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A b s t r a c t 

This is a report of the application of the 
Model Generation Theorem Prover developed 
at ICOT to problems in the theory of finite 
quasigroups. Several of the problems were pre­
viously open. In this paper, we discuss our the­
orem proving methods, related to those of the 
existing provers SATCHMO (Manthey, Bry) 
and OTTER (McCune), and note how parallel 
processing on the ICOT Parallel Inference Ma­
chines was used to obtain high speeds. We then 
present and discuss our machine-aided investi­
gation of seven problems concerning the exis­
tence of types of quasigroup. 

The field of finite algebra is rich in problems suitable 
for computational treatment. In particular, questions 
about the existence of structures of given finite sizes 
may usefully be approached using techniques for theo­
rem proving or for constraint satisfaction. Perhaps the 
best known recent result of this sort is that of Lam, Thiel 
and Swiercz [Lam et al, 1989] showing that there is no 
projective plane of order 10. The present paper reports 
further research in the same tradition in which our tool 
was the ICOT theorem prover MGTP and in which we 
were able to obtain new existence and nonexistence the­
orems for certain interesting classes of quasigroup. It 
should be noted that MGTP is a general-purpose theo­
rem prover not at all designed with quasigroups in mind. 
Hence this application of Artif icial Intelligence research 
to open mathematical problems was rather unexpected. 
We welcome i t , however, as we feel that automated rea­
soning has reached the point where it can and should 
address the needs of researchers in other disciplines. 

1 F i n i t e d o m a i n search ing 

Where a first order theory has finite models, a reasonable 
way to find some is to fix on a particular finite domain 
of objects and to search for interpretations of the func­
tion and predicate symbols as functions and predicates 
on that domain, constrained to make all of the axioms 
of the theory true. Finite model generation may thus 
become a constraint satisfaction problem of the familiar 
sort, and may yield to the familiar techniques approprite 

to such problems. To illustrate with a deliberately triv­
ial example, consider the theory of semigroups. This has 
only one axiom, an equation 

and has, of course, models of every cardinality. To find 
the semigroups of order 3 (for instance) we fix the do­
main as consisting of three objects; the numbers 1, 2 and 
3 will do nicely. Now we need to determine the value of 
x o y for each choice of x and y from the domain, giv­
ing 9 cases to determine and 3 possible values for each 
case. Evidently there are 39 or 19683 possible vectors of 
9 values in this search space. The "good" ones are those 
which make true every ground instance of the associa­
tivity axiom such as So each bad 
vector contains a set of (at most) four values which suf­
fice to refute some such formula. For example, the four 
assignments 

together force thus violating as­
sociativity. Therefore the disjunction 

is one of the ground negative constraints of cardinality 
4 which all good vectors must obey. 

There are many methods of enumerating the vectors 
which do obey such a set of constraints. We used a back­
tracking search technique based on automated deduction 
with a clausal representation of the problem, as detailed 
below, but there is no reason why other styles of search 
such as that embodied in arc consistency or path con­
sistency algorithms should not be employed to much the 
same effect. Our concern in this paper is to report the 
method which was successful in practice, not to prove 
that it is the best method possible. 

Whatever techniques are used, some general heuristics 
are in order. Firstly, whenever one of the ground neg­
ative constraints, as instanced above, is used to refute 
an attempt to build a model, it should be remembered 
somehow and the search control should ensure that it 
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never again gets incorporated into a partial model can­
didate. The search wil l typically backtrack many times, 
but it should never do so twice for the same reason. Sec­
ondly, it obviously pays to minimize the furcation of the 
search tree. Hence where there is a choice as to which cell 
is to be given a value next, choose one with the smallest 
number of possible values (given the partial structure al­
ready in place). An early version of our program MGTP 
failed to do this and constructed over 52 million branches 
on problem QG5.7 below; after the heuristic was added, 
it branched just 9 ways on the same problem! Thirdly, 
as is well known, most algebraic search problems permit 
early detection of some or all isomorphisms and by at­
tending to these we may frequently cut down the search 
space by some orders of magnitude. In the cases treated 
below, we used a simple initial restriction of the problem 
to avoid searching a great many isomorphic subspaces. 

Naturally, we do not claim originality for any of these 
general search heuristics. Indeed, they are rather well-
worn. Nonetheless, we wish to draw attention to them 
since they were essential to the success of our experi­
ments and since it is still common to find such obvious 
points overlooked. 

