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Abstract

Model-based diagnosis algorithms face a combi-
natorial explosion. To combat this explosion, this
paper presents a fundamentally new architecture,
IMPLODE, which constructs an abstract representa-
tion of the environment, the conflict, and the diag-
nosis spaces using a sensitivity analysis of assump-
tions. Experimental results show that the most dra-
matic improvement is obtained for circuits which
are the most difficult to diagnose using previous
algorithms. Moreover, typical sources of combina-
torial explosion, such as reconvergent fanout, are a
source of combinatorial implosion for IMPLODE.

1 Combinatorial Explosion

Model-based diagnosis engines [de Kleer and Williams 87; de
Kleer 91; Reiter 87] face a potential combinatorial explosion
of:

1. the environment space,
2. the conflict space,
3. the diagnosis space.

This paper presents a new architecture, IMPLODE, which re-
quires neither a candidate generator nor checking candidates
for consistency. IMPLODE uses a sensitivity analysis of as-
sumptions to assign a criticality level to assumptions. M-
PLODE keeps track of the assumptions* criticality level, and
builds up an abstract representation of the environment, con-
flict and diagnosis spaces, using a database of:

1. critical environments,
2. critical conflicts,

3. critical diagnoses.

IMPLODE avoids the combinatorial explosion of previous gen-
erations of model-based diagnostic engines. Experimental
results show that the most dramatic improvement is obtained
for the circuits which are the most difficult to diagnose us-
ing previous diagnosis engines. Moreover, typical sources of
combinatorial explosion, such as reconvergent fanout, are a
source of combinatorial implosion for IMPLODE.
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2 Sensitivity Analysis

One of the earliest model-based diagnosis engines is SOPHIE
[de Kleer and Brown 92]. SOPHE utilizes a form of sensi-
tivity analysis based on partitioning the set of assumptions
supporting a prediction into two sets:

1. The set of primary assumptions, P,
2. The set of secondary assumptions, S.

SOPHIE's criterion for determining whether an assumption is
primary or secondary is based on a form of order of magnitude
reasoning. An assumption which significantly contributes to
the magnitude of the predicted value is primary otherwise it
is secondary. In other words, the magnitude of the predicted
value is extremely sensitive to its primary assumptions. One
of SOPHIE's rules which exploits this distinction restricts the
hypothesis space as follows: // two environments { Py, 51},
and { Py, 53}, support the same prediction, then all the com-
ponents which belong to | Py U P2} — [Py Pa] are exonerated.
The intuition behind the rule is as follows. If an assumption
which significantly contributes to the predicted value is vio-
lated, then the predicted value would be significantly different.
Thus, assumptions notin common between the antecedent pri-
mary assumption sets are exonerated.

SOPHIE's use of sensitivity analysis for model-based diag-
nosis is based on a number of presuppositions which limit its
generality:

1. Environment space: The criterion used to distinguish
primary and secondary assumptions is specific to the
domain of analog circuits.

2. Conflict space: The partitioning into primary and sec-
ondary assumptions is not extended to conflicts — SO-
PHIE does not distinguish between primary and secondary
assumptions in conflicts.

3. Diagnosis space: The exoneration rule is based on the
single-fault assumption.

3 Critical Environments and Abstractions

The assumption set A contains ok(C'y) for every component
;. The description of the system to diagnose and the obser-
vation set are given by (effectively) a propositional theory T
over a set of literals £. We presume that 7 is consistent. A
node n designates a literal, that is an atom or its negation.

An environment E supporting a literal n is a set of assump-
tions such that:



o are T

Figure 1: {ok({7)} is the primary assumption for Or = 1.

1. [Entailment]: T U E & n.
2. [Consistency]: T U E is consistent.

The set of environments supporting a literal is noted £(n ).
£{n} is characterized by its minimal (with respect to set in-
clusion) elements, called minimal environments. However
these minimal environments are computationally prohibitive
to construct. As an alternative, the following definition of
critical environment introduces an abstraction which can be
used to characterize £{t) far more parsimoniously.

Definition 3.1 (Critical Environment) The critical environ-
ment for node n relative to § C A is:

S(n)=(HE€En)|ECS) (1)
il

Here and in the following we shall assume that there is a
special assumption, caiied talse which takes on the value

false in all models, and that [0 ° {talse].

