An Abductive Framework for
General Logic Programs
and other Nonmonotonic Systems

Gerhard Brewka
GMD, Postfach 12 40
5205 Sankt Augustin, Germany

Abstract

We present an abductive semantics for gen-
eral propositional logic programs which defines
the meaning of a logic program in terms of its
extensions. This approach extends the stable
model semantics for normal logic programs in
a natural way. The new semantics is equiva-
lent to stable semantics for a logic program P
whenever P is normal and has a stable model.
The abductive semantics can also be applied
to generalize default logic and autoepistemic
logic in a like manner. Our approach is based
on an idea recently proposed by Konolige for
causal reasoning. Instead of maximizing the set
of hypotheses alone we maximize the union of
the hypotheses, along with possible hypotheses
that are excused or refuted by the theory.

1 Background and Motivation

In this paper we investigate the relationship between
abduction, logic programming, and other nonmonotonic
formalisms." This investigation is interesting for several
reasons. Firstly, abduction as a form of nonmonotonic
reasoning has gained a lot of interest in recent years,
and exploring the relationship between different forms of
nonmonotonic reasoning is of interest in itself. Secondly,
as we will show in this paper, it is possible to define a
simple and elegant extension of Gelfond and Lifschitz's
stable model semantics [9] based on abduction. This new
abductive semantics has the following properties:

*+ The semantics is equivalent to stable model seman-
tics for programs which possess at least one stable
model.

*» A program P has a defined meaning unless P con-
sidered as a set of inference rules is inconsistent.
In particular, normal logic programs without stable
models are not meaningless.

*+ The abductive semantics imitates the well-founded
model in not assigning a truthvalue to propositions

*For simplicity we consider only finite propositional logic
programs, that is programs with finite Herbrand base, in this
preliminary report. All definitions also apply to the genera]
case.

Kurt Konolige
SRI International
333 Ravenswood Ave
Menlo Park, CA 94025

whose assertion is self-contradictory.

« The semantics is, without further modification, ap-
plicable to logic programs that contain classical
negation and so-called epistemic disjunction [8].

« The semantics can be applied to other consistency-
based nonmonotonic formalisms, including default
logic and autoepistemic logic.

We consider all of these properties as highly desirable.
Stable model semantics is currently the most widely ac-
cepted semantics for logic programs which have a stable
model. We therefore believe that an extension of stable
model semantics should preserve the meaning of those
programs. On the other hand, many authors consider
it a severe weakness of stable model semantics that not
all normal logic programs have stable models; by con-
trast, the well-founded semantics always exists. Our se-
mantics overcomes this weakness, in the same manner as
the well-founded semantics, by allowing a truthvalue gap
for self-contradictory propositions. At the same time, it
does not suffer from the weakness of well-founded se-
mantics, the "floating conclusions" problem.2 Finally,
there has been a great amount of recent work trying to
extend the expressiveness of normal logic programs by,
among other things, adding classical negation and "epis-
temic" disjunction. It turns out to be a non-trivial task
to adapt existing semantics to more general logic pro-
grams. It is therefore clearly an advantage if a simple
semantics for normal programs can directly be applied
to theses generalizations.

Abduction, informally, is the generation of explana-
tions for a given fact p. Given a background theory T
and a set of possible hypotheses or abducibles H, an ex-
planation for p is a subset H' of H such that F*UT is
consistent and p is provable from H'UT. Usually, there is
a further acceptability criterion that distinguishes pre-
ferred explanations. In our approach we will consider
negated atoms as hypotheses, a logic program (viewed
as a set of inference rules) as the background theory.
Moreover, we introduce a simple criterion defining the
acceptable explanations or, in our terminology, exten-
sion bases. We consider a proposition g derivable "om

2Floating conclusions are conclusions that are intuitively
justified by case analysis yet underivable in well-founded se-
mantics. The standard example is 6 + ~b; b +— ~a; ¢ + a;
¢ «— b. Well-founded semantics does not conclude c.

Brewka and Konolige 9

a logic program if it is derivable from all of its extension
bases.

