A new algorithm for incremental prime implicate generation

Teow-Hin Ngair
Institute of Systems Science
National University of Singapore
Kent Ridge, Singapore 0511
Republic of Singapore

Abstract

Traditional algorithms for prime implicate genera-
tion [Quine, 1952; McCluskey, 1956; Tison, 1967,
Kean and Tsiknis, 1990; de Kleer, 1992] require
the input formulas to be first transformed into a
CNF formula. This process, however, requires ex-
ponential time in the worst case and can result in
an exponential blow up of the input size. Such
cases occur frequently when the problem domains
are best characterized by some DNF formulas. In
this paper, we study a new algorithm which allows
a more general input: a conjunction of DNF formu-
las. We will present empirical results comparing the
new algorithm with some existing implementations,
and discuss how it can be used in a propositional
abductive reasoning system.

1 Introduction

In the early 1950's, when researchers were studying various
ways of minimizing boolean circuits, they discovered that the
notion of prime implicant played an important role [Quine,
19521. In particular, it was shown that the sum of prod-
ucts minimization of boolean circuits will consist of only the
prime implicants of the propositional description of the cir-
cuit. Subsequently, many algorithms were proposed for the
purpose of prime implicant generation [McCluskey, 1965;
Slagle et al., 1970; Tison, 1967].

Recently, in an attempt to generalize the ATMS, it was re-
alized that the dual notion, prime implicate, subsumes the
concept of labels calculated by an ATMS. This has lead
to the study of Clause Management Systems (CMS) [Re-
iter and de Kleer, 1987] which essentially accepts a set of
propositional clauses and outputs the corresponding set of
prime implicates. Similar to an ATMS, the applications
for a CMS include diagnosis [de Kleer and Williams, 1987;
Reiter, 1987], qualitative physics [Forbus, 1990] and non-
monotonic reasoning [McCarthy, 1980; Reiter, 1980].

In this paper, we present a new algorithm for computing
the prime implicates (hence, the prime implicants for the dual
problem) based on a 9 operation described in the next section.
The maijor differences between this algorithm and the existing
prime implicate generation algorithms are 1. it was originally
motivated entirely from the order-theoretic point of view; and
2. it allows input in a more general form: a conjunction of

46 Automated Reasoning

DNF formulas.

The latter is especially important for problem solving be-
cause the existing algorithms can only accept as input a single
CNF formula (or a single DNF formula as in [Slagle et al,
1970]) which is a special case of conjunction of DNF formu-
las. These algorithms are needlessly expensive for problems
that are naturally encoded by a conjunction of some com-
plex DNF formulas, because these DNF formulas need to be
transformed into their CNF equivalence first. This additional
step is very expensive computationally and can lead to an
exponential increase in the input size. On the other hand,
our new algorithm does not suffer from this shortcoming and
we will present empirical results to demonstrate its superior
performance. Furthermore, we will describe an application in
abductive reasoning to show how its generality can be useful
to problem solving.

We will adopt the following notation i the later discussion:
for any DNF formula &, £{8) is the set of conjuncts in #; and
Tor any disjunctive clause 9, i.e. adisjunction of non-repetitive
literals, ¥ is the conjunction of the negation of literals in .
Furthermore, we interpret a disjuactive clause as a special case
of a DNF formula, where each conjunct happens te contain a
single element,

Detinition: Given a set of propositional formulas @, a dis-
junctive clause 1 is called an implicate of © if © | 9. Fur-
thermore, it is called a prime implicate!if there is no other
disjunctive clavse ¥ such that £(d9) € £(d) and © | .
A conjunctive clause ¥ is called an implicant of ©if 1 is an
implicate of Q. It is called a prime implicansif 9 is a prime
implicate of 9. DO

By appiying de Morgan’s law twice, a direct consequence of
the dual nature of implicate and implicant is that any algorithm
which generates the prime implicates given a conjunction of
DNF formulas can automatically be used to generate the prime
implicants when given a disjunction of CNF formulas.