Example 3.1 Consider the circuit, (see Figure 3), consisting
of an or-gate, Or, two rows of buffers, { By, Bz}, { B3, Ba},
and an inverter, C, at the output of the or-gate. Let 5 be the
entire set 4.

Given, the observations {i; — 1,iy — 1}, there are two
minimal environments supporting the prediction Or = 1:

{ok( By}, 0k(Ba},ok{Or)}, {ok{Bj).ok(By),ok{Or}}.
(2)
ok{Or) is the only assumption which is common to these two
environments, Therefore the critical environment for Or = 1
relative to A is {ok(Or)}. 0

Notice that the critical environment for a literal n relative
to 5 is always included in the minimal environments for » in
S. If a node has a single minimal environment £ in S, then
E is also the critical environment for » relative to 5,

The abstraction process leading to the generation of critical
environments ensures the following local consistency property
for the critical environment any given node:

Proposition 1 7 U S(n) is consistent if T is consistent and
é () is consistent.

Proof 1 5(n) is an intersection of environments which by
definition already possess this consistency property (if it is
consistent, i.e., does not contain false). 0

Thus critical environments inherit the consistency property
of enivironments. However, in general it is not true that critical
environments inherit the entailment of environments,
ie. in general it is not true that 7 L) S(r) = n. In general, the

critical environments only possess the entailment property
if the background theory 7 is augmented adequately. But
augmenting 7 may lead to inconsistencies. The following
sections introduce the concept of critical conflicts and critical
diagnoses to determine how to augment 7 so that the critical
environments become environments of the augmented theory,
and show how to exploit the augmented theory for disgnosis
purposes.

4 Critical Conflicts

A conflict C is a set of assumptions such that C U T is in-
consistent. A minimal conflict has no other as a subset. As
the number of conflicts also explodes we exploit similar intu-
itions to those underlying critical environments to introduce
the notion of critical conflicts.

Definition 4.1 (Critical Conflicts) The critical conflict for
S§C Ais:

$(1) = [){C a conflict | C C S} (3)

0

Example 4.1 {(Continued) If C = 1 the minimal conflicts

are:
{ok(By), ok{Bz),ok(Or), ok(C)}

{ok(Bs), ok( Bs), ck(Or), ok(C)} @

Thus: .
AiL) = {ok(Or), 0k(C)} ®)
0

Since the minimal conflicts characterize all conflicts (via
subset), we can always use the minimal conflicts to stand
for all the conflicts in our definitions and examples. This
example shows that a critical conflict relative to S subsumes
al! the conflicts in S.

Critical conflicts offer an abstract representation of the con-
flict space. Critical conflicts are also the keystone for iden-
tifying whether or not a critical abstraction which abstracts
simultaneously the environments for multipie nodes preserves

the consistency of the background theory 7. More precisely,
a critical abstraction is defined as follows;

Definition 4.2 (Critical Abstraction) The critical abstrac-

tion of a theory T relative to S C A is the theory:
ST)=Tu{S(n)—=n|nelU{Ll}} (6)

8]

Note that the process of abstraction adds only Homn clauses

to the original theory; in particular the abstraction of a Horn

theory is a Horn theory.

Proposition 2 (Consistency of Critical Theorles) 5(T) is

consistent iff S(1) # 8.

Proof 2 Assume that 5{ L) = 0. Since 5( L) — 1 belongs

to $(T), $(T) is inconsistent. )

Assume that 5(L1) # @; choose 4 ¢ 5(1). Since A
belongs to all the conflicts in S it follows that: 7* & Ty
{$\{A})u{A} isconsistent. Toprove that S{7T ) is consistent,
it suffices to prove that

Tk §(n) —n N
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for each node », This follows trivially if 4 ¢ S(n), If not,
there it an environment £ C (5 \ {A4}) for n. But then
T E={5\{A}) = n,s0that T' = n. ]

In many cases A(L) will be non-empty — all the conflicts
will have a non-empty intersection., For instance, this will
happen if the system obeys a single-fault assumption. In this
case { A} is a minimal diagnosis for every 4 € A{1).