Using abductive frameworks to define a semantics for
logic programs is not a new idea, Eshghi and Kowalski
[4] were the first to investigate logic programs, in pat-
ticular negation as failure, in terms of abduction. More
recently, Kakas and Mancarella [13] and Dung {3] have
continued this line of research. We will in the rest of this
section review these earlier approaches and discuss why
we do not consider them entirely satisfactory.

Eshghi and Kowalski show that negation as failure in
normal logic programs can be viewed as a special case of
abduction. Their analysis is based on abductive frame-
works of the form {T', I, A} where T is a set of definite
clauses, I a set of integrity constraints, and A a set ol ab-
ducible predicates. Atomic ground formulas built from
the symbols in A are called abducibles. A set of ab-
ducibles A is an abductive solution for ¢ if TUA F ¢
and T U A satisfies [.

Since the authors restrict T to definite clauses and the
set of abducibles to atomic formulas they have to elimi-
nate negaticn signs from logic programs to handle nega-
tion as failure in their framework. Given a normal logic
program P they introduce for each predicate symbol p in
P a new predicate symbol p*. P is then transformed to
a program P* by replacing each negative occurrence of
a predicate symbaol p in the body of a rule by a positive
occurrence of p*. Additionally, integrity constraints of
the form

— p*(z} A p(z)
are used to make sure that not both p*(t) and p(t) can be

true at the same time. Additionally, there are metalevel
constraints of the form

Demo(T U A, p*(t)) v Demo(T U A, p(1))

Such a disjunctive integrity constraint is satisfied iff p(t)
or p*(t) is provable from T U A. Eshghi and Kowalski
show that for every stable model of a program F there is
a corresponding abductive solution for the transformed
program P* and vice versa. This cne-to-one correspon-
dence to stable models shows that the new abductive
semantics does not give meaning to programs without
stable models and thus inherits the weakness of stable
model semantics: the existence for abductive solutions
for normal programs is not guaranteed. Consider the
program P,

pe—~p
and its transform

p—p
The introduction of the metalevel constraint leads to the
non-existence of an abductive solution.

Kakas and Mancarella use a similar abductive frame-
work as Eshghi and Kowalski to define a generalization
of stable models. In their paper an abductive framework
18 a triple {P, A, I) where P is a normal logic program,
A a set of abducible predicates, and I a set of integrity
constraints. Contrary to Eshghi/Kowalski they directly
use the notion of a stable model in their definitions. A
pre-general stable model of {P, A, I} is a stable model of

10 Automated Reasoning

PuU{p— |pe€ A}, where A is an arbitrary set of ab-
ducibles. A general stable model is a pre-general stable
model that implies all integrity constraints in I,

The authors then show how negation as failure can be
treated through abduction. The approach is similar to
Eshghi/Kowalski’s but somewhat simpler: the metalevel
constraints involving the Demo predicate are replaced by
integrity constraints of the form

p(x) vV p*(z)

Obviously, the stable models of a normal program P are
exactly the general stable models of the abductive frame-
work (P,8,0). From this il is immediate that the exis-
tence of general stable models is not guaranteed. Gen-
eral stable models thus do not solve the problem of non-
existence of stable models for normal programs.

Dung’s abductive frameworks [J] are equivalent to
Esghi/Kowalski’s, that is he requires the programs in
frameworks to consisi of definite clauses. To be able
to handle normal programs he replaces predicate sym-
bols p in negated literals by new symbols p*, as in Es-
hghi/Kowalski’s approach. He also uses integrity con-
straints of the form

—p*(z)Aplz)
but no constraints corresponding to the metaleve] con-
straints involving the predicate Demo. Atoms built from
the new symbols beecome abducibles.

Dung calis 5 = P U H a scenario of the abductive
framework (P, A, I} if H is a subset of the abducible
atoms such that PUH U is consistent. Let inout(S) de-
note the set of ground atoms provable from a scenario 5.
A set. of abducible atoms E is a P-evidence for an atom
piff PUEF p. An abducible p*(t) is S-acceptable iff for
every P-evidence F of p(t), E U inout(.S) U/ 1s inconsis-
tent. A scenario S is admissible if every abducible atom
1n § is S-acceptable. An admissible scenario is complete
iff every abducible atom that is also S-acceptable is con-
tained in §.