2 & Operation

Our new algorithm for prime implicate generation is based on
order theory. In this section, we introduce the basic definitions

' Our definition of prime implicate/implicant is slightly more gen-
eral than the definition used by some other authors. In particular,
we allow clauses that contain complementary literals to be prime.
However, one can easily derive one set from the other.

that are relevant to this paper. First, the notion of a closure
operation:

Definition: Given a lattice (L, <) and a function f ; L —
L, f is called a closure operation if it satisfies the following

properties:
Cl. r X f(z), forany z in L;

C2. f(f(z)) = f(=); and
C3. f(z) X f(y), ifz Xy D

The significance of a closure operation lies in its images which
are called fixed points. For the purpose of this paper, we need
only (o observe that for any z € L, f(z) > « is the smallest
element in L that remains invariant under f. Hence, f(x) is
said to be the Jeast fixed point above z. The operation which
leads to the new algorithm is defined below:

Definition: Given any posetl (P, <), a subset ¢ C P is said
to be downward closed if p € C and p' < p implies p’ € C.
Furthermore, given any subsel 5 C P, the downward closure
of Sistheset [S={pe P | €85, p=<p} O

Definition: Let (P, <) be any lattice. Given any subset ' €
P(P}, the operation dr is defined on downward closed sets
¢ eP(P) by

O (Y= {pe P|VIeT,pAte (),
where A is the lattice meet operation induced by <. O
An important property of @ [Ngair, 1992] is;

Theorem 1 Given any @, ..., Qr, and any downward
closed C, ¥ = Dy, 0 - o Op_(C) is the leasr common
Sixed point of every Oy, 1 < i < n, above C.

3 Algorithm

Given a propositional system S with a finite number of propo-
sitional symbols x;, 75, ..., r,, W consider the lattice P
which is the power set of {x, =71y, .., 15, ~ru}. Let Cphe
the downward closurce defined by the set {{z;, ~z;} | | <1 <
n}. Note that the elements of P are ordered by the reverse of
setinclusion, re. X = D,

Using the same terminology as in [de Kleer, 19861, we refer
to elements of P as environments and § as the environment
lattice of S. We interpret an environment {r,,, .. ., 7, } asthe
conjunctive clause =i, A - - - A zy, . Therefore, Cp represents
the set of all inconsistent conjunclive cianses in P. Observe
that the ordering on P is defined for the lattice theoretic meet
operalion 1o coincide with the logical and operation. How-
ever, bear in mind that sel theoretically A = Uand v = N
in P,

Given an environment p = {z,,,..., 2, }, we denote its
negation by p, i.e. ¥ = —~z;, V.-V —x,,. Hence, if pis
inconsistent, we have z;, A--- A z;, =L which implies that
k= =y, V- ooz, ie, Pis a tantology.

‘The above observation can be extended to the case when a
given set of formulas © is assumed to be true. In particular,
given any environment p, we say that p is inconsistent with ©
if© A p kL. Itis not difficult 10 see that:

Lemma 2 An environment p is inconsistent with © if, and
only if. P is an implicate of ©. Furthermore, p is maximal if,
and only if, T is a prime implicate.

Hence, to find the prime implicates of ©, it suffices to find the
maximal environments (minimal subsels) inconsistent with
6. In view of the lemma, we shall also refer to such maximal
environmenis as the negated prime implicates.

In the following, we will first discuss an operation which
compules the set of environments inconsistent with © and
describe later an equivalent algorithm which only generates
the maximal environments. From now on, we will always
assume that © is a2 conjunction of DNF formulas.

Theorem 3 Given a conjunction of DNF formulas © = 6, A
- -ABg, U is animplicate of © if, and only if, ¥ is an element of
Ch=®1,0-- o Pr (Cp), whereT; = £(6;) forl < i< k.