However, it could be that A(L) = @. In such a case there
must be at least two mutually disjoint conflicts, Cy and C1 in
A, Thus, we can partition .4 into two subsets 5 (containing
C1) and 57 (containing Cz). We may then exploit the intuition
that often designed systems are constructed in such a way that
they are nearly decomposabie. So wemay choose to transform
the initial search for diagnoses into two separate diagnosis
problem: we consider the assumptions in 5 separately from
those in S, constructing separately the critical environments
and conflicts for these two sets. Once that is done, we desire
to glue together information about the diagnosis of the system
gleaned from these two disjoint analyses,

In general, however, & 7Ty 5’2(‘1") is not guaranteed con-
sistent even if separately both 5,(7) and 53( T ) are consistent.
(Examples are easy to construct.) We now give certain rather
general conditions under which the consistency of conjunc-
tions of critical abstractions is guaranteed.

Definition 4.3 (Critical Cover) A critical cover relative to a
subset S of A isaset {5),..., 5} of subsets of § such that:

Critical consistency: 5,(.) is non-empty, for all i.
Covering: Every conflict C C § is subsumed by S, (L), for
some i.
Disjointness: 5,(.L) is disjoint from S, , for every distinct i
and ;.
O

Insuchacase, theset {5;(.L),..., Sp{L1)}iscalled acovering
set of critical conflicts. Note that the disjointness condition
implies that 5,( L) is distinct from 5, (L ) — hence any cover
contains at most | & critical conflicts.

Proposition 3 (Consistency of critical covers.) If S is a
critical cover relative 10 A then

{5471 5. € 8} t:))

is consistent.

Proof 3 The proof is very similar to that of Theorem 2. Since
each 5,(1) is non-empty, choose an A, € 5,(L1). Consider
the augmented theory

v ade-4 TU{I..--.I:}U([Uiﬂ...ksa)\{Aln---uAkg'g))
By Disjointness, 7' is equivalent to
TU{ALn..., AU (U= xSV {A)  (0)

First, we claim that 7’ is consistemt. Suppose it is not.
Then it must be the case that

TEU=zLaEN{AD) —» (Alv...vAa) A

However, if the S, are not trivial (that is, contain at least one
conflict), then for each i, there must be a conflict of the form
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A, 6, — where 5, C 8§, \ {A,}. Hyper-resolving the k such
clauses against the clause in (11) yields the 4 conflict of T

Uizt & (Sl \ {AI}] - (12)

However, this conflict is not subsumed by any 5, (L) (which
must contain A4,), in violation of our Coverage assumption,
The contradiction establishes that 7’ is consistent.

Now we show that for every literal n and i

T k= 8i(n)—n (13)

This obviousty follows if A, € §,{r). Otherwise, there is
some environment for n contained in 5, \ {A,}: thatis 7 &
E — n,where £ C §,\ {A,}. It follows then that 7' = n,
and we are done. a

Critical covers do not always exist as the following example
shows,
Example 4.2 The simplest example is given by the cyclic
theory:
aAbd— L
arec— L (14)
bAae-— L

Take § = A = {a,b,c}. The only subset of S for which
there is a non-trivial intersection of conflicts is the set 5 —
however, in this case the intersection is 8. ]

When critical covers do not exist, we are obliged to seek
for maximal subsets of .4 which do have a cover, Explor-
ing the space of weaker definitions of critical cover (that will
guarantee the existence of critical covers in more cases) is
beyond the scope of the paper, We expect to see significant
tradecils between the weakmess and computability of the def-
initions; indeed we would not be surprised if it is impossible
to simultaneously achieve a definition of critical cover that
guarantees that only minimal diagnoses are generated (see
Theorem 6 below), that always exists for consistent theories,
and that can be used to compute critical diagnoses efficiently
and incrementally.

5 Critical Diagnoses
This section exploits the concept of criticality to obtsin a
concise representation of the diagnosis space. For a given set
of literals S, the set {I | [ € S} iant_edg. We shall treat §
as identicai to S. A diagnosis is a set 5 for some 5 C A such
that 77 U S is consistent.
Definition 5.1 (Critical disgnosis) A critical diagnosisof 7
relativeton 5 C 4 isaset AN S such that:

1. Ais a diagnosis of 5(7).

2. There is no other diagnosis A’ of 5(7T) such that A’ N S

is a strict subset of AN 5.
0
In the following, by a critical diagnosis of 7, we shall mean
a critical disgnosis of 7 relative to A.

Exampie 5.1 (Continued) Since

A(L) = {ok{Or), ok(C)}, the critical diagnoses relative to
A are the two potential single faults: {ok{Or)} and {ok{C)}.
0




Say that a diagnosis A hits a conflict C if there exists an
AcAsuchtat A€ C.