The complete scenarios define the semantics of a nor-
mal logic program. Dung was able to show thal the set
of complete scenarios forms a semi-lattice with respect to
set inclusion. The least complete scenario 18 equivalent
to the well-founded model. Stable models correspond to
maximal complete scenarios. However, not every maxi-
mal complele scenaric represenis a stable model. Con-
sider the program Py

a— ~b
b ~a
¢ e ~¢, b
The transform of the program, P*;, is:
a — b*
b — a*
cec*)
Additionally we have, for z € {a,b, ¢} the integrity con-
straints
—z,z*
We get two maximal complete scenarios, namely
81 = P¥a U {b*, c*}, and
Sy = P*sU {a“'}

S; corresponds to the single stable model {a} of Ps;.
52, although maximal, does not correspond to a stable
model. This raises the question what the "interesting"
ones among the complete scenarios are. Dung argues
that two views are reasonable: a skeptical view which
considers the least complete scenario only, and a credu-
lous view which considers all maximal complete scenar-
ios. In examples like the one just discussed there seems
to be no reason to dispense with stable semantics, un-
less one adheres to the skeptical view. In a sense, Dung's
credulous view seems to move too far away from stable
semantics, whereas the two abductive approaches men-
tioned earlier stick with it too closely.

The abductive framework we present in this paper is
distinct from this earlier work in the following respects:

1. We do not restrict the abducibles to atoms. This has
the advantage that we can operate on the original
programs directly and do not have to use any kind
of transformation of the programs. Moreover, this
makes the use of integrity constraints unnecessary.

2. The above approaches treat program rules as clauses
and need some implicit device to obtain the direct-
edness of rules. We consider the rules of a program
as a set of inference rules, not as clauses.

3. We apply a new simple maximality criterion that
guarantees that the right sets of abducibles are cho-
sen. This criterion models the intuition that unde-
finedness should be minimized.

4. Our framework is simpler than the above ap-
proaches and can, unlike them, be applied to logic
programs with classical negation and epistemic dis-
junction, as well as other consistency-based non-
monotonic formalisms.

The rest of the paper is organized as follows: in Section
2 we introduce our abductive framework and show how
it can be used to formalize normal logic programs. In
Section 3 we treat general logic programs with classical
negation and epistemic disjunction in the heads. Section
4 applies our abductive method to default logic, Section
5 applies it to autoepistemic logic.

2 The abductive framework

In this section we introduce our abductive semantics for
normal logic programs. We define the notion of an ex-
tension for a logic program. This terminology reflects
the similarity to other work in nonmonotonic reasoning,
in particular default logic.

By Lit™ we mean the set of hterals, that is, any sen-
tence of the form a or ~a, where a is an atom.

Definition 1 A nermal logic program P is a set of rules
of the form

a +— bl PPN bn
where a ts an alom and the b, are in Lit™.

We use NEG(P) to denote the set of negative literals
relevant to a logic program P, i.e. NEG(P) = {~a €
Lit™ | a is a subformula of P}.

The notion of consistency plays a predominant role in
abduction. We therefore have to define its meaning in
the context of a logic program:

Definition 2 Let L. C NEG(P) be a set of negative ht-
erals, P o normal logic program. The closure of L under
P, Cp(L), is the smallest sel such that
1L L g CP(L)I
2 ifa—by, . boePandd,,.
then a € Cp(L).

Definition 3 Let L. C NEG(P) be a set of negative ht-
erals, P a normal logic program. [is P-consislent iff
Cp(L) is consistent.

-, bn € Cp(L)

Definition 4 Let P be ¢ rormal logic program. P is
consisient iff @ is P-consistent.

Similar to the earlier abductive treatments of logic pro-
grams we model negation as failure abductively. How-
ever, since we do not require abducibles to be atoms,
we do not need o transform programs but can directly
use NEG(P) as the set of abducibles. The main diffi-
culty is that we cannot consider all maximally consiatent
subsets of NEG(P) as representing the intended mean-
ing of a program. This simple approach fails to capture
the intuitions underlying logic programming as can be
demonstrated by our program P;.

a—~b (1

b — ~c

The standard reading of this program is that b is deriv-
able and @ underivable. However, there exists a maximal
P-consistent subset of NEG(P), namely Hy = {~b} that
fails to capture this intuition. The closure of H; under
P, contains a but not b. This clearly violates all of the
standard semantics for logic programs, and H; should
not be considered an acceptable set of hypotheses.

