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A b s t r a c t 

We present an abduct ive semantics for gen­
eral proposi t ional logic programs which defines 
the meaning of a logic program in terms of i ts 
extensions. Th is approach extends the stable 
model semantics for normal logic programs in 
a natura l way. The new semantics is equiva­
lent to stable semantics for a logic program P 
whenever P is norma l and has a stable model . 
The abduct ive semantics can also be applied 
to generalize default logic and autoepistemic 
logic in a l ike manner. Our approach is based 
on an idea recently proposed by Konol ige for 
causal reasoning. Instead of max im iz ing the set 
of hypotheses alone we maximize the union of 
the hypotheses, along w i t h possible hypotheses 
tha t are excused or refuted by the theory. 

1 B a c k g r o u n d and M o t i v a t i o n 

In th is paper we investigate the relat ionship between 
abduct ion, logic p rogramming , and other nonmonotonic 
formal isms.1 Th is invest igat ion is interesting for several 
reasons. F i rs t ly , abduct ion as a f o rm of nonmonotonic 
reasoning has gained a lot of interest in recent years, 
and explor ing the relat ionship between different forms of 
nonmonotonic reasoning is of interest in itself. Secondly, 
as we w i l l show in this paper, it is possible to define a 
simple and elegant extension of Gelfond and Lifschitz's 
stable model semantics [9] based on abduct ion. Th is new 
abduct ive semantics has the fo l lowing properties: 

• The semantics is equivalent to stable model seman­
tics for programs which possess at least one stable 
model . 

• A program P has a defined meaning unless P con­
sidered as a set of inference rules is inconsistent. 
In par t icu lar , norma l logic programs w i thou t stable 
models are not meaningless. 

• The abduct ive semantics imi ta tes the well-founded 
model in not assigning a t ru thva lue to proposit ions 

*For simplicity we consider only finite propositional logic 
programs, that is programs wi th finite Herbrand base, in this 
preliminary report. A l l definitions also apply to the genera] 
case. 

whose assertion is self-contradictory. 

• The semantics is, w i thou t fur ther modi f icat ion, ap­
pl icable to logic programs tha t contain classical 
negation and so-called epistemic dis junct ion [8]. 

• The semantics can be appl ied to other consistency-
based nonmonotonic formal isms, inc lud ing default 
logic and autoepistemic logic. 

We consider al l of these properties as h ighly desirable. 
Stable model semantics is current ly the most widely ac­
cepted semantics for logic programs which have a stable 
model . We therefore believe tha t an extension of stable 
model semantics should preserve the meaning of those 
programs. On the other hand, many authors consider 
it a severe weakness of stable model semantics that not 
all normal logic programs have stable models; by con­
trast , the well- founded semantics always exists. Our se­
mantics overcomes this weakness, in the same manner as 
the well-founded semantics, by a l lowing a t ruthvalue gap 
for self-contradictory proposit ions. At the same t ime, i t 
does not suffer f rom the weakness of well-founded se­
mant ics, the " f loat ing conclusions" prob lem. 2 F inal ly , 
there has been a great amount of recent work t r y ing to 
extend the expressiveness of normal logic programs by, 
among other th ings, adding classical negation and "epis­
temic" d is junct ion. It turns out to be a non- t r i v ia l task 
to adapt exist ing semantics to more general logic pro-
grams. It is therefore clearly an advantage if a simple 
semantics for normal programs can direct ly be applied 
to theses generalizations. 

Abduc t i on , in formal ly , is the generation of explana­
tions for a given fact p. Given a background theory T 
and a set of possible hypotheses or abducibles H, an ex­
p lanat ion for p is a subset H' of H such tha t is 
consistent and p is provable f rom Usually, there is 
a further acceptabi l i ty cr i ter ion tha t distinguishes pre­
ferred explanations. In our approach we w i l l consider 
negated atoms as hypotheses, a logic program (viewed 
as a set of inference rules) as the background theory. 
Moreover, we introduce a simple cr i ter ion def ining the 
acceptable explanations or, in our terminology, exten­
sion bases. We consider a proposi t ion q derivable ' o m 

2 Floating conclusions are conclusions that are intuitively 
justified by case analysis yet underivable in well-founded se­
mantics. The standard example is 