Proposition 4 If S(T) is consistent, and there is at least one
conflict C C S of T, then the set of critical diagnosis of T

relative to S is _
{{A}} A€ 81y} (15)

Proof 4 Assume S contains at least one conflict of 7. Any
diagnosis of 5(7 ) must hit $( L ); indeed any element of 5( L)
is adequate, A critical diagnosis can contain at most one such
elemnent, O
Note that if S does not contain any conflict of 7, then 5{ L) =
{talse}, yielding the vacuous critical diagnosis 8.
Example 5.2 (Continued) Since 4(L} = {o0k(Or), ok{C)}
Therefore the critical diagnoses relative to .4 are the two
potential single fautts: {ok(Or)} and {ck{C)}}. 0
Proposition § Every critical diagnosis of T relative to any
S C Ais a subset of a minimal diagnosis of T.
Proof 5 No proper subset of a critical diagnosis relative to §
can hit all the conflicts of S. 0
Theorem 6 (Diagnostic Hypercube) Ler {Si,..., 5.} bea
critical cover of A for T. If A, is a critical diagnosis for 5,,
then A = A U . ..U A is a minimal diagnosis for T .
Proof 6 Since A hits every conflict in A, it is a diagnosis.
Suppose it is not minimal. Then there is an A ¢ A such that
&' = A\ {A} is a diagnosis. Note that there is exactly one
i < ksuchthat 4 € §,(1). (To avoid trivialities, assume that
A is distinct from false.) However, A’ cannot hit any of the
conflicts contained in S,, since A’ is disjoint from S5,. Hence
A’ cannot be a diagriosis. 0
Thus finding a critical decomposition of A, if any, allows
a linear encoding of an exponential number of minimal diag-
noses.
Example 53 (Continued) Since A forms a critical partition,
7T contains two single faults as minimal diagnoses: {ok{0Or)}
and {ok(C)}. 0
Proposition 7 If A forms a critical partition then A( 1) con-
tains all the single fauits.

Searching for critical conflicts enables an architecture for
model-based diagnosis which ensures the consistency of the
candidates while bypassing the interpretation construction and
context switching of conventional diagnostic algorithms.

5.1 Critical Probes

For the purpose of this paper we assume that probing is the
only kind of action available to differentiate among different
diagnoses. We ignore component failure rates and cost of
probes. The conventional (GDE-like) approach to finding the
probe which differentiates best among all the diagnoses is to
determine the environments for the different nodes.

Our strategy here is to focus on critical diagnoses and find a
probe which differentiates best among the critical diagnoses.
To identify this probe we would like to consider the nodes'
critical environments. To justify ignoring the supersets of
critical environments we show that once the diagnosis space
is restricted to the set of critical diagnoses the critical envi-
ronments possess the following entailment property:

Proposition 8 (Critical Entailment) Ler 5,,...,5; be a
critical partition of A, and P be the product space of crit-
ical diagnoses, and n be a literal of L.

TU{\/AAEP} Si(n)—n (16)

Example 5.4 (Continued) Since A(Or = 1} = {ok(Or)}
and A(Or = 0) = {ok(C)}, probing the output of the Or
performs a half split on the space of critical diagnoses. Thus,
if initially all the components are equally iikely to fail and the
cost of different probes are the same, this output of Or is the
probe which differentiates best among the critical diagnoses.
Notice also that, in this case, the output of Or is also the best
probe to differentiate among all consistent diagnoses. g

As new observations are gathered, the evolution of critical
environmenits, critical conflicts and critical diagnoses may be
non monotonic if the new observation eliminates all the critical
diagnoses.

Example 5.5 (Continued) Thetwo critical diagnoses predict
that B; should be 1. If the output of Bz is observed to be 0,
then all the critical diagnoses are eliminated and there is 2 non
monotonic evolution of the critical diagnoses. If By = 1, then
there are two disjoint minimal conflicts: {ok(B,), ok(B2)}
and {ok( B3}, ok(Bs), ok{Or),0k(C)}. These two disjoint
minimal conflicts become the covering set of critical conflicts,
The new set of critical diagnoses is given by the product space:

{ok{B1), ok(B2)} x {ok(Bs), ok(Ba), 0k(Or), 0k(C)}
an
u
This non monotonicity highlights the fact that critical rea-
soning is a particular form of non monotonic reasoning, Ex-
ploring the link between critical reasoning and other forms of
non monotonic reasoning is beyond the scope of this paper.

