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Abstract 

Model-based diagnosis algorithms face a combi­
natorial explosion. To combat this explosion, this 
paper presents a fundamentally new architecture, 
IMPLODE, which constructs an abstract representa­
tion of the environment, the conflict, and the diag­
nosis spaces using a sensitivity analysis of assump­
tions. Experimental results show that the most dra­
matic improvement is obtained for circuits which 
are the most difficult to diagnose using previous 
algorithms. Moreover, typical sources of combina­
torial explosion, such as reconvergent fanout, are a 
source of combinatorial implosion for IMPLODE. 

1 Combinatorial Explosion 

Model-based diagnosis engines [de Kleer and Williams 87; de 
Kleer 91; Reiter 87] face a potential combinatorial explosion 
of: 

1. the environment space, 

2. the conflict space, 

3. the diagnosis space. 

This paper presents a new architecture, IMPLODE, which re­
quires neither a candidate generator nor checking candidates 
for consistency. IMPLODE uses a sensitivity analysis of as­
sumptions to assign a criticality level to assumptions. IM­
PLODE keeps track of the assumptions* criticality level, and 
builds up an abstract representation of the environment, con­
flict and diagnosis spaces, using a database of: 

1. critical environments, 

2. critical conflicts, 

3. critical diagnoses. 

IMPLODE avoids the combinatorial explosion of previous gen­
erations of model-based diagnostic engines. Experimental 
results show that the most dramatic improvement is obtained 
for the circuits which are the most difficult to diagnose us­
ing previous diagnosis engines. Moreover, typical sources of 
combinatorial explosion, such as reconvergent fanout, are a 
source of combinatorial implosion for IMPLODE. 

2 Sensitivity Analysis 
One of the earliest model-based diagnosis engines is SOPHIE 
[de Kleer and Brown 92]. SOPHIE utilizes a form of sensi­
tivity analysis based on partitioning the set of assumptions 
supporting a prediction into two sets: 

1. The set of primary assumptions, P, 
2. The set of secondary assumptions, S. 

SOPHIE's criterion for determining whether an assumption is 
primary or secondary is based on a form of order of magnitude 
reasoning. An assumption which significantly contributes to 
the magnitude of the predicted value is primary otherwise it 
is secondary. In other words, the magnitude of the predicted 
value is extremely sensitive to its primary assumptions. One 
of SOPHIE's rules which exploits this distinction restricts the 
hypothesis space as follows: // two environments 
and support the same prediction, then all the com­
ponents which belong to are exonerated. 
The intuition behind the rule is as follows. If an assumption 
which significantly contributes to the predicted value is vio­
lated, then the predicted value would be significantly different. 
Thus, assumptions not in common between the antecedent pri­
mary assumption sets are exonerated. 

SOPHIE's use of sensitivity analysis for model-based diag­
nosis is based on a number of presuppositions which limit its 
generality: 

1. Environment space: The criterion used to distinguish 
primary and secondary assumptions is specific to the 
domain of analog circuits. 

2. Conflict space: The partitioning into primary and sec­
ondary assumptions is not extended to conflicts — SO­
PHIE does not distinguish between primary and secondary 
assumptions in conflicts. 

3. Diagnosis space: The exoneration rule is based on the 
single-fault assumption. 

3 Critical Environments and Abstractions 
The assumption set A contains for every component 

The description of the system to diagnose and the obser­
vation set are given by (effectively) a propositional theory T 
over a set of literals £. We presume that 7 is consistent. A 
node n designates a literal, that is an atom or its negation. 

An environment E supporting a literal n is a set of assump­
tions such that: 
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Figure 1: is the primary assumption for 

1. [Entailment]: 

2. [Consistency]: is consistent. 

The set of environments supporting a literal is noted 
is characterized by its minimal (with respect to set in­

clusion) elements, called minimal environments. However 
these minimal environments are computationally prohibitive 
to construct. As an alternative, the following definition of 
critical environment introduces an abstraction which can be 
used to characterize far more parsimoniously. 

Definition 3.1 (Critical Environment) The critical environ­
ment for node n relative to A is: 

Raiman, de Kleer, and Saraswat 19 



20 Automated Reasoning 



Searching for critical conflicts enables an architecture for 
model-based diagnosis which ensures the consistency of the 
candidates while bypassing the interpretation construction and 
context switching of conventional diagnostic algorithms. 