Well-founded semantics does not conclude c. 
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S1 corresponds to the single stable model {a} of P3 . 
52, a l though m a x i m a l , does not correspond to a stable 
model . Th is raises the question what the " interest ing" 
ones among the complete scenarios are. Dung argues 
tha t two views are reasonable: a skeptical view which 
considers the least complete scenario only, and a credu­
lous view which considers al l max ima l complete scenar­
ios. In examples l ike the one jus t discussed there seems 
to be no reason to dispense w i t h stable semantics, un­
less one adheres to the skeptical view. In a sense, Dung's 
credulous view seems to move too far away f r om stable 
semantics, whereas the two abduct ive approaches men­
t ioned earlier stick w i t h i t too closely. 

The abduct ive f ramework we present in this paper is 
d ist inct f rom this earlier work in the fo l lowing respects: 

1. We do not restr ict the abducibles to atoms. Th is has 
the advantage tha t we can operate on the or ig inal 
programs direct ly and do not have to use any k ind 
of t ransformat ion of the programs. Moreover, this 
makes the use of in tegr i ty constraints unnecessary. 

2. The above approaches treat program rules as clauses 
and need some imp l i c i t device to obta in the direct-
edness of rules. We consider the rules of a program 
as a set of inference rules, not as clauses. 

3. We apply a new simple max ima l i t y cr i ter ion that 
guarantees tha t the r ight sets of abducibles are cho­
sen. Th is cr i ter ion models the in tu i t i on that unde-
finedness should be min imized. 

4. Our f ramework is simpler than the above ap­
proaches and can, unl ike them, be applied to logic 
programs w i t h classical negation and epistemic dis­
j unc t i on , as well as other consistency-based non­
monotonic formal isms. 

The rest of the paper is organized as follows: in Section 
2 we introduce our abduct ive f ramework and show how 
it can be used to formal ize norma l logic programs. In 
Section 3 we treat general logic programs w i t h classical 
negation and epistemic dis junct ion in the heads. Section 
4 applies our abduct ive method to default logic, Section 
5 applies it to autoepistemic logic. 

2 The abduct ive framework 
In this section we introduce our abduct ive semantics for 
normal logic programs. We define the not ion of an ex­
tension for a logic p rogram. Th is terminology reflects 
the s im i la r i t y to other work in nonmonotonic reasoning, 
in par t icu lar default logic. 
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This program has no stable model , yet it has an exten­
sion generated by the extension base { ~ c } 

Extensions thus have the wel l -known property of the 
well-founded semantics [20] in a l lowing t ruthvalue gaps, 
tha t is, neither a nor ~a is in the extension of the above 
program. Bu t l ike stable models, extensions do not suf­
fer f rom the problem of " f loat ing conclusions." In the 
fo l lowing example, the well-founded semantics does not 
conclude p, whi le p is par t of every extension. 

a <— ~b 

b <-- ~a (3) 
p <— a (3); 

p <-- b 

We discussed several related abduct ive approaches and 
their weaknesses in the in t roduct ion already. Another 
approach which can, in a sense, be considered dual to 
ours is tha t of Inoue [12]. He distinguishes between a set 
of necessary rules T and a set of hypothet ical rules H. A 
model in his system is a stable model of T U H ' , where H' 
is a max ima l subset o f / / such tha t a stable model exists. 
Inoue thus dispenses w i t h some of the hypothet ical rules 
if necessary and sticks w i t h stable semantics otherwise, 
whereas we leave the t r u t h values of atomic proposit ions 
undecided if necessary. 

A fur ther - non-abduct ive - approach of interest here is 
tha t of Sacca and Zaniolo [19]. It is based on the not ion 
of P-stable models. Such models are par t ia l , i.e., not 
al l a tomic proposit ions need to get a t r u t h value. We 
cannot give the exact def in i t ion of this not ion here, but 
want to stress tha t i t is intended to capture "the three 
key properties considered highly desirable by researchers 
in this area". Accord ing to the authors these properties 
are 

• consistency: no proposi t ion should be true and false 
at the same t ime in a model , 

• jus t i f iab i l i ty : every posit ive conclusion should be 
demonstratable using the directed rules of the pro­
g ram, 

• m i n i m a l undefinedness: the number of undefined 
facts should be reduced as much as possible. 