2 The program: M G T P 

2.1 O t t e r , Satchmo and M G T P 

Otter [McCune, 1990] is a very efficient first order theo­
rem prover. It can be seen as computing the closure of a 
set of axioms under selected rules of inference. It works 
with two set of clauses called the Usable Set (U) and 
set of support (SOS). In each step it moves a clause C 
from SOS to U, generates immediate consequences of C 
in combination with with members of U and stores them 
in SOS. Essential to its strategy is the avoidance of 
possible regeneration of redundant consequences mainly 
by rejecting subsumable clauses instead of storing them 
(forward subsumption). It may also apply backward sub-
sumption, whereby newly kept clauses are used to sim­
plify the existing U and SOS. It gives the option of vari­
ous rules including resolution and some of its more pow­
erful relatives such as hyperresolution and unit-resulting 
resolution, as well as a wide variety of equality reasoning 
facilities such as forms of paramodulation and demodu­
lation. 

Satchmo [Manthy and Bry, 1988] can be seen as a spe­
cialized theorem prover for solving only range restricted 
problems, using the important technique of case split­
t ing. Range restricted problems are those which assure 
that all derived positive clauses are ground. Case split­
t ing, as is familiar, is a matter of treating clauses of 
a certain type (usually, as in Satchmo, positive ground 
clauses) by assuming each of their literals in turn in order 
to reason by cases. It is thus fundamental to reasoning 
in the style of semantic tableaux. Given range restrict-
edness, case splitt ing is safe from the problem of com­
mon variable handling between the split literals. Like the 
Prolog Technology Theorem Prover described in [Stickel, 
1988] Satchmo takes advantage of Prolog's optimization 
techniques by compiling clauses for runtime efficiency. 

MGTP (Model Generation Theorem Prover) is writ­

ten in the parallel logic programming language K L 1 . 
There are two versions of the program: MGTP/G for 
range-restricted problems and M G T P / N for (Horn) non-
ground problems. See [Fujita tt a/, 1992] for a descrip­
tion. The basic algorithm of MGTP/G is equivalent to 
that of Satchmo, while that of M G T P / N is based on 
that of Otter. Both versions run sequentially on the PSI 
workstations and also on the P IM (Parallel Inference Ma­
chine) developed at IGOT. For the algebraic problems 
considered in the present paper, only MGTP/G was re­
quired. Satchmo's technique of compiling clauses into a 
logic programming language is adopted by MGTP nat­
urally but not trivially. How M G T P / G uses the power 
of KL1 to maintain efficiency [Fuchi, 1990; Fujita and 
Hasegawa, 199l]is outside the scope of this paper. This 
basic efficiency, is the one of the important sources of 
MGTP's success, even though without heuristics there 
is no hope of managing the combinatorial explosion. 

2.2 P r o b l e m representa t ion and heur is t ics 

As in most artificial intelligence applications, heuris­
tics appear to be very important in the attack on dif­
ficult model generation problems. Al l advanced uses of 
Otter, such as solving the very difficult condensed de­
tachment and related problems reported in [Wos et a/, 
1990], use weighting mechanisms for picking the next 
clause from SOS. The simplest method of assigning 
weights to clauses is to count the constituent literals, 
and the next simplest is to count symbols. The latter 
is Otter's default. More elaborate weighting techniques 
are of considerable interest, but are not the focus of the 
present paper. 

Heuristics for MGTP are in a sense similar to those for 
the Otter. We used a weighting function of the number 
of literals in each clause, corresponding to the number of 
ways the search tree wil l branch. A unit clause has lowest 
weight of all. We then simply choose to split a clause of 
lower weight rather than one of higher. Clearly, this is 
an implementation of the general principle alluded to in 
the last section, of minimising furcation of the search 
tree. In counting literals for this purpose, we omit any 
that could directly produce the empty clause by clashing 
with a negative clause. We also omit any literal L such 
that there exist clauses 

in the set U, since we can look far enough ahead to see 
that such L could be resolved away and wil l therefore 
generate only a dead branch. 

Of course such weighting methods may destroy com­
pleteness if the domain of the problem is infinite, but 
there are many ways to escape from this. For example, 
Otter has the strategy of moderating its weight-directed 
search by letting every nth clause come from a breadth 
first search. For finite domain problems such as n-queen 
problems and the Peiletier and Rudnicki problems, how­
ever, a weight strategy such as ours does not endanger 
completeness. Moreover it prunes an extremely large 
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Speedup 

Figure 1: MGTP input for QG5, order 4 

percentage of the branches in all of the finite quasigroup 
problems. 