What remains to be done is to find an aigorithm to compute
the @ operation. The following resull tells us how:

Theorem 4 If P is an environment lattice, given any down-

ward closed C with maximal elements {5, ..., 5m) and any
T={t,...,t,}), we have:
orcy= (] U B (1)
1<j<n1gigm

where EY = {p € P | pAt, 2 s} Furthermore, E}
is u downward closed set with an unigue least upper bound

1
f\J

= & — f.J'.

For efficiency reason, we donr't want to compute every el-
cment in G (') if we don’t have to. In particular, during the
computation of &7((7), we can safely ignore those elements
that arc already in (7, because we can simply add C to the re-
sulting set to obtain the desirable results. Therefore, a straight
forward optimization is to ignore E7 when s; — ; = s;, be-
cause the F} in this instance is contained entirely in C and
woiild not have contributed any new element in the computa-
tion of Eq. (1).

Furthermore, it an actual implementation of the & opera-
tion, il is expensive to consider the entire downward closed
set. Since we are only interested in the maximal elements
of &+ (C). it would be desirable if we could represent ev-
ery downward closed set by their maximal elements and find
equivaient operations for M and U which operate on this repre-
scntation. The following resull says that this can be achieved.

Theorem 5§ Given two downward closed sets Aand B, let 5,
and Sp be the maximal-element seis of A and B respectively,
then

MAV(ANB) = MAX({aUb|a € 54,b€ Ss}),
MAX (AU B) MAX(S54 U Sg),

where M AX is the subsumption check operation which re-
turns the set of maximal elements of its input set.

So if we are given the maximal elements of two downward
closed sets A and B, the above formulas allows us Lo compute
the maximal elements of A N B and A U B directly. For the
convenience in later discussion, we will denote the above
operations as 54 M Sy and S, U Sp respectively.

For the rest of this paper, we will use the maximat elements
to represent every downward closed set. In particuiar, the &r
operation will operate in this representation, i.e. taking in a set
of maximal elements and using the formulas in Theorem 4 and
5 for computing the corresponding output as a set of maximal
elements.

Ngair 47

From the above discussion, we oblain the following al-
gorititm for incremental calculation of the prime implicates,
where S is the existing sei of prime implicates:

procedure GEN-PI(S, T")

for each propositional symbol z in T
if r is not encountered earlier
then add {z,T} 10 S;

return $(S5);

end-procedure GEN-PI

Note that most of the tautological prime implicates are rep-
resented implicitly in the algorithm and are introduced only
when required. This improves the efficiency of the algorithm
as well as allows for potentially unbounded number of propo-
sitional symbols.

From our discussion that foltows Theorem 4, we know that
we can safely ignore ¢} in the computation of ®r(S) when
s; and {; are mutually cxcluswe sets. We just need to add S
to the resulung set and perform subsumption check Lo derive
the desirable results.

Example Consider the following set of clauses:
A3y = A A = A (A A A2) V(A3 A Ag)

After processing the first two clauses, we obtain the following
set of negated prime implicates:

51 = {41, A} 5= {4, As s3= {4, A}
54 = {AE!ZI}; &y = '{A]‘:‘a—j}; 5¢ = -IA.“E,‘},

By letting {; = {A;, A2} and t; = {43, A}, the processing
of the final clause using the ¢ operation is summarized in the
Table 1: first, the set differences c; = s; — {; arc calculated,
eg.ef = 5 — 1 = {A, A3} - {A, A7} = {4}, and
e; is ignored because sy and t; do not share any common
element; then, we apply U to each row in the matrix [0 obtain
MAX (U cice E}) for j = 1,2; finaily. we apply I on
these resulis (o gel our new set of negated prime implicates
{{A3},{44)}. By combining the new and the old prime
implicates and performing subsumption check, the resulting
list of prime implicates will be {A; V A1, 42 V Az, A3, Ag).
To help understand the ¢ operation from a pure logical
point of view, we map the above algorithm o the follow-
ing “resolution™ rule which infers new implicates from the
existing set of prime implicates and the input DNF formuta:

1. Input DNF formula:

(I A Az)V V(@b A- - AZED.
2. Any k negated PI's:
(WA A WA AR,
Jlet e = {y:,,.,,yf;J}—{x’],.,,,mf,'J},
E = Ulgjgk""’j?

