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Abstract

In a recent study Selman and Kautz proposed a
method, called Horn approximation, for speed-
ing up inference in propositional Knowledge
Bases. Their technique is based on the compi-
lation of a propositional formula into a pair of
Horn formulae: a Horn Greatest Lower Bound
(GLB) and a Horn Least Upper Bound (LUB).
In this paper we address two questions that
have been only marginally addressed so far: 1)
what is the semantics of the Horn approxima-
tions? 2) what is the exact complexity of find-
ing Horn approximations? We obtain semanti-
cal as well as computational results. The major
results of the former kind are: Horn GLBs are
closely related to models ofthe circumscription;
reasoning wrt the Horn LUB can be mapped
into classical reasoning. The major results of
the latter kind are: finding a Horn GLB is
"mildly" harder than solving the original in-
ference problem; finding the Horn LUB is a
search problem that cannot be parallelized. We
believe that our results provide useful criteria
that may help finding a knowledge compilation

policy.

1 Introduction

In a recent study [Selman and Kautz, 1991; Kautz and
Selman, 1992] Selman and Kautz proposed a method,
called Horn approximation, for speeding up inference
in propositional Knowledge Bases. Propositional infer-
ence is the problem of checking whether T | a holds,
where X and a are propositional formulae. The start-
ing point of their technique stems from the fact that
inference for general propositional formulae is co-NP-
complete —hence polynomially unfeasible— while it is
doable in polynomial time when E is a Horn formula.
The fascinating question they address is the following:
is it possible to compile a propositional formula ¥ into

*Work supported by the ESPRIT Basic Research Action
N.3012-COMPULOG and by the Progetto Finalizzato Sis-
temi Informatici e Calcolo Parallelo of the CNR (Italian Re-
search Council).

a Horn one I' so that a significant amount of the in-
ferences that are performed under ¥ can be performed
under ' in polynomial time?

Selman and Kautz notice that there exist two different
ways of doing such a compilation. In the first case the
compiled formula satisfies the relation £' | X, or equiv-
alently M(Z') C M(Z) —where AM($) denotes the set
of models of the formula $. For this reason ¥’ is called
a Horn lower bound —or LB— of L. As an example —
taken from [Selman and Kautz, 1991} — et & be the for-
mula (man — person)A(woman — person)A(manv
wormnan). The formula $;, = man A woman A peraon is
a Horn LB of &.

The second form of compilation is dual. The compiled
version of T is a Horn formula L’ that satisfies the re-
lation £ k= I', or equivalently M(E) C M(E’). ' is
called a Horn upper bound —or UB— of £. Returning
to the previous example, the formula $,; = {(mar —
person) A {woman — person) is a Horn UB of &.

The importance of having compiled forms of a Knowl-
edge Base is in that sometimes we can use them for pro-
viding 8 quick answer to an inference problem. As an
example, if we are faced with the problem of checking
¥ = a, we may benefit from the fact that for any Horn
LB E of E, B [£ o implies X £ a. E; is therefore
a complete approzimation of .. Dually, a Horn UB &,
is a8 sound approzimation of I, since L, | « unplies
Yk a.

Selman and Kautz notice that some complete ap-
proximations are better than others. In the previous
example, both &5, = wman A woman A person and
$;52 = man A person are Horn LBs of $. &, seems to
be a better approximation than $;,, since M(@gb;) c
M (@152} C M(®), hence the former is in some precise
sense “closer” to ¢ than the latter. This consideration
leads to the notion of Horn grestest lower bound —or
GLB— of a formula E, which is a Horn formula Xy
such that M(Z ) C M(ZT) and for no Horn formula
L’ it holds that AM(XZ) C M(Z') C M(E). In the
previous example $;,2 is a Horn GLB of &.

The same argument can be done for Horn upper
bounds: in our example both &.4 = (man -—
person) A (woman — person) and .42 = person are
Horn UBs of #, but M(®$) C M{Pusz) C M(Pun1),
hence 32 is & better approximation of . A Horn least
upper bound —or LUB— of a formule X is a Horn for-
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mula T}y such that M(E) C M{Z;,s) and for no Horn
formuia T' it holds that M({E) C M(X') C M(Tna).
P52 15 8 Horn LUB of &.