The problem description for MGTP theorem prover is 
very simple (Figure 1). The search space of this naive 
representation is 416 branches. However the heuristics 
above succeed in reducing it to just a single branch. 

2.3 Para l le l i za t ion 
Even though the heuristics dramatically cut down of 

search space, the hardest problem we solved had millions 
of cases in the search space as shown in section 3.2. Such 
search can be split to several processes at any stage of 
case splitt ing, since only ground clauses are thus treated 
and hence no process needs to communicate with any 
other in order to solve its case. The OR-parallelism nat­
ural to this problem is enough to exploit almost linear 
speed-up with 256 processors on the PIM-m machine de­
veloped at ICOT. PIM-m is a 2-dimensional square mesh 
M I M D machine capable of up to 160 M append LIPS. 
We solved the hardest problem with 2,749,676 branches 
in a l i tt le under 4 hours by this machine. It would re­
quire over 30 days by a single processor. 

For load distribution, a simple stochastic mapping 
function chooses relatively distant processors. The level 
of task distribution of these classes of problem has been 
shown to be close to optimal (Figure 2), so we did not im­
plement a further level of dynamic load balancing by ob-
serving and communicating each processor's load level. 
This achievement was based on a MIMD machine with 
fine grain and low communication cost; on less advanced 
M I M D computers it would not be so easy. 

3 Problems and results 
3.1 Some quas igroup existence prob lems 
A quasigroup [Denes and Keedwell, 1974] is a set on 
which is defined a binary operation • such that the equa­
tions a x = b and y . a = b have unique solutions for 
all elements a and b. Evidently, the multiplication ta­
ble of a quasigroup defines a Latin square. A quasi­
group (like any other algebraic structure) is idempotent 

Figure 2: Speedup on two problems on PIM-m 

iff a . a = a for every element a. For the purposes of 
this paper, we are interested in two types of question 
regarding finite quasigroups: the existence of conjugate-
orthogonal [idempotent] quasigroups of certain orders, 
and the spectra of certain quasigroup equations. 

Where (Q,.) is any quasigroup, we may define on Q 
some further operations oijk where i, j and k are distinct 
members of {1,2,3} . 
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We have investigated the following seven specific prob­
lems from [Bennett and Zhu, 1992]. The bold numbers 
in parentheses are those given to the open cases of these 
problems on pages 88-90 of [Bennett and Zhu, 1992]. 

1. Establish the existence or nonexistence of a (3,2,1)-
COILS(v). (1) 

2. Establish the existence or nonexistence of a (3,1,2)-
COILS(i;). (2) 

3. Find a Schroder quasigroup of order n. In particu­
lar, find an idempotent one. (18) 

4. Find a quasigroup of order n satisfying Stein's third 
law yx.xy — x. In particular, find an idempotent 
model. (19) 

5. Investigate the spectrum of [idempotent] quasi-
groups satisfying the identity (yx.y)y = x. (22) 

6. Investigate the spectrum of quasigroups satisfying 
the identity xy.y — x.xy. Is it restricted to n = 0 
or 1 (mod 4)? (23) 

7. Investigate the spectrum of quasigroups satisfying 
the identity yx.y = x.yx. Is it restricted to n = 1 
(mod 4)? (24) 

Some brief explanations and comments are in order. For 
more detail on all of these problems, the reader is re­
ferred to [Bennett and Zhu, 1992]. 

1. The open problem is the case v = 12. Otherwise, 
it is known that solutions exist for every positive 
integer except for 2, 3 and 6. 

2. The problem of existence of (3,l,2)-COILS(v) has 
almost been solved. There are only four orders left 
undecided, namely, v = 10, 12, 14 and 15. Solutions 
exist for every other positive integer except for 2, 3, 
4 and 6. 

3. The identity xy.yx — x is known as Schroder's sec­
ond law, and quasigroups satisfying it are called 
Schroder quasigroups. They are well known to be 
self-orthogonal. The spectrum of Schroder quasi­
groups contains precisely the set of all positive in­
tegers n = 0 or 1 (mod 4) except n — 5 and possi­
bly excepting n — 12. Interestingly, the idempotent 
Schroder quasigroups have the same spectrum, with 
the additional exception of order 9. 

4. The identity yx.xy = x (Stein's third law) also 
forces quasigroups to be self-orthogonal. Its spec­
trum contains precisely the set of all positive inte­
gers n = 0 or 1 (mod 4) except possibly n = 12. 
Moreover, there exists an idempotent model of each 
such order except 4 and 8, and possibly 12. 