What then are the acceptable sets of hypotheses, or —
in our terminology — the extension bases, that can be
used to define the meaning of a logic program? It turns
out that an idea used in [15] for reasoning about sim-
ple causal systems can be apphied to solve this problem.
The reader may observe that among the two maximally
consistent subsets of NEG(P) in the above example, the
wanted subset, H; = {~¢c, ~a} allows us to derive b, that
1s refutes the remaining hypothesis in NEG(P). The un-
intended subset, on the other hand, does not refute the
hypothesis ~¢. It turns out that, to capture the intuition
behind logic programs, we have to maximize not just the
set of hypotheses, but also the set of refuted hypotheses.
This leads to the following definitions:

Definition 5 Lef P be a legic program, H C NEG(P),
and C a P-closure of H. The P-cover of C, COV p((),
is the sel

HU{~a € NEG(P)|a€ C}

Definition 6 Let P be a logic program, H C NEG(P),
end C a P-closure of H. C is an extension of P iff

1. C is consistent,

2. there is ne H' C NEG(P) with consistenl closure
C* such that COVp(C) C COVp(().

If C is an extension, H is called an extension base of P.

Brewka and Konolige 11

For normal logic programs there is only one closure of
any set H C NEG(P), so extension bases and extensions
are isomorphic. For disjunctive logic programs there may
be several closures, so we give the more general definition
here.

It is obvious that our example gives only rise to
one extension, a8 intended, since COVp(Cp(H;)) =
{~a,~b} C {~a,~b ~c} = COVp(Cp(H2)). This ex-
tension coincides with the unique stable model of the
program. This is not incidental. We can show that our
semantics and stable model sernantics cotncide in cases
where atable models exist.

Proposition 1 Lel P be a normal logic program for
which a stable model exists. M 15 a stable model of P iff
it 13 an ertension of P.

Obviously, the existence of extensions for normal logic
programs is guaranteed since every such program must
be consistent, This is achieved because, contrary to sta-
ble models, extensions do not have to contain either a or
~a for every atom a. Consider the following example:

O (2)

b— ~c

This program has no stable model, yet it has an exten-
sion generated by the extension base {~c}

Extensions thus have the well-known property of the
well-founded semantics [20] in allowing truthvalue gaps,
that is, neither a nor ~a is in the extension of the above
program. But like stable models, extensions do not suf-
fer from the problem of "floating conclusions." In the
following example, the well-founded semantics does not
conclude p, while p is part of every extension.

a < ~b

b <-- ~a 3)
p < a @y
p <-b

We discussed several related abductive approaches and
their weaknesses in the introduction already. Another
approach which can, in a sense, be considered dual to
ours is that of Inoue [12]. He distinguishes between a set
of necessary rules T and a set of hypothetical rules H. A
model in his system is a stable model of TUH', where H'
is a maximal subset of// such that a stable model exists.
Inoue thus dispenses with some of the hypothetical rules
if necessary and sticks with stable semantics otherwise,
whereas we leave the truth values of atomic propositions
undecided if necessary.

A further - non-abductive - approach of interest here is
that of Sacca and Zaniolo [19]. It is based on the notion
of P-stable models. Such models are partial, i.e., not
all atomic propositions need to get a truth value. We
cannot give the exact definition of this notion here, but
want to stress that it is intended to capture "the three
key properties considered highly desirable by researchers
in this area". According to the authors these properties
are

+ consistency: no proposition should be true and false
at the same time in a model,

12 Automated Reasoning

« justifiability: every positive conclusion should be
demonstratable using the directed rules of the pro-
gram,

« minimal undefinedness: the number of undefined
facts should be reduced as much as possible.