Selman and Kautz's proposal is to approximate inference
wrt a propositional formula ¥ by using its Horn GLBs
and LUBs. In this way inference could be unsound or
incomplete, but it is anyway possible to spend more time
and use a general inference procedure to determine the
answer directly from the original formula. The general
inference procedure could still use the approximations
to prune its search space (see [Selman and Kautz, 1991,
page 905]). Itis also important to notice that Horn GLBs
and LUBs can be computed off-line, hence this form of
approximate reasoning is actually a compilation.

Table 1 summarizes the major properties of Horn
GLBs and LUBs stated in [Selman and Kautz, 1991;
Kautz and Selman, 1992]. The four columns refer re-
spectively to:

* logical relation wrt ¥ (i. e. what kind of inference
can be performed using this approximation?);

+ size of the formula wrt the size |Z| of L;
* number of possible approximations of this kind;

» computational complexity of the search problem of
finding the approximation.

| [ INFER. | sIZE | NUMBER | COMPLEX. |
Tats || compl Linear many NP-hard
unsound
)3 sound | Ir general one NP-hard
incompl. expon.

Table 1: Some properties of Horn GLBs and LUBs.

Horn approximations have two computational problems:
1) computing them is an NP-hard task and 2) due to its
exponential size, it may be impossible to store the Horn
LUB. About the first aspect Selman and Kautz notice
that since approximations could be computed off-line,
the computational cost of finding them will be amortized
over the total set of subsequent queries to the Knowledge
Base. With respect to the second aspect, they propose in
[Kautz and Selman, 1992] a technique for "compressing”
the Horn LUB into a (quasi-)equivalent formula. Due
to reasons related to circuit complexity theory, it is not
possible to apply the technique in general (see [Kautz
and Selman, 1992] for further details).

Other computational properties of Horn approxima-
tions are studied in [Greiner and Schuurmans, 1992;
Roth, 1993].

In this paper we address two important questions that
have not been addressed so far:

1. is it possible to describe Horn approximations with a
semantics that does not rely on the syntactic notion
of Horn clause?

2. what is the exact complexity of finding Horn ap-
proximations?
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An answer to the first question shows the exact meaning
of the approximate answers. An answer to the second
question tells in which cases it is reasonable —from the
computational point of view— to use Horn approxima-
tions.

We obtain two different kinds of results:
semantical

» Horn GLBs of ¥ are closely related to models
of the circumscription of &;

* reasoning wrt Horn GLBs is the same as rea-
soning by counterexamples using only minimal
models;

» while skeptical reasoning wrt the Horn GLBs of
a formula X is the same as ordinary reasoning
wrt X, brave reasoning wrt the Horn GLBs of
I is the same as reasoning wrt CIRC{X};

* compiling more knowledge does not always give
better Horn GLBs;

* reasoning wrt the Horn LUB can be mapped
into classical reasoning;

+ the Horn LUB of & is related to CWA(Z).
computational

« finding a Horn GLB is "mildly" harder than
solving the original inference problem;

* reasoning wrt the Horn LUB is exactly as hard
as solving the original inference problem;

« finding a Horn UB is a search problem that
cannot be parallelized.

We believe that our results provide useful criteria that
may help finding a knowledge compilation policy. In
particular, we show that an interesting tradeoff seems to
emerge between the computation done during the compi-
lation time and the computation done during the query
answering time.

The structure of the paper is as follows: in Section 2
and 3 we study Horn GLBs and LUBs, respectively; we
discuss our results in Section 4.

2 Horn GLBs

In this section ¥ denotes a propositional formula and
Z 1 denotes one of its Horn GLBs. We assume that both
of them are in CNF. We start with some considerations
on the syntactic form of Horn GLBs.

In [Selman and Kautg, 1991] a Horn-strengthening of
a clause - is a Horn clause y5 such that yg C ~ and
there is no Horn clause vy such that yg C v € v. As
noticed in [Selman and Kautz, 1991, Lemma 2, every
clause in T,y is a Horn-strengthening (1. e. 8 “witness”)
of a clause in £. On the other hand we can easily prove
that for each clause in I there is at least one Horn-
strengthening (“witness”) in Xy,
In the following {wo subsections we prove that Horn
GLB: of a formula T are closely related to the minimal
models of T. Minimal models of a propositional formula
have the property that the set of atoms that they map
into 1 is minimal. More formally (see [Lifschits, 1985}),
given two models M, N of a formula, we write M < N iff



{z| M(2) = 1} C {#| N(z) = 1} and we write M < N iff
the containment is strict. The models of a formula & that
are minimal in this preorder are called the minimal mod-
els of #. Minimal models are important in the theory
of non-monotonic reasoning, since they are the seman-
tical counterpart of circumscription [McCarthy, 1980;
Lifschits, 1985): The models of CIRC(Y) are exactly
the minimal models of I.