4. Resolvent (a new implicate): V. g —f.

From Theorem 3, 4 and §, we can conclude that the in-
ference is sound and complete in terms of prime implicate
generation. In particular, to obtain the new set of prime im-
plicates, we simply filter out from the set of new implicales
those that are subsumed, i.e. rémove an implicate if there ex-
ists another implicate that is a sub-clause of it,

The above reselution rule, though it appears simpler, lacks
the matrix-like computational structure that is inherent in the

48 Automated Reasoning

order-theoretic approach. This is significant in terms of de-
riving an efficient algorithm for generating prime implicates.

4 Complexity and Optimization

Tt can be shown ([Ngair, 1992]) that starting with » prime
implicates and ar input disjunction of & conjuncts, the worst
case complexity of computing GEN-FI is O(c * (n/k)**) or
O(c « n?*) respectively, depending on whether the input is a
disjunctive clause or a more gencral DNF formula. Note that
the complexity results for disjunctive clause coincide with
those reporied in [Kean and Tsiknis, 19901

The GEN-P1 algorithm as presented is not very efficient and
can not be used (o solve many interesting problems. Various
optimization lechniques have been proposed for traditional
prime implicate generation algorithms [Kean and Tsiknis,
1990). Many of these techniques are equally applicable to
our new algorithm. We have also discovered additional opti-
mization technigues for improving the efficiency of the GEN-PI
aigorithm and some of them are described below.

Consider the intersection of two maximal-clement sets
Si=1{pm.....,pm}and S; = {1, ...,¢n}. A simple minded
algorithm will compute the set {pU g | p € 51, ¢ € 52}
fotlow by deleting elements that are not maximal. This is an
expensive O(c* (m+n)?) operation. Therefore, it is desirable
Lo minimize this cost.

Lemma 6 If there exists p € Sy and g € 53 such that p < g,
then Sy NS = {g} U(S N{5: — {g)).

The above result says that we can remove every element
from 5\, and 5; that is subsumed by an element in the other
list. The intersection can then be calculated by applying
intersection to the two smaller lists followed by an union with
the removed elements, This is beneficial since it might reduce
a large number of elements that would otherwise be generated
by the intersection operation, only to be discarded later.

Lemma?7 Given p € S, and ¢ € 53, one needs only 1o
subsumption check p N g with respect o the set N = {pNyg’ |
g €Sg#dIuipneglp eSS ,ppt

By viewing an intersection operation as first forming a
cross product matrix between 5; and 5,, the above result says
that (o check the maximality of each element in the matrix,
it is sufficient to only compare it with elements from the
same row or column. Therefore, one reduces the worst case
cost of computing M_4.X in the intersection operation from
O((1511#1520)2) to O((1S1]+52)) # 151 #|S21). Note that the
value (JS) |+ |.S‘;|)tJ.S'l|¢ }S2| is minimum when {5;| = |S,),
ie. we have 2 « |5

It is generally beneficial to compare the output of an inter-
section operation with the set S in the & procedure, so that no
redundant element needs to be involved in further intersection
operations which might otherwise generale an even larger re-
dundant set. In the following, we describe a method which
helps to identify many such redundanit elements,

Defipition: In the ¢ operation, one computes elements of
lhcformp—P’U Uc’forsomel<p<ksuch
p's are called PPI (Partial ane implicate). The set T' —
{t;,,....t;,} is calied the complement set of p. A PPI with
null complemenl set is also known as a PI. A PPI p' is said to

el oo [o [oo [s | s

Yl .

t || {4s) | {Ad} | {A)) | {A2)
iy x x X x

{As)

x {{EIL {Ez}, {:‘is}. {-34}}
{A4} {{4:}, {Ad}}

New negated prime implicates ()

| {7}, {A)) l

Table 1: An example of executing the @ operation

be generated froma PPl p if p" = pU (’;‘ sl e;‘,' for some
1 T
0<g<k—-p D

Lemma 8 Given a disjunctive clause represented by T and a
PPl p with complement set X, any PI q generated by p will
be subsumed by S if p U X is subsumed by 5.