As Sacca and Zaniolo show P-stable models do not guar-
antee minimal undefinedness: P-stable models can be
proper subsets of other P-stable models. The authors
therefore propose "that the minimal undefinedness prin-
ciple should be enforced by restricting our attention to
the class of P-stable models that are maximal." Unfortu-
nately, maximality is insufficient to guarantee minimal-
undefinedness as can be demonstrated by the program
P3; used earlier in the introduction:

a — ~b

b — ~a

¢ — ~c, b
Besides the wuncontroversial maximal P-stable model
Sy, = {a,~b,~c} we also obtain the P-stable model
S, = {~a,b}. S, clearly is maximal, as the addition

of -c leads to inconsistency whereas the addition of c
cannot be justified by any of the available rules. Nev-
ertheless, S2 does not minimize undefinedness: ¢ has no
truthvalue in S, but is false in Sy. In our framework the
single extension corresponds to S4. There is no extension
corresponding to S;

3 General Logic Programs

In this section we will consider general logic programs,
that is, programs where negations and disjunctions may
appear in the head of a rule, and in addition there is a
classical negation operator. It turns out that all we have
to do is slightly generalize the notion of P-closure.

As in [7], we use two negation operators, - and ~.
-i is classical negation, while ~ is negation as failure to
prove. By Lit we mean the set of classical literals, and
by Lit", the set of literals of the form / or ~/, where / is
in Lit.

Definition 7 A general logic program P is a set of rules
of the form
l'.']l"'FCm ‘—b],..,,bn

where all the literals Ci and bj are in Lit".

Note that this definition generalizes [7] slightly by allow-
ing negation-as-failure literals in the head of a clause. As
usual, by NEG(P) we mean the set of negative literals
{-/ | either / or ~/ is a literal of P}.

We interpret disjunction in the head in the same way
as Gelfond and Lifschitz, that is, it is epistemtc disjunc-
tion. The condition on the P-closure is that at least one
of the literals in the head must appear in the closure.

Definition 8 Let L be a set of literals from NEG(P).
C is a P-closure of L if it is a smallest set such that
1. LCC,
2 if! and ~! or a and ~a are in C, then C = Litt,

3. sfer|- leme—tby,... . bnE P, and by, ... b €C
then for at least one of the ¢;, c; € C.

Note that there is not necessarily a unique P-closure
of a program; however, if it has a consistent P-closure,
then all its P-closures are consistent. The unique incon-
sistent P-closure is the set of all literals. We say L is
P-consistent if it has a consistent P-closure. All other
definitions from the last section can now be applied with-
out further changes to general logic programs. Here is
an example involving disjunctions in the head of a rule:

afb — ~c (4)

We obtain two extensions, E} = {a,~c,~b} and £ =
{b,~c.~a}. Both have the cover NEG(P). Note that
{~a,~b} is not an extension since its cover does not
contain ~c.

The following slight modification of the last example
involves a negation in the head:

ajrb — ~e (5)

Now there is only one extension, namely {~a,~6,~c}.
General programs can be used to implement many of
the standard default reasoning examples. Here is a bird
example:
fly «— bird, ~ab,;
—fly ~ penguin, ~ahg
ab; — ~ab, (6)
penguin
bird
We obtain one extension from the extension base {~aby}
(we omit the irrelevant literals ~fly, ~—fly, etc.). The
P-cover of this extension is NEG(P). Note that the set of
abducibles {~ab;} is not an extension base as its P-cover
does not contain ~abz, As intended the more specific
rule gets priority.
As with normal logic programs, extensions of general
logic programs correspond to the answer sets of Gelfond
and Lifschitz, when the latter exist.

Proposition 2 Let P be a general logic program with no
negation-as-failure literals in the head and suppose it has
at least one consistent answer set. Let Cfacts(L) denote
the set of classical literals (without weak negation) tn L.
Cfacts is a bijective mapping from the set of extensions
of P to the set of answer sets of P.

If there are multiple extensions, then they are always
disjoint.
Proposition 3 If F and F' are two extensions, then
F U F' is inconsistent.

