning. We do not have a good characterization of 
what is involved in human visual reasoning. Nonethe­
less, the implications of capturing visual heuristics in a 
simple notat ion are great and need to be pursued fur­
ther. 
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