5.1 Critical Probes 
For the purpose of this paper we assume that probing is the 
only kind of action available to differentiate among different 
diagnoses. We ignore component failure rates and cost of 
probes. The conventional (GDE-like) approach to finding the 
probe which differentiates best among all the diagnoses is to 
determine the environments for the different nodes. 

Our strategy here is to focus on critical diagnoses and find a 
probe which differentiates best among the critical diagnoses. 
To identify this probe we would like to consider the nodes' 
critical environments. To justify ignoring the supersets of 
critical environments we show that once the diagnosis space 
is restricted to the set of critical diagnoses the critical envi­
ronments possess the following entailment property: 
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During execution IMPLODE is only representing approxima­
tions of critical environments and critical conflicts. At the 
conclusion of the algorithm (if it terminates successfully) the 
current set of critical conflicts form a critical cover. 

IMPLODE takes as input the set of clauses T and produces 
new clauses using the following rules: 
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IMPLODE, incrementally applies these rules, to a restricted 
set of clauses, the active clauses. Active clauses are deter­
mined by the following rules. When IMPLODE receives a new 
clause, this clause is initially marked as active. A clause can 
become inactive by either being critically subsumed or by be­
ing suppressed. A clause is critically subsumed 
if there is another active clause such that 
is a strict subset of or just of S\ alone. When IM­
PLODE finds multiple critical environments for a node, it sys­
tematically chooses only one of those critical environments 
to propagate via the resolution rule — the other critical en­
vironments are suppressed (inactivated). An inactive clause 
whose reason for inactivation itself is inactivated or removed 
is reactivated. 

IMPLODE prioritizes rule applications by always running 
higher priority rules if they are applicable: 

1. Reactivate clauses whose reason for inactivation has dis­
appeared. 

2. Inactivate any clauses which are now critically sub­
sumed. 

3. Apply EXPLOSION. 
4. Apply IMPLOSION. 
5. For any literal with more than one critical environment, 

suppress all but one by marking it inactive because of the 
chosen critical environment. 

6. Apply RESOLUTION. 
Note that in this algorithm the number of critical environ­

ments for a node can never explode. Even in examples (such 
as levels of alternating and/or gates) which cause exponential 
behavior for GDE-like algorithms for single faults IMPLODE 
performs well. 

7 IMPLODE Example 
T, the initial set of clauses contains the models for all the 
components and connections. For example, the buffer B1 is 
modeled by the two clauses: 

(22) 

8 Experimental Results 
We have adapted our [de Kleer 91] model-based diagnosis 
algorithm to implement IMPLODE. IMPLODE is sufficiently 
different, that an overall reimplementation would produce far 
more significant performance improvements. But we report 
preliminary results in the following table. This table provides 
the results on only a few instances of each circuit. Al l in­
stances are examples which had been earlier determined to be 
the most difficult for the unoptimized focused algorithm [de 
Kleer 91] and therefore the timings are far worse than average 
for those circuits. Each run is of a single test vector and one 
symptomatic output. A l l of the circuits are from the test suite 
provided in [Brglez et al. 85]. The timings are obtained on a 
Symbolics XL 1200, and include the setup time for running the 
experiment (which is now the dominant cost). The table has 
two columns. The first contains the timing for the algorithm 
of [de Kleer 91] entitled "AAAI91" , the second one contains 
IMPLODE's timing. 



IMPLODE shows the greatest improvement on the circuits 
with significant redundancy and reconvergent fanout—some­
thing extremely difficult for previous algorithms. For exam­
ple, circuit c6288 is a 16 by 16 bit parallel multiplier and 
manifests a great deal of reconvergent fanout. 

Device 
c432 
c499 
c880 
cl355 
c1908 
c2670 
c3540 
c5315 
c6288 
c7552 

Gates 
160 
202 
383 
546 
880 

1193 
1169 
2308 
3600 
3512 

AAA91 
2.3 
7.9 
6.2 
242 
89~ 
33, 

1545 
1215 

1028 

IMPLODE 
.3 
.4 
.8 

1.4 
8 
3 
6 
7 

8 
14 
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