It should be noted that the introduction of negation
in the heads of rules, of either type, leads to a situa-
tion where the existence of extensions can no longer be
guaranteed for all programs. The reason is that the pro-
grams themselves may become inconsistent. Recall that
a program P is inconsistent if the (single) P-closure of
the empty set is inconsistent. It is not difficult to prove
the following lemma:?®

3The proof is easy since, as mentioned in the begin-
ning, we only consider propositional programs with finite
Herbrand base in this report. However, there are cases in
which, for infinite NEG(P), there is an infinite ascending
chain COVe(Cr(H1)) C COVR{Cr(H1)) C ..., and hence

no extensions.

Lemma 1 Let P be a logic program. P has an extension
iff P is consistent.

Obviously, all programs where the negation sign (and
J.) does not appear in the head of a rule are consistent
and therefore have at least one extension. This includes
normal logic programs.

Sometimes it is convenient and useful to restrict the set
of abducibles to a proper subset of NEG(P). A logic
program then consists of a set of rules P together with
a set HYP of negated literals representing the atoms as-
sumed to be false by default. The P-cover of a closure
of a set of abducibles H € HYP is, as before, the set of
abducibles which are either assumed or refuted.

For instance, in the bird example we get the de-
sired results if we restrict the abducibles to HYP =
{~ab1,~abz}. Again we get one extension containing
-fly. The extension base is {~abg}. Note that the cover
of this extension is HY P, whereas the cover of the closure
of H, = {~ab;} does not contain ~ahg, therefore is
not an extension base.

There is also no reason why we should not some-
times let positive information, that is unnegated atoms,
or even arbitrary formulas be contained in the set of
abducibles. This gives us the possibility to generalize
"negation as failure to derive" to "assertion as failure to
refute". Assume we represent the bird example in the
following, equivalent way

fly — bird, normal

—fly — penguin, normal;

~normal; — normal, (7)
penguin

bird

Letting HYP = {normal,, normalz} obviously yields re-
sults which are equivalent to those of our original repre-
sentation using ab-predicates.

Another interesting extension of this approach are pri-
oritized logic programs. We may introduce explicit prior-
ities among the hypotheses, e.g. in the style of preferred
subtheories [1]. The set of assumables HYP can be di-
vided into preference levels Hy,Ho, An extension
base E\ is preferred to an extension base E, iff there is
an i such that

1. E;n(h’lU.”UH{_l)=Egﬂ(H]U...UHi_l),aIld
2. E:NH, C E,NH,.
Here is an example

Pac — Quaker, ~aby

~Pac — Rep, ~ab,

Quaker (8)
Rep

Let HYP = {~abh,,~ab;} and assume we want to give
the Quaker rule priority. This can be done by splitting
HYP to Hi = {~aby} and H;, = {~abs}. There are
two extension bases, H\ and H,; It is easy to see that,
according to our definition, the first one is preferred over
the second one.

Remark: In this example this is the same as adding
aby; «— ~ab; to the program, that is we have a choice

Brewka and Konolige 13

whether we want to represent priorities explicitly using
an ordering on HYP, or via additional rules using the
available implicit prioritization. We suspect that explicit
orderings make programs often more readable. Note that
in case of a conflict between explicit and implicit priori-
ties the implicit ones win since only extension bases are
compared in our definition of preferred extension bases,
and these respect the implicit priorities.

4 Default logic

The same abductive method for general logic programs
is applicable to default logic as well. In fact, default logic
rules can be viewed as a generalization of logic program
rules to the full sentences, rather than just literals.

We use the more general disjunctive default theories of
Gelfond et al. [8], since there is a direct correspondence
to disjunctive logic programs. A disjunctive default has
the form

a:8Balml o drm,

where all the arguments are arbitrary sentences
We begin by recalling the definition of an extension of
a default theory (W, D).

Definition 9 Let T(S) be any least set such that:

1. W CTI(9).
2. I(S) 15 deductively closed.

3. Ifa € F(8) and all B; are consistenl with 5 then
one of v; ts in ['(5).

An extenston of (W, D) is any set S tha! 15 equal to some

T(S).

As was the case with general logic programs, the closure
operator is not necessarily unique.

To make the connection with the abductive method,
note that the hypothesized set S are the sentences that
are supposed to be in the extension, rather than the
complement, as for logic programs. The operator V(S)
corresponds to the closure of a program. With this in
mind, we can rewrite the above definition in the abduc-
tive spirit.