Therefore, any PPl which satisfies the condition in the
above lemma can be safely deleted withoul affecting the prime
implicate generation process. The saving is significant be-
cause such PPl may generatc many more new PPI's in the
& operation, if it is not deleted. From empirical experience,
we may eliminate as much as eighty percent of PPI's by the
above optimization,

5 <Comparison with existing algorithms

In this section, we compare the GEN-PI algorithm with some
cxisting prime implicale gencration algorithms, in particular,
the 1P1A algorithm described in [Kean and Tsiknis, 1990] and
the CLT™S algorithm described in [de Kleer, 199212 We
will compare the algorithms based on Iwo examplcs“ which
represent 1wo types of problem, one is an artificial set of
clauses which is designed 1o produce an exponential number
of prime implicates while the other is derived from more
practical problems. The first example is usually referred 10 as
the “m(x)k(yY" problem. It has two inleger parameters, =,y
with x + y + 1 input clauses and willproduce (r + 1) +r*y
{non-tautological) prime implicates:

ai:>al; S s:,:>u|;
e

& = a2, ..., & > uxn

v . v e .

S| = ay ;0 8 D oay,

—ay V- -V =g,

The second example is Kean and Tsiknis's propositional en-
coding of a familiar diagnosis problem; the 5-gate adder cir-
cuit (see [Kean and Tsiknis, 1992]).

The GEN-PI and the CLTMS algorithms are both implemented
in Common Lisp and run on a Sun 4/490 machine. On the
other hand, the IPIA algorithm is implemented in Quintus
Prolog running on a Sun Sparc-1 machine.* The results of the
comparison are listed in Table 2 where all liming information
are in seconds and PI# is the number of non-tautological prime
implicates.

The latter algorithm is also called IPIA in the actual paper. We
use CLTMS here to avoid confusion.

®Both examples were originally proposed by Alex Kean in a series
of e-mail correspondences between Alex Kean, Johan de Kleer and
the author.

“The timing information of the IPIA program was provided by
Alex Kean.

[Examples [Pl# | cLt™Ms | GEN-PI | 1PIA |
m3k6 4114 T 7-15 9 N.A.
m3k7 16405 [30-120 [45 40320
circuit 9700 ; 1138 300 | > 1day

Table 2: Comparison of three PI generation algorithms

Note thatthe CLTMS algorithm is sensitive to the input order
of the clauses. This is reflected by the two-value entries for the
*m3k6"” and "m3k7” examples. In both the examples, input
of the r # ¥ Horn clauses are given in lexicographical order
based on the two indices of s. The two values represent the
times needed depending on how we prioritize the two indices.

From the results of the comparison, we can conclude that
if the input is already in a CNF, the GEN-PI algorithm will
perform as efficiently as, or better than, some of the existing
prime implicate generation systems. In the following, we
show that the GEN-PI algorithm will greatly outperform the
existing algorithms if the input is in a more general form.

6 The generality of the GEN-PI algorithm

As already emphasized earlier in this paper, the GEN-PI algo-
rithm naturally allows input formula to be a conjunction of
DNF formulas. Therefore, an obvious advantage to this new
algorithmis its flexibility in terms of what it can take as input,
i.e. a set of DNF formulas instead of just a set of disjunctive
clauses. Although a set of DNF formulas can be converted
to a single CNF formula by converting each DNF formula
to an equivalent CNF formula. We will show in the follow-
ing, however, that such a conversion is computationally very
expensive.