We recall that Horn formulae have a unique minimal
mode] (the minimum model).

2.1 From GLBs to minimal models

Let © be a propositional formula and Xy, a Horn GLB
of L. We prove that the minimum model M of I, is
minimal for T, thus proving that if a Horn GLB of &
is known, then it is possible to obtain in linear time a
minimal model of T {see [Dowling and Gallier, 1984]).

First of all we notice that M is also a model of . Now,
let's assume that M is not minimal, and let N be a model
of ¥ such that N < M. We prove that we can build a
Horn formula U such that M(Zg,) C M(U) C M(L),
thus contradicting the assumption that L is # Horn
GLB of E.

The Horn formula U/ is built as follows:

begin
namark all the clanses of ;
U := true;
for each clause y = a; V ---Va, Vb v---V b,
of T do
fori:=1tomdo
if Nigg) =1
then begin
(* add a Horn-strengthening of v *)
U:=Un(a;v-b v---vaby);
mark ¥
end;
for each unmarked clause v of
do begin
let 7' be (one of) the witness(es) of v in Typ;
U:=U Ao
end;
end.

Since UV is a collection of Horn-strengthenings of I,
M{U) C M(Z) holds. It is easy to prove that N is
a model of U: 1) N clearly satisfies all the clauses in
U that come from marked clauses of L; 2) N must sat-
isfy at lesst one megative litera]l of each clause v in U
that comes from an unmarked clause 4 of I, otherwise
+ would have been marked.

Now we prove that M(X;) C M(U} holds. Since
N e M(U) and N ¢ M(Z,p), it is sufficient to prove
that M(Z) C M(U). Let’s take & generic model P of
Tgtp; we prove that it is also a model of U. Since P is
a model of £y, M < P must hold, hence N < P holds
too. As a consequence P satisfies all the clauses in U
that come form marked clauses of . As far as the other
clauses of I/ are concerned, they are clauses of Ty as
well, therefore P satisfies all of them.

The foliowing theorem summarises the above result.

Theorem 1 LetX be apropositionalformula and E,", a
Horn GLB ofE. The minimum model of By is minimal

for B.

Theorem 1 implies that if we have a Horn GLB of L,
then we can obtain in linear time (see [Dowling and
Gallier, 1984]) a minimal model of E. More techni-
cally, the theorem shows a polynomial reduction from
the search problem of finding a minimal model of ¥ to
the search problem of finding a Horn GLB of . The
present author analyzed in [Cadoli, 1992] the compu-
tational complexity of the search problem of finding a
minimal model of a propositional formula. One of the
results of that paper is that finding a minimal model of
a formula ¥ is hard (using many-one reductions) with
respect to the class PNP[OUegm)] 1 4 g important to
remark that PNPIO{iog n)] p 5 g problems are in a precise
sense computationally harder than NP-complete or co-
NP-complete problems 2. We recall that the problem of
deciding whether E }': & holds is co-NP-complete.

As shown in [Cadoli, 1992], PNPIOUes )] 5 qness of
finding a minimal model holds even if a model of X is
known. This fact can be compared with a consideration
in [Selman and Kautz, 1991, Theorem I]: E,u is sat-
isfiable iff & is satisfiable, hence finding a Horn GLB is
NP-hard. We can now say that even if we know that X is
satisfiable and have one ofits models in hand, finding a
Horn GLB is still PNPIOU2 %)l.harq we recall that find-
ing a model (not necessarily minimal) of a propositional
formula is per se an NP-hard task.

Corollary 2 Finding a Horn GLB of a propositional
formula T is PNPIOUeg )l arq.  This holds even if a
model of E is already known.

We notice that the above corollary gives us just a lower
bound. It is reasonable to ask how easy is to find a Horn
GLB, i. e. to give an upper bound to the problem. In
[Selman and Kautz, 199I] an algorithm for computing
a Horn GLB of a formula £ is shown. The algorithm
performs an exponential number of polynomial steps. It
is possible to show that a Horn GLB can be found in
polynomial time by a deterministic Turing machine with
access to an NP oracle, i. e. to prove that the problem
is in the class PNF_ This means that we only need a
polynomial number of queries to the GLB in order to
"pay off" the overhead of the knowledge compilation.