Definition 10 Let C be some TI'(S). The
COV Ao (C) with respect to A = (W, D} 1s the set:

couver

SucC,

where 5 are all sentences not tn S.

Given the identification of S with the complement of
the abductive hypotheses, this definition corresponds to
that for the cover of logic programs. The set S are the
sentences assumed to be unproven in the default theory,
and the added set are those hypotheses refuted by the
theory. Once again, abductive extensions are formed by
maximizing this union.

Definition 11 Let C be some I'(5). C is en abductive
extension of A iff

1.CCs.
2. COV 4(C) is mazimal.

14 Automated Reasoning

The first condition is easily seen to be a consistency con-
dition, as it is equivalent to saying the whenever a sen-
tence ¢ appears in &, it does not appear in T(S). The
second condition is the familiar maximality filter. It is
obvious that COV 4(T(§)) is maximal and consistent if
S = T'(S8), precisely the requirement for standard exten-
sions. Hence the following proposition.

Proposition 4 If the default logic theory & = {W, D}
has an extension and if W is consistent, then E is an
abductive extension of A if and only if it is an extension

of A.

Even in the cases where there is no default extension,
there is an abductive extension.

Proposition 5 If a default theory A = (W, D)} has a
finite set ofjustifications (over all defaults) and if W is
consistent, then it has an abductive extension.

Finally, the relation between logic programs with clas-
sical negation and default theories pointed out by Gel-
fond et al. holds for abductive extensions as well.

Proposition 6 Let D be a set of defaults formed from
the logic program P by the translation:

el lem —ay e~y o~y =
ar A Aag by by [em

where the a,-, bj, and c¢ are all classical literals. L is
an answer set for P if and only if it is the set of literals
contained in an extension of the default theory {§,).

5 Autoepistemic logic

The same abductive approach is also applicable to au-
toepistetnic (AE) logic and its variants, including the
minimal-knowledge logic MBNF [16]. We will just show
the results for standard AE logic here.

We give a brief review of AE logic concepts; for a more
complete reference see [14]. In AE logic, the language
L s formed by augmenting a propositional language £
with a modal operator L for self-belief. The construction
—LS is the set {~L¢ | ¢ € S}. Finally, deduction under
the modal system K45 is denoted by b x40

Definition 12 Let A be a set of sentences of L. Let U
be a subsel of Ly and U its complement Lo~ U/, U 1s
a moderately-grounded extension of A iff il satisfies the
equation:

U= {¢€Lu| AU-LU Fxas ¢} .

We have used the definition of moderately-grounded ex-
tensions because it is easier to see the correspondence
to the logic programming and default logic cases. The
hypotheses will be a set. of negative modal literals —LS,
and the closure of an AE theory A under the hypothe-
ses 18 given by Ca(S) = {¢ € Lo | AU-LS Fgys ¢}
The cover of the theory is defined as the hypotheses S,
together with all those hypotheses refuted by the closure.

Definition 13 The cover of an AE theory A under Ay-
potheses 5, COV 4(C4(5)), is given by.
SU{-L¢ | ¢ €Cu(S5)}.

As before, an abductive extension is a consistent maxi-
mal hypothesis set.

Definition 14 The closure of an AE theory A4, C4(5),
is an abductive extension of A iff

1. C4(8) is consisient.

2. COV 4{Ca(8)) is marimal.
The main theorems about abductive extensions is that
they always exist (if A has a finite set of modal liter-

als) and that they are equal to AE moderately-grounded
extensions, when the latter exist.

If A ts K45-consistent and has a finite
then A

Proposition 7
number of modal atoms that appear positively,
has an abductive extension.

Proposition 8 If A is K45-consistent and has an AE
moderately-grounded extension, then U is such an exten-
sion if and only if it is an abductive extension of A.

The key feature of abductive extensions is that a proposi-
tion may be neither believed (Lp) nor disbelieved (-Lp)
in the extension. This corresponds to the truthvalue gaps
of logic programming extensions. Morris [17] defines an
alternative method for giving extensions to extensionless
AE theories. However, he does so by adding propositions
necessary to make the fixpoint consistent, rather than
leaving the belief in the propositions undecided.