As Sacca and Zaniolo show P-stable models do not guar-
antee m i n i m a l undefinedness: P-stable models can be 
proper subsets of other P-stable models. The authors 
therefore propose " tha t the m i n i m a l undefinedness pr in ­
ciple should be enforced by restr ic t ing our at tent ion to 
the class of P-stable models tha t are max ima l . " Un fo r tu ­
nately, max ima l i t y is insufficient to guarantee m in ima l -
undefinedness as can be demonstrated by the program 
P3 used earlier in the in t roduc t ion : 

Besides the uncontroversial max ima l P-stable model 
S1 = { a , ~ b , ~ c } we also obta in the P-stable model 
S2 = { ~ a , b } . S2 clearly is m a x i m a l , as the addi t ion 
of -c leads to inconsistency whereas the addi t ion of c 
cannot be just i f ied by any of the available rules. Nev­
ertheless, S2 does not min imize undefinedness: c has no 
t ru thvalue in S2 but is false in S1 . In our f ramework the 
single extension corresponds to S1. There is no extension 
corresponding to S2 

3 General Logic Programs 
In this section we w i l l consider general logic programs, 
tha t is, programs where negations and disjunct ions may 
appear in the head of a rule, and in addi t ion there is a 
classical negation operator. I t turns out tha t al l we have 
to do is s l ight ly generalize the not ion of P-closure. 

As in [7], we use two negation operators, - and ~. 
-i is classical negat ion, whi le ~ is negation as fai lure to 
prove. By L i t we mean the set of classical l i terals, and 
by L i t + , the set of l i terals of the fo rm / or ~ / , where / is 
in Lit. 
D e f i n i t i o n 7 A general logic program P is a set of rules 
of the f o r m 

where a l l the l iterals Ci and bj are in L i t + . 

Note tha t this def in i t ion generalizes [7] s l ight ly by allow­
ing negation-as-fai lure l i terals in the head of a clause. As 
usual, by N E G ( P ) we mean the set of negative l i terals 
{- / I either / or ~/ is a l i teral of P } . 

We interpret d is junct ion in the head in the same way 
as Gelfond and Li fschi tz, tha t is, it is epistemtc disjunc­
t ion . The condi t ion on the P-closure is tha t at least one 
of the l i terals in the head must appear in the closure. 

D e f i n i t i o n 8 Let L be a set of l i terals f r o m N E G ( P ) . 
C is a P-closure of L if it is a smallest set such that 
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Note tha t there is not necessarily a unique P-closure 
of a p rogram; however, if it has a consistent P-closure, 
then al l i ts P-closures are consistent. The unique incon­
sistent P-closure is the set of a l l l i terals. We say L is 
P-consistent i f i t has a consistent P-closure. A l l other 
defini t ions f r om the last section can now be applied w i t h ­
out fur ther changes to general logic programs. Here is 
an example invo lv ing dis junct ions in the head of a rule: 

(4) 
We obta in two extensions, and 

Bo th have the cover N E G ( P ) . Note tha t 
is not an extension since i ts cover does not 

contain ~ c . 
The fo l lowing sl ight modi f ica t ion of the last example 

involves a negat ion in the head: 

(5) 
Now there is on ly one extension, namely { ~ a , ~ 6 , ~ c } . 

General programs can be used to implement many of 
the standard default reasoning examples. Here is a b i rd 
example: 

(6) 

We obta in one extension f rom the extension base 
(we o m i t the irrelevant l i terals . The 
P-cover of th is extension is N E G ( P ) . Note tha t the set of 
abducibles is not an extension base as i ts P-cover 
does not contain As intended the more specific 
rule gets pr ior i ty . 

As w i t h norma l logic programs, extensions of general 
logic programs correspond to the answer sets of Gelfond 
and Li fschi tz, when the la t ter exist. 

P r o p o s i t i o n 2 Let P be a general logic program with no 
negation-as-failure l i terals in the head and suppose it has 
at least one consistent answer set. Let C f a c t s ( L ) denote 
the set of classical l i terals (wi thout weak negation) tn L. 
C f a c t s is a bijective mapping f r o m the set of extensions 
of P to the set of answer sets of P. 