2.2 From minimal models to GLBs

We now show that if we have a minimal model M of a
formula I, then we can easily build a very good approx-
imation ofa Horn GLB of I, In particular we show that
we can build in linear time a Horn LB of & whose min-
imum model is M. This result allows us to perform, in

1 pNPIOUes )] i5 the class of decision problems that can be
computed by a polynomial-time deterministic machine which
can use for free an oracle (or subroutine) that answers a set
of NP-complete queries (e. g. satisfiability checks) whose car-
dinality is bound by a logarithmic function. We refer the
reader to [Johnson, 1990] for a thorough description of all
the complexity classes that are cited in this paper.

2Both NP-complete and co-NP-complete problems can be
solved with a single call to an oracle in NP.
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the following subsection, some interesting considerations
on the semantics of Horn GLBs.

We build a Horn LB W of X, whose minimum model
is M. Morcover, we prove that there is a Horn GLB of
whose minimum model is also M. W is built as follows:

begin
unmark all the clauses of X;
W := true;

for each clause y =g, V- ---Vam Vb V- -V by,
of £ do
for i :=1tom do

if M(ﬂ.) =1
then begin
W= WAa(av-ob V- v-b);
mark
end;

for each unmarked clause v =
G V- Vam Vb V.-V b, of ¥ do
W= WA(~b v---v-b);
end.

M is clearly a model of W, since 1) M satisfies all of
the clauses in W that come from marked clauses of I,
2) M must satisfy at least one negative literal of each
clause 4' in W that comes from an anmarked clause + of
T, otherwise ¥ would have been marked. Since Wis a
collection of Horn-strengthenings of £, M(W) C M(X)
holds. As a consequence M is the minimum model of
W,

W is a LB of ¥, but it might be not a Horn GLB. As an
example if & = ~avb, M{a) = M(b) =0, then W = —a.
Let V be a Horn GLB of £ such that AM(W) C M(V).
It is easy to prove that M is the minimum model of V:
all of the models of V must be greater or equal than its
minimum model; since M is a8 model of V and no model
of T is smaller than M, M is the minimum model of V.

Theorem 3 Let M be a minimal model of . There 1s
a Horn GLB of & whose minimum model is M.

2.3 Semantical consequences
Theorems 1 and 3 can be summarized as follows.

Theorem 4 The set of minimal models of a formula L
and the set of minimum models of the Horn GLBs of T

are the same.

We now address some interesting semantical conse-
quences of the above results.

As noticed in [Selman and Kautz, 1991] a traditional
Al approach is reasoning by counterexamples, which con-
sists in refuting a possible consequence of a theory by
means of a suitable model that contradicts it {an ex-
ample of this technique is in the early work [Gelernter,
1959]). This approach is based on the well-known prop-
erty M £ a = I [£ a, that holds for any pair of for-
mulae a, ¥ and any model M of . Selman and Kautz
indicate that reasoning under a specific Horn GLB 15
an improved version of such a reasoning schema, since 2
single Horn GLB captures a sel of models of the ong-
inal theory. Using Theorem 4 and the well-known fact
that the minimnm model of a Horn formnla completely
characterizes the set of its positive consequences, we can
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say that, as far as positive theorems are concerned, rea-
soning under Horn GLBs is the same as reasoning by
counterexamples using only minimal models. This does
not hold for negative theorems.

Selman and Kauts address briefly the issue of how rea-
soning with respect to a set of Horn GLBs looks like,
proving [Selman and Kautz, 1991, Theorem 3] that =
formuls is equivalent to the disjunction of all its Horn
GLBs. The notions of skeptical and brave reascning are
frequently used in the literature. We say that a formula
a skeptically follows from the Horn GLBs of a formula &
(written skep—gIb(E) I a) if for each of its Horn GLBs
g it holds Yo | a. We also say that o bravely fol-
lows (written brave—gib(X) I a) if there exists a Horn
GLB Xy such that 2,15 E a.

The result by Selman and Kautz can be rephrased in

the following way: skep—gib(Z) F a if £ E a. Us-
ing Theorems 1 and 3 we can say that — as far as
positive theorems are concerned — brave ressoning wrt
Horn GLBs is the same as brave reasoning wrt mini-
mal models. More precisely let & be a positive clause,
brave—gib(T) F a iff there exists a minimal model M of
Es t. M Ea, i e iff CIRC(Z) £ -a (see [Lifschite
]985]). Using & result shown in [Eiter and Gottlob, 1991
we can say that brave reasoning wrt Horn GLBs is a de-
cision problem which is hard wrt the class L} of the
polynomial hierarchy.
Let us see how the relation with non-monotonicity
just shown affects approximate inference under Horn
GLBs. We consider two knowledge bases &, &% such
that M(E*) C M(E), i e Z' ELand T T*. Itis
well known that for a generic formula a, C/RC(XE) | ~a
does not imply CTRC(Z*) = »a, even if 1 £ a holds.
Using the relation (CTRC(E) | —a) iff (brave—glb(E) i/
a) we prove the following result.