Since the conversion of a DNF formula to a CNF formula
is computationally equivalent to the process of covcrting a
CNF formula to a DNF formula (modulo a linear term), it
suffices to demonstrate a particular CNF formula of length
O(n) such that any of its DNF equivalence is necessary of
length exponential in n. Let us consider the DNF formula:
F={z)Vvz)A- -A(#3n-1V T2,), Wwhereeachz;, 1 < § < 2n,
is a distinct propositional symbol. It can be shown that:

Theorem 9 Any DNF formula equivalent to the propositional
formula f has at least 2" conjuncts.

Hence, the problem of converting a CNF formula to an equiv-
alent DNF formula (or vice versa) is a provably intractable
problem.

Examples: The following shows some instances where DNF

Ngair 49

formulas arise naturally in problem encoding.

1. An exclusive-or constraint, e.g. xor{x,, ..., &), com-
monly encounter in a constraint satisfaction problem, can be
intuitively encoded as a single DNF formula (£ A~zzA - - A
~Z,)V V(21 A- - A-Z,_1 AT,) bul needs at least O(n?)
disjunctive ctauses in CNF encoding. In general, it is much
simpler 1o use a DNF encoding for a constraint describing a
cornplete set of possible outcommes.

2. AnOR-gatein adiagnostic problem,e.g. (z V- Vi,)A
—AB(G) = z, can be naturally represented as a single DNF
formula but needs n disjunctive clauses in CNF encoding.
In the worst case, consider the “black-box” circuit shown
in Figure 1. It can be encoded as a single DNF formula
(~z1 ADI2) V- -V ("Z2n -1 ATy,) V AB(G) V £ but needs
at teast 2" disjunctive clauses in CNF encoding (Theorem 9),

X
Xa

Figure 1: A "black-box" circuit

The above results and examples tell us that the existing
prime implicate generation algorithms are very inefficient be-
cause they need to perform the additional expensive oper-
ation of converting every DNF formula to a CNF formula
if the input contains some DNF formulas. Such conversion
also entails the possibility of enormous growth in the input
size to the algorithms. Note that such additional process-
ing cost is not hidden in the GEN-PI algorithm. In particular,
the algorithm treats each DNF formula as a single input with
computational complexity determines roughly by the size of
output. For instance, consider the following set of clauses
(generalization of the example in Section 3) which produces
only 2 non-tautological prime implicates, A; and Ay:

Ay = Ag; Ay = Az
A2n-l = Al: -AEn = A2;
(A1 A A}V V(A A Asn)

Feeding it to the prime implicate generation algorithms, we
obtain the run times listed in Table 3. It is clear that GEN-
Pl is the only reasonable algorithm for computing the prime
implicates with such input even with reasonably small size.
The poor performance of the other algorithms is due to their
additional costs in converting the final input clause into 2"
disjunctive clauses and processing the exponentially larger
input.

A point which we have not addressed so far is the seemingly
workable solution of encoding a DNF formula as a linear size
CNF formula by introducing new literals. For instance, any

50 Automated Reasoning

(n_JPIHT GEN-PL| CLIMS | IPA |
5 [2 | 008 0.1 0.27)
10 2 0.13 20 111
13 2 0.20 1105 N.A.
15 2 024] > 1hour | NA,

100 2 10.25 N.A. N.A,

Table 3: Comparison of algorithms with DNF input

DNF formula
(X{AAXLIV-VXEA-AXE)
can be encoded as the following sel of disjunctive clauses:
Ci=> XL - G XL
Oy = X3 Cy = X2
Ce = XF - Ce=> Xk
O v VG

where (), ..., (% are new propositional symbols. This
method does not suffer from exponential conversion cost and
preserves all the prime implicates. In particular, it is not diffi-
cult to show that by filtering out the prime implicates contain-
ing the new propositional symbols from the prime implicates
ofthe encoded problem, we oblain the prime implicates of the
original problem. However, the cost of generating additional
new prime implicates usually outweighs the benefit of the
compact encoding. Consider the previous example that has
only two non-tautological prime implicates. Using the encod-
ing method, we ended up with 3"~ + 2 + n non-tautological
prime impiicates. Computationally, this is much more expen-
sive than just converting the DNF formula to 2" disjunctive
clauses and processing them as a CNF formula. Hence, the
restriction in the traditional algorithms of accepting only a
CNF formula does in fact lead to a significant compultational
overhead in problem solving.