If there are mu l t ip le extensions, then they are always 
dis jo int . 

P r o p o s i t i o n 3 If F and F f are two extensions, then 
F U F' is inconsistent. 

I t should be noted tha t the in t roduc t ion of negation 
in the heads of rules, of either type, leads to a si tua­
t ion where the existence of extensions can no longer be 
guaranteed for a l l programs. The reason is tha t the pro­
grams themselves may become inconsistent. Recall tha t 
a program P is inconsistent if the (single) P-closure of 
the empty set is inconsistent. I t is not di f f icul t to prove 
the fo l lowing lemma: 3 

3The proof is easy since, as mentioned in the begin­
ning, we only consider propositional programs with finite 
Herbrand base in this report. However, there are cases in 
which, for infinite N E G ( P ) , there is an infinite ascending 
chain and hence 
no extensions. 

L e m m a 1 Let P be a logic program. P has an extension 
i f f P is consistent. 

Obviously, al l programs where the negation sign (and 
does not appear in the head of a rule are consistent 

and therefore have at least one extension. Th is includes 
normal logic programs. 

Sometimes it is convenient and useful to restr ict the set 
of abducibles to a proper subset of N E G ( P ) . A logic 
program then consists of a set of rules P together w i t h 
a set H Y P of negated l i terals representing the atoms as­
sumed to be false by default . The P-cover of a closure 
of a set of abducibles H H Y P is, as before, the set of 
abducibles which are either assumed or refuted. 

For instance, in the b i rd example we get the de­
sired results i f we restr ict the abducibles to H Y P = 

Again we get one extension containing 
- f l y . The extension base is Note tha t the cover 
of this extension is H Y P , whereas the cover of the closure 
of H2 = does not contain H2 therefore is 
not an extension base. 

There is also no reason why we should not some­
t imes let posit ive i n fo rmat ion , tha t is unnegated atoms, 
or even arb i t rary formulas be contained in the set of 
abducibles. Th is gives us the possibi l i ty to generalize 
"negation as fai lure to derive" to "assertion as fai lure to 
refute" . Assume we represent the b i rd example in the 
fo l lowing, equivalent way 

(7) 

Let t ing H Y P = obviously yields re­
sults which are equivalent to those of our or ig inal repre­
sentat ion using ab-predicates. 

Another interest ing extension of this approach are p r i ­
or i t ized logic programs. We may introduce expl ic i t prior­
ities among the hypotheses, e.g. in the style of preferred 
subtheories [1]. The set of assumables H Y P can be d i ­
vided in to preference levels H1,H2, . .. An extension 
base E\ is preferred to an extension base E2 iff there is 
an i such tha t 

Here is an example 

(8) 

Let H Y P = and assume we want to give 
the Quaker rule pr ior i ty . Th i s can be done by sp l i t t i ng 
H Y P to Hi = and H 7 = There are 
two extension bases, H\ and H2 It is easy to see tha t , 
according to our def in i t ion, the first one is preferred over 
the second one. 

Remark: In this example th is is the same as adding 
to the program, tha t is we have a choice 
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whether we want to represent pr ior i t ies expl ic i t ly using 
an order ing on H Y P , or v ia addi t iona l rules using the 
available imp l i c i t p r io r i t i za t ion . We suspect that expl ic i t 
orderings make programs often more readable. Note tha t 
in case of a confl ict between expl ic i t and imp l i c i t pr ior i ­
ties the imp l i c i t ones w in since only extension bases are 
compared in our def in i t ion of preferred extension bases, 
and these respect the imp l i c i t pr ior i t ies. 

4 Default logic 

The same abduct ive method for general logic programs 
is appl icable to defaul t logic as wel l . In fact, default logic 
rules can be viewed as a general ization of logic program 
rules to the fu l l sentences, rather than jus t l i terals. 

We use the more general dis junct ive default theories of 
Gelfond et a l . [8], since there is a direct correspondence 
to dis junct ive logic programs. A disjunct ive default has 
the fo rm 

where all the arguments are arb i t rary sentences 
We begin by recal l ing the def ini t ion of an extension of 

a default theory (W, D ) . 