Proposition 5 Lei £, E* be two formulae such that
LY E X and T | Bt let a be a positive clause. If
Lt = a and brave—glb(X) i/ a then it might be the case
that brave—glb(E1) F a.

We recall that reasoning using a generic Horn GLB is
complete and unsound wrt reasoning using the original
formula. In other words Uf brave—glb(X) I¥ a Lhen we
know that & £ a, i. e. a is disproved. Proposition 5
says that if we are able to disprove a formula o using any
complete compilation of a “small” formula ¥, then we are
not guaranteed that we are able to disprove o using a
generic complete compilation of a “bigger” formula T,
even if Tt | a. In other words it is not true that com-
piling more knowledge we always have better complete
approximations. As an example, let £ = e v =b and
Tt = LA(avb). Clearly Z1 £ a and brave—gib(T) i a.
Moreover brave—glb(E*) - a, as ©t has two different
Horn GLBs: (a A -b) and (—a A b).

For the sake of completeness, we notice that
brave—glb(Z) F a does not imply brave-glb(Et) F a:
this can be seen if T =avb, Tt =EZ Aband a = a.

3 Horn LUB

In this section L denotes a propositional formula and
Yut denotes its Horn LUB. As shown in [Kaute and Sel-



man, 1992] in general it is not possible to store efficiently
the Horn LUB ofX. In particular the size of Egus can be
exponential in the size of &, and this seems to be inde-
pendent on the representation used for D, (see [Kautz
and Selman, 1992] for further details). As a consequence
any method for efficiently representing the Horn LUB
is incomplete. In [Selman and Kautz, 1991, page 908]
the authors propose to approximate the Horn LUB with
Horn upper bounds oflimited length. This idea is used in
[Greiner and Schuurmans, 1992], where Horn UBs with
a limited number of Horn clauses are studied. In Sub-
section 3.1 we investigate about this idea and analyze its
computational properties. Other computational proper-
ties of Horn LUBs are addressed in Subsection 3.2. In
Subsection 3.3 we make a brief semantical remark.

3.1 Horn UBs with a hmited number of clauses

Eius is logically equivalent to the conjunction of all the
Horn prime implicates of T [Selman and Kautz, 1991,
Theorem 4]. Y3 therefore guarantees sound and com-
plete reasoning wrt X as far as inference of Horn formu-
lae is concerned: for all Horn formulae a, (L. | a) iff
(T |= a). One natural choice is to approximate X3 with
a formula that guarantees sound and complete reasoning
wrt I as far as inference of short Horn formulae is con-
cerned. As an example of this kind of approximation, we
define the formula X}, to be the conjunction of the for-
mulae in the set {z| = is a positive literal and ¥ = 2}.
Notice that £1, is a Horn UB of X. This formula is a
reasonable approximation of X, since 1} at least all the
positive atomi¢ queries are answered correctly and 2) it
has a nice short representation,

An interesting question is the following: how difficult
is Lo obtain 1,7 We notice that finding L., is the search
problem that amounts to decide for each propositional
variable # occurring in X whether £ |= z holds. It is well
known that just deciding I |= x for a single propositional
variable is co-NP-complete, but it is important to under-
stand if the task of deciding ¥ = z for many proposi-
tional variables can be parallelized. In other words we
are interested in the following practical problem: is it
possible to obtain Xl, with one —or few— queries to a
prapositional theorem prover, or is it the case that the
best strategy is just to ask separately for each proposi-
tional variable z of £ whether £ | z holds? Clearly if it
is possible to parallelize the process of building I1, —or
any other approximation of ¥,;,— then we have better
chances to obtain good approximations of .