7 Abductive Reasoning

Abduction is a form of reasoning where given an inference
system, some facts X and a goal formula g, the reasoner finds
an explanation e for g, i.e. ZAe k= g. Usually, we also require
consistency in the explanation that the reasoner finds, i.e. we
want I A ¢ Lo be consistent. In this section, we study a limited
form of abduclive reasoning where the inference system is
restricted to the propositional logic and the explanation is
restricted to conjunctive clause. To this end, we consider the
rotion of minimal support originally proposed in [Reiler and
de Kleer, 19871 to solve this problem. However, the original
proposal restricts the goal formula to a disjunclive clause, We
will show that such a restriction is unnecessary and a much
more complex class of goal formulas can be specified directly
using the GEN-PI algorithm.

Definition: Given a set of propositional formulas F and any
formula Z, a disjunctive clause Y is said to be a support for Z
withrespectto Fiff F £ Y and F YV Z. Y issaidtobe
a minimal support for Z with respect 1o F iff no sub-clause
Y’ C Y is a support for Z with respect to F.

It is immediate that a conjunctive clause -Y is a consisten|
explanation for Z in the system F if, and only if, ¥ is a
support for Z with respect to F, or equivalently, there exists
minimal support Y’ for Z withrespeci to F suchthatY’' C Y,
In the following, we describe how the & operation can also
be used for generating minimal supports. By observing thal
FEYvZilandonlyif, FA-Z Y, we have:

Lemma 10 A disjunctive clause Y is a support for Z with
respect to F i{fY is not an implicaie of F but is an implicate
of FAZ. Y is aminimal support for Z with respect to F iff
Y isnotan implicate of ¥ but is a prime implicate of F A—Z.

In this paper, we assume that Z is a disjunction of CNF for-
mulas, i.e. ~Z is a conjunction of DNF formulas represented
by say, 71, ..., T, To calculate the set of minimal supports
for Z with respect to F, we can apply &, ..., $r, sequen-
tially to the set § of prime implicates of F. Subsequently, by
removing elements of the resulting prime implicates that are
subsumed by some elemenis of 5, we will obtain the set of
minimal supporls for Z.

Since any propositional formula can be ransformed into
a disjunction of CNF formulas,’ the above technigue allows
us to compute the set of all minimal supports for any goal
formula using the GEN-PI algorithm,

Example Consider the following set of clauses:
F= {A = B, A= B A= B A= B4}

The set of prime implicates of F is simply the union of F
and the set of binary tautologies. To find the set of minimal
supporis for (8) A Bz) V (B3 A Ba), we apply @ 5 } (B} ©
S\ 5,;.1F,); 0 the prime implicates o_f.ilo gi:_l anew SE of
prime implicates [, U I, where I, = {A, B; V By, By v B},
and I, is the set of binary tautologies except AV A. In thiscase,
the set of prime implicates in {; U f; that are also implicates
of F is exactly f;. Hence, the set of minima) supports is I,

8 Conclusion

Traditional algorithms for prime implicate generation can only
accept a CNF formula as their input. For problems that are
naturally encoded by a conjunction of some DNF formulas,
these algorithms can be needlessly expensive. This is because
the transformation of the input formulas into their CNF equiv-
alence is a very expensive process and can result in a dramatic
explosion of the input size.

In this paper, we studied a more general algorithm GEN-PI
for prime implicate generation. The algorithm is based on a
& operation originally inspired by the order-theoretic study
of the extended ATMS [Gunter et al., 1991]. It is superior to
the existing approaches in that it allows a larger class of input
formulas, namely, any conjunction of DNF formulas.