6 IMPLODE Algorithm

Given a Horn propositional theory which has a covering set of
critical conflicts, MPLODE identifies the critical conflicts and
computes critical environments, and concisely encodes the set
of critical diagnoses.

IMPLODE is an incremental slgorithm. Counterintuitively, it
does not operate by maintaining a single global dats structure
of the current best approximation of a critical cover which is
then incrementally updated. Much in the spirit of an ATMS,
each environment also carries with it, locally, the smallest set
of assumptions (discovered so far in the process) which makes
the environment a critical one.

We expand the notation of Section 2 to include the node or
assertion which it supports. The triple (M, P, S) denotes a
clause whose literals are M U P U S. P is the set of primary
assumptions, S is the set of secondary assumptions, and M is
the remaining set of literals. (@, P, S) represents a conflict.

Each {M, P, S) represents & critical environment {(or con-
flict). P is the critical environment of M relativeto PU S, P
and S are always kept disjoint: S is the set of assumptions that
are noeded to be combined with P which makes P a critical
envirorment. More formally:

(SUPYM)=P (18)
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During execution IMPLODE is only representing approxima-
tions of critical environments and critical conflicts. At the
conclusion of the algorithm (if it terminates successfully) the
current set of critical conflicts form a critical cover.

IMPLODE takes as input the set of clauses T and produces
new clauses using the followingrules:

MPLOSION:
(Mi 'Pli Sl)
(M, Py, 52)

(M,PiN P, S1US2U [P\ AL | Pr\ )
RESOLUTION: If m € M unless Py U P; = Qand M = {m}.
(M, Py, S1)
{{m}, P1, 53)
(M \ {m}, PLu P, [S[ L Sz] \ [Pl J Pg])
EXPLOSION:
{({m}, 8, 51

({7}, 8, $2)
0, 5,1 Sz, 0)

IMPLODE, incrementally applies these rules, to a restricted
set of clauses, the active clauses. Active clauses are deter-
mined by the following rules. When IMPLODE receives a new
clause, this clause is initially marked as active. A clause can
become inactive by either being critically subsumed or by be-
ing suppressed. A clause { My, Py, 5} is critically subsumed
ifthere is another active clause { M2, Ps, S3) such that Mzl Py
is a strict subset of M; LU Py orjust of S\ alone. When IM-
PLODE finds multiple critical environments for a node, it sys-
tematically chooses only one of those critical environments
to propagate via the resolution rule — the other critical en-
vironments are suppressed (inactivated). An inactive clause
whose reason for inactivation itself is inactivated or removed
is reactivated.

IMPLODE prioritizes rule applications by always running
higher priority rules if they are applicable:

(19)

(20)

(21)

1. Reactivate clauses whose reason for inactivation has dis-
appeared.

2. Inactivate any clauses which are now critically sub-
sumed.

3. Apply EXPLOSION.
4. Apply IMPLOSION.

5. For any literal with more than one critical environment,
suppress all but one by marking it inactive because of the
chosen critical environment.

6. Apply RESOLUTION.

Note that in this algorithm the number of critical environ-
ments for a node can never explode. Even in examples (such
as levels of alternating and/or gates) which cause exponential
behavior for GDE-like algorithms for single faults IMPLODE
performs well.

7 IMPLODE Example

T, the initial set of clauses contains the models for all the
components and connections. For example, the buffer By is
modeled by the two clauses:

{{i1 = 1, By = 1}, {ok(B\}},0

16)
(W=D, B = 0}, {ok(B1)}.0) @2
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The connection i, is modeled by the single clause:

i =04 =1},0,0) (23)
The two observations are:
({iy = 1},8,0) ({12=1},0,8) (24)

Repeated appiications of the resolution ruie produces the fol-
lowing clauses:
({Bl = 1},{Ok B } @)

({ B2 = 1}, {ok(By), ok(B2)}, )
{{Or = l},{ok(Or) ok{ By}, ok( Ba)}, B}t 25)
{({By = 1}, {ak(B3}},0)

({Ba = 1}, {ok(Bs) rk(Ba;)} @)

{{Or = 1}, {ok{Or}, 0k(B), 0k(By4)}, 0}t
The Implesion rule produces:

{Or = 1}, {ok(O7)}, -[o!c(Bl},ok{Bg},ok(Bg),ok[&()%%;

fHon

This clause immediately inactivates the two clauses marked

t. Resolution produces:

({C = 1}, {ak(Or), ok(C)}, @7
{ok{B1), ok(B2), ok{ Ba), ok(Ba) }}
Now suppose we observed:
({C =0},0.& (28)

Resolution immediately produces the critical conflict:
(@, {ok({Or), 0k{C)},{0k(B)), ok(Bz), ok{B;),ok{Bd}z)g*
(29)
This critical conflict permanently inactivates the clause ;. The
resolution rule also produces:

({Or = 0}, {ok(C1}, &) (30)
Now suppose we observe:
{({B2 =0},0,9) 31
Resolution produces the critical conflict:
(8, {ok(B1), ok(B2)}, ®) (32)

This clause inactivates the clauses marked * and this now
causes the clauses marked { to be reactivated except the first
such clause is immediately inactivated again by the new crit-
ical conflict. The single activated clause resolves to produce
the critical conflict:

{0, {ok(Or), ok( B3}, ok{ By}, 0k(C)}, 0) (33)

8 Experimental Results

We have adapted our [de Kleer 91] model-based diagnosis
algorithm to implement IMPLODE. IMPLODE is sufficiently
different, that an overall reimplementation would produce far
more significant performance improvements. But we report
preliminary results in the following table. This table provides
the results on only a few instances of each circuit. All in-
stances are examples which had been earlier determined to be
the most difficult for the unoptimized focused algorithm [de
Kleer 91] and therefore the timings are far worse than average
for those circuits. Each run is of a single test vector and one
symptomatic output. All of the circuits are from the test suite
provided in [Brglez et al. 85]. The timings are obtained on a
Symbolics XL 1200, and include the setup time for running the
experiment (which is now the dominant cost). The table has
two columns. The first contains the timing for the algorithm
of [de Kleer 91] entitled "AAAI91", the second one contains
IMPLODE's timing.



IMPLODE shows the greatest improvement on the circuits
with significant redundancy and reconvergent fanout—some-
thing extremely difficult for previous algorithms. For exam-
ple, circuit c6288 is a 16 by 16 bit parallel multiplier and
manifests a great deal of reconvergent fanout.

Device | Gates | AAA91 | IMPLODE
c432 160 23 3
c499 202 79 4
c880 383 6.2 8
cl355 546 242 14
c1908 880 89~ 8
c2670 1193 33, 3
c3540 1169 1545 6
c5315 2308 1215 7
c6288 3600 2 |8

c7552 3512 1028 \ 14

References

[Brglez et al. 85]

[Dague et al 87]

Brglez, F., and H. Fujiwara, A neutral
netlist of 10 combinational benchmark cir-
cuits and a target translator in FORTRAN,
distributed on a tape to participants of the
Special Session on ATPC and Fault Sim-
ulation, Int. Symposium on Circuits and
Systems, June 1985; partially character-
ized in F. Brglez, P. Pownall, and R. Hum,
Accelerated ATPG and fault grading via
testability analysis, Proc. IEEE Int. Sympo-
sium on Circuits and Systems, (June, 1985)
695-698.

Dague, P., Deves, P. and Raiman, O.,
Troubleshooting: when modelling is the
trouble, Proceeding of sixth national con-
ference on Artificial Intelligence AAAI
(1987).

[de Kleer and Williams 87] de Kleer, J., Williams, B.C., Di-

[de Kleer 91]

[de Kleer 92]

agnosing multiple faults, Artificial Intelli-
gence 3297-130.

de Kleer, J. Focusing on probable diag-
noses, in Proceedings AAAI-91, Anaheim,
CA (1991) 842-848.

de Kleer, J., Optimizing Focusing Model-
Based Diagnosis, in the third international
workshop on diagnosis principles, October
92.

[de Kleer and Brown 92] de Kleer, J. and J.S. Brown, Model-

[Reiter 87]

based diagnosis in SOPHIE 111, in: Read-
ings in Model-Based Diagnosis edited by
W. Hamscher, J. de Kleer, and L. Console,
(Morgan Kauftnann, 1992).

Reiter, R., A theory of diagnosis from first
principles, Artificial Intelligence 32 (1987)
57-95.