Several authors (see for example [Beigel, 1988;
Krentel, 1988]) studied the computational complexity
of search problems of the kind we are addressing here.
The goal of the research in this field is to understand
“how much NP-hardness” does an NP-hard problem con-
tain. The problem QUERY, which is a generalization
of the standard satisfiability problem SAT, is defined in
[Krentel, 1988). The input of QUERY are & propositional
formulae Ty,..., T and its ontput are k bits by, ..., 5y,
where for any i (1 < i < k), b = 1if T; is satisfiable,
and b; = 0if T} is not satisfiable. Beigel shows in [Beigel,
1988] that it is very unlikely that QUERY can be solved
with less than & queries to a SAT oracle. In other words

it seems that any strategy for solving QUERY cannot be
better than solving independently the k corresponding
SAT problems. A general property of this kind of NP-
hard problems (see [Beigel, 1988) for further details) is
that it is not possible to gain efficiency via paralleliza-
tion.

QUERY can be immediately mapped into the problem
of finding the approximation X!, of a given formula X.
Moreover the proof can be immediately adapted to the
problem of finding any set of Horn prime implicates of
)

This result can be interpreted in the following way:
the task of finding short approximations of I,y —like for
example Il,— contains “a lot of NP-hardness”. There
seems to be a direct correspondence between the size of
the approximation and the computational effort that we
need to obtain it. As a consequence there is little hope to
obtain good approximations of I, by performing few
calls to a theorem prover.

3.2 How hard is te decide T;,; = a?

In the previous subsection we addressed the issue of how
hard is to compile X, and in particular how hard is to ob-
tain an approximation of Xy,. In this subsection we are
interested in another computational property of Ly, we
want to know how hard is to reason wrt Xy, regardless
of the representation of this formula that we are cur-
rently storing in our memory. In other words we want
to understand what is the exact complexity of deciding
It = a, assuming that the inputs are ¥ and a.

We assume that the formula « is in CNF. In partic-
ular, let a be a clause ~by vV -- -V =by, Var V- -V ay,
that we denote as 8 — a, V---Va,, where # is a short-
hand for the conjunction b A --- A b,,. It is not hard to
prove that inference wrt L,,, can be mapped into clas-
sical inference. Let £ be the set of letters that occur in
E £y,...,£, be n disjoint sets of letters of the same
arity of £ and E£1,...,E" be n duplicates of ¥ built on
Ly,...,Lp, respectively. In an analogous way we define

BY,....B" T E a holds iff
EIA-.-AE"h(ﬂiA..-Aﬁn]._’(a}-v_,_va:) (1)

This proves that the problem of deciding Xy = o can
be solved by means of a single call to a propositional
theorem prover. More formally, ;s | a is a co-NP-
complete problem, i. e. it has exactly the same complex-
ity as the original problem of deciding ¥ |- a.

Summariging all the results presented so far we can say
that:

1. it is not possible to represent Xp,;, explicitly in the
memory;

2. we can make Iy, partially explicit; this is doable
off-line but it is more difficult than the original task
of reasoning wrt L;

3. if we keep ¥, completely implicit then reasoning
wrt it is exactly as hard as reasoning (on-line) wrt
L.

An interesting tradeoff therefore exists between the
amount of compilation that we want to perform off-line
and the amount of reasoning that we want to do on-line.
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3.3 A semantical remark

Equation (1) gives a sound and complete characteriza-
tion of inference wrt Eiup in terms of classical propo-
sitional inference. In this subsection we make a brief
remark about the relation existing between Horn LUBs
and closed-world assumption [Reiter, 1978].

Observation 6 Let M be the minimum model of Eiup.
M is the intersection of all the minimal models of .
Therefore M is a model of & iff the closed-world as-
sumption CW A(E) of T is consistent.

We notice that CW A(E) may be consistent even i Ei s
non-Horn: The CWA of -a ¥V & Vv ¢ is consistent. Re-
lations between Horn LUBs and closed-world reasoning
are implicit in the works [Borgida and Etherington, 1989;
Selman and Kautz, 199I].

4 Discussion

The computational results that we have seen in Sec-
tions 2 and 3 show that when we deal with knowledge
compilation there exists an interesting tradeoff between
computation during compile time (off-line) and compu-
tation during query-answering time (on-line).

In Section 2 we have seen that the computational effort
of finding a Horn GLB is justified only if a significant
number of queries to it will be done. In particular we
have seen that the compilation is more expensive than
a set of query answering tasks. The size of such a set
has a lower bound which is a function logarithmic in the
size of the input and an upper bound which is a function
polynomial in the size of the input.

In Section 3 we have obtained similar results, showing
that high-quality Horn UBs need a significant computa-
tional effort.

Since compilation causes anyway loss of information
(either soundness or completeness), the computational
effort spent in the compilation must be compared to the
quality of the inference obtained. It is an open issue to
find an adequate formal framework for comparing the
two aspects.
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