We also presented empirical comparisons between the GEN-
Pl algorithm and two existing implementations that are mainly
based on the generalized consensus theory iTison, 1967]. In
the more restrictive case of a CNF formula, the results show
that the GEN-PI algorithm performs at least as efficiently as

5Ofcourse, a DNF formula or a CNF formula would suffice, but
disjunction of CNF formulas allows a greater flexibility and better
efficiency in encoding a formula (see previous section).

these algorithms, while it greatly outperforms them when the
input contains some DNF formulas.

The usefulness of the GEN-PI algorithm is further demon-
strated by its application in generating explanations for com-
plex formulas in a propositional abductive reasoning system.

References

[de Kleer and Williams, 1987] Johan de Kleer and Brian C.
Williams. Diagnosing multiple faults. Artificial Intelligence,
32:97-130,1987

[de Kleer, 1986] Johan de Kleer. An assumption-basedTMS. Arti-
ficial Intelligence, 28:127-162,1986.

[de Kleer, 1992] Johan de Kleer. An improved incremental algo-
rithm for generating prime implicates. Proc. of AAAI-92, pages
780-785,1992.

[Forbus, 1990] Kenneth D. Forbus. The qualitative process engine.
In Readings in Qualitative Reasoning About Physical Systems,
pages 220-235. Morgan Kaufmann, 1990.

[Gunter et al, 1991] Carl A. Gunter, Teow-Hin Ngair, Prakash
Panangadcn, and Devika Subramanian The common order-
theoretic structure of version spaces and ATMS's (extended ab-
stract). Proc. ofAAAI-91, pages 500-505, 1991.

[Kean and Tsiknis, 1990] Alex Kean and George Tsiknis. An in-
cremental method for generating prime implicants/implicates. J.
Symbolic Computation, pages 185-206,1990.

[Kean and Tsiknis, 1992] Alex Kean and George
Tsiknis. Assumption-based reasoning and clause management
systems. Computational Intelligence, pages 1-24, 1992.

[McCarthy, 1980] J. McCarthy. Circumscription: A Form of Non-
monotonic Reasoning. Artificial Intelligence, 13:27-39,1980.

[McCluskey, 1956] E. J. McCluskey. Minimization of boolean func-
tions. Bell SystemTechnical Journal, 35:1417-1444,1956.

[McCluskey, 1965] E. J. McCluskey. Introduction to the Theory of
Switching Circuits. McGraw-Hill, 1965.

[Ngair and Provan, 1992] Teow-Hin Ngair and Gregory Provan.
Focusing ATMS for problem-solving: A formal approach. Tech-
nical Report MS-CIS-92-61, University of Pennsylvania, 1992.

[Ngair, 1992] Teow-Hin Ngair. Convex Spaces as an Order-
theoretic Basis for Problem Solving. PhD thesis. Department of
Computer and Information Science, University of Pennsylvania,
July 1992.

[Quine, 1952] W. V. Quine. The problem of simplifying truth func-
tions. American Mathematical Monthly, 59:521-531,1952.

[Reiter and de Kleer, 1987] Raymond Reiter and Johan de Kleer.
Foundations of assumption-based truth maintenance systems:
Preliminary report. Proc. ofAAAI-87, pages 183-188,1987.

[Reiter, 1980] Raymond Reiter. A logic for default reasoning. Ar-
tificial Intelligence, 13:81-132, 1980.

[Reiter, 1987] Raymond Reiter. A theory of diagnosis from first
principles. Artificial Intelligence, 32:57-95,1987.

[Slagle etai, 1970] James R Slagle, Chin-Liang Chang, and
Richard C. T. Lee. A new algorithm for generation prime im-
plicants. IEEE Trans on Computers, C-19(4):304-310,1970.

[Tison, 1967] P. Tison. Generalization of consensus theory and ap-
plication to the minimization of boolean functions. IEEE Trans.
Electronic Computers, EC-16:100-105,1967.

Ngair 51