D e f i n i t i o n 9 Let T(S) be any least set such that: 

As was the case w i t h general logic programs, the closure 
operator is not necessarily unique. 

To make the connection w i t h the abduct ive method, 
note tha t the hypothesized set S are the sentences that 
are supposed to be in the extension, rather than the 
complement, as for logic programs. The operator V(S) 
corresponds to the closure of a program. W i t h this in 
m i n d , we can rewri te the above def in i t ion in the abduc­
t ive sp i r i t . 

where are a l l sentences not tn S. 

Given the ident i f icat ion of S w i t h the complement of 
the abduct ive hypotheses, th is def in i t ion corresponds to 
that for the cover of logic programs. The set S are the 
sentences assumed to be unproven in the default theory, 
and the added set are those hypotheses refuted by the 
theory. Once again, abduct ive extensions are formed by 
max im iz ing th is un ion. 

The first condi t ion is easily seen to be a consistency con­
d i t i on , as it is equivalent to saying the whenever a sen­
tence appears in i t does not appear in T(S) . The 
second condi t ion is the fami l ia r max ima l i t y f i l ter. It is 
obvious tha t is m a x i m a l and consistent i f 

precisely the requirement for standard exten­
sions. Hence the fo l lowing proposi t ion. 

P r o p o s i t i o n 4 If the default logic theory 
has an extension and if W is consistent, then E is an 
abductive extension of if and only if it is an extension 
of 
Even in the cases where there is no default extension, 
there is an abduct ive extension. 

P r o p o s i t i o n 5 If a default theory has a 
f in i te set of just i f icat ions (over a l l defaults) and if W is 
consistent, then it has an abductive extension. 

Final ly , the relat ion between logic programs w i th clas­
sical negation and default theories pointed out by Gel-
fond et a l . holds for abduct ive extensions as well . 

P r o p o s i t i o n 6 Let D be a set of defaults formed f rom 
the logic program P by the t ranslat ion: 

where the a,-, b j , and ck are a l l classical l i terals. L is 
an answer set f o r P if and only if it is the set of l iterals 
contained in an extension of the default theory 
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D e f i n i t i o n 14 The closure of an AE theory 
is an abductive extension of A i f f 

The ma in theorems about abduct ive extensions is tha t 
they always exist ( i f A has a f ini te set of modal l i ter­
als) and tha t they are equal to AE moderately-grounded 
extensions, when the lat ter exist. 

P r o p o s i t i o n 7 If A ts K45-consistent and has a f in i te 
number of modal atoms that appear positively, then A 
has an abductive extension. 

P r o p o s i t i o n 8 I f A is K 4 5 - consistent and has an AE 
moderately-grounded extension, then U is such an exten­
sion i f and only i f i t is an abductive extension of A. 

The key feature of abduct ive extensions is tha t a proposi­
t ion may be neither believed (Lp) nor disbelieved ( - L p ) 
in the extension. Th is corresponds to the t ruthvalue gaps 
of logic p rog ramming extensions. Morr is [17] defines an 
al ternat ive method for g iv ing extensions to extensionless 
AE theories. However, he does so by adding proposit ions 
necessary to make the f ixpoint consistent, rather than 
leaving the belief in the proposit ions undecided. 

6 Conc lus i on 

We have demonstrated an abduct ive approach to the 
ma jo r consistency-based nonmonotonic formal isms. Our 
approach improves over previous at tempts in having a 
s t ra ight forward relat ionship to the standard semantics 
for these formal isms, and generalizing to more complex 
languages. We have shown how the same idea, max i ­
miz ing assumed and refuted hypotheses, can be used to 
establish extensions in logic programs, default logic, and 
autoepistemic logic. The common characteristic of these 
abduct ive extensions is tha t they always exist (for f ini te 
theories), they reduce to the standard extensions when 
the lat ter exist, and they allow a t ruthvalue gap in the 
cases where standard extensions do not exist. 

Given the abduct ive nature of the def in i t ion, i t might 
be possible to use the abundant l i terature in abduct ive 
methods to f ind approx imate proof-theory methods for 
these formal isms (see, for example, [10, 2, 5, 18, 11, 6]). 
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