6 Conclusion

We have demonstrated an abductive approach to the
major consistency-based nonmonotonic formalisms. Our
approach improves over previous attempts in having a
straightforward relationship to the standard semantics
for these formalisms, and generalizing to more complex
languages. We have shown how the same idea, maxi-
mizing assumed and refuted hypotheses, can be used to
establish extensions in logic programs, default logic, and
autoepistemic logic. The common characteristic of these
abductive extensions is that they always exist (for finite
theories), they reduce to the standard extensions when
the latter exist, and they allow a truthvalue gap in the
cases where standard extensions do not exist.

Given the abductive nature of the definition, it might
be possible to use the abundant literature in abductive
methods to find approximate proof-theory methods for
these formalisms (see, for example, [10, 2, 5, 18, 11, 6]).

References

Preferred subtheories: An extended
IJCAI, Detroit,

[11 G. Brewka.
framework for default reasoning.
1989.

[2] P. T. Cox and T. Pietrzykowski. Causes for events:
their computation and applications. CADE, Lec-
ture Notes in Computer Science 230, pages 608-621.
Springer-Verlag, 1986.

[3] P. M. Dung. Negations as hypotheses: An abduc-
tive foundation for logic programming. ICLP, Paris,
1991.

[4] K. Eshghi and R. A. Kowalski. Abductive compared
with negation by failure. ICLP, 1989.

(5]

(6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[19]

[16]

[17]

(18]

"19]

20]

J.J. Finger. Exploiting Constraints in Design Syn-
thesis. PhD thesis, Stanford University, Stanford,
Ca., 1987.

H. Geffner and J. Pearl. Conditional entailment:
bridging two approaches to default reasoning. Arti-
ficial Intelligence, 53:209-244, 1992.

M. Gelfond and V. Lifschitz. Logic programs with
classical negation. ICLP, pages 579-597. Cam-
bridge, MA, 1990. MIT Press.

M. Gelfond, V. Lifschitz,
M. Truszczynski. Disjunctive defaults.
Representation and Reasoning Conference,
bridge, MA, 1991.

Michael Gelfond and Vladimir Lifschitz.
ble model semantics for logic programming.
1988.

H. Przymusinska, and
Knowledge
Cam-

The sta-
ICLP,

Jr. H. E. Pople. On the mechanization of abductive
logic. IJCAI, pages 147-152, Stanford, CA, 1973.

Katsumi Inoue.
dered linear resolution.
1991.

Katsumi Inoue. Extended Logic Programs with De-
fault Assumptions. ICLP, Paris, 1991.

Consequence-finding based on or-
IJCAI, Sydney, Australia,

A. C. Kakas and P. Mancarella. Generalized stable
models: A semantics for abduction. ECAI, Stock-
holm, 1990.

Kurt Konolige.
and autoepistemic
35(3):343-382, 1988.

Kurt Konolige. Using default and causal reasoning
in diagnosis. Principles of Knowledge Representa-
tion and Reasoning, San Mateo, CA, 1992. Morgan
Kaufmann.

V. Lifschitz and Y. C. Woo. Answer sets in gen-
eral nonmontonic reasoning (preliminary report). In
Principles of Knowledge Representation and Rea-
soning, Boston, MA, 1992.

On the relation between default
logic. Artificial Intelligence,

Paul Morris. Stable closures, defeasible logic and
contradiction tolerant reasoning. AAAI, pages 506-
511, Minneapolis, MN, 1988.

David Poole. Explanation and prediction: an archi-
tecture for default and abductive reasoning. Com-
putational Intelligence, 5(2), 1989.

D. Sacca and C. Zaniolo. Partial Models and Three-
Valued Models in Logic Programs with Negation.
Workshop on Logic Programming and Nonmono-
tonic Reasoning, Washington, 1991.

Allen van Gelder, Kenneth Ross, and J.S. Schlipf.
Unfounded Sets and well-founded Semantics for
general logic Programs. In Proceedings 7th Sympo-
sion on Principles of Database Systems, pages 221-
230, 1988.

Brewka and Konolige 15