5. The spectrum of the identity {yx.y)y - x was in­
vestigated in detail in [Bennett, 1989]. Before the 
present research, it was known to contain every in­
teger with the exception of 2, 6 and possibly 
excepting {10,14,18,26,30,38,42,158}. The 
existence of idempotent models is in rather more 
doubt. The known exceptions listed in [Bennett, 
1989] are 2, 3, 4 and 6; there are 56 undecided cases, 
the smallest being 9, 10 and 12-16. 

6. The spectrum of the identity xy.y = x.xy (some­
times called Schroder's first law) is not very pre­
cisely known. In [Bennett and Zhu, 1992] we report 
that it contains all integers n > 1, where n = 0 or 1 
(mod 4), with the exception of n. = 5 and a list of 35 
possible exceptions the smallest of which are 9 and 
12 and the largest 177. We do not know whether 
the spectrum is restricted to n = 0 or 1 (mod 4). 
Note that all quasigroup models of this identity are 
idempotent. 

7. The spectrum of the identity yx.y = x.yx contains 
all positive integers n = 1 (mod 4) except possibly 
for n = 33. It remains an open problem to deter­
mine it more precisely. Is it restricted to n = 1 
(mod 4)? Again, all models are idempotent. 

3.2 Resul ts 

We present the results generated by MGTP for the seven 
problems detailed above. In each case we searched for 
quasigroups of given orders either showing that there 
exists no model or generating such of the models as were 
within the search space. Some, but not all, isomorphic 
copies of models were omitted as a result of the search 
strategy. As stated in table 3, twelve of the cases were 
left as open problems in [Bennett and Zhu, 1992]. The 
order 9 case of problem QG5 had previously been solved 
by Zhang [Zhang, 199l] and by us [Slaney, 1992]. 

In summary, the conditions defining these problems 
are as follows. 

In most cases the quasigroups were also stipulated to be 
idempotent: 

x • x = x 

The elements of the domain for all models were taken 
to be the natural numbers 1 . . . M where M is the order 
of the desired quasigroups. In order to avoid searching 
certain subspaces isomorphic to those already searched, 
we adopted the additional axiom 

a ■ M a - 1 

Clearly this sacrifices no generality, and eliminates many 
isomorphic copies though not all. There are more ef­
fective ways of cutting out automorphs, which are the 
subject of some current and projected research, but we 
present the results of this section as evidence that our 
rough method works well enough for some non-trivial 
purposes. 

Figure 3 shows in each case the total number of back­
tracks (models plus failure branches) in the search tree, 
the number of solutions found and the time in seconds 
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* Previously open problem 
+ Without assumption of idempotence 

Figure 3: The Results 

on PIM-m with 256 processors. Several features of the 
problems are apparent from the table of results. 

• The first problems we attempted were QG5 and 
QG6, for each of which we obtained new results as 
shown. It is clear from the branching factors and 
runtimes that these two are very similar in degree 
of difficulty for our program and that their com­
plexity appears exponential. Hence we feel that the 
order 13 cases are not feasible at present without 
some further insight into either the algebra or the 
algorithm. Similarly, QG3 and QG4 seem to march 
together in degree of difficulty. 

• Problems Q G l and QG2 are especially difficult for 
our program at present. In neither case were we 
able to get close to the open cases. 

• Not all of the previously open problems were par­
ticularly hard. The clearest example is problem 
QG6.7, though the same is true of the small cases 

of problems QG5, and QG7. This reflects the fact 
that most previous approaches had been by human 
mathematicians using analytic reasoning, whereas 
sometimes a machine aided exhaustive search is 
more effective. 

• Where the result of the search is positive, a model 
being found, it yields the most satisfying kind of 
constructive proof, but where it is negative it yields 
no readily surveyable proof in the difficult cases. Its 
only report is that it looked everywhere but found 
no model. While we feel that this is acceptable as a 
proof,we also acknowledge that an analytic proof of 
the same result would be welcome. At the least, it 
would provide some deeper and less case-ridden rea­
son to hold, for instance, that there is no quasigroup 
of order 10 in which (yx.y)y = x. 

• The use of an advanced computer was essential to 
our success in the most difficult cases. The PIM-M 
has 256 processors, so any search with fewer than 
256 branches is too trivial to keep it fully occupied. 
This accounts for the fact that in some cases the 
increase in time as the problem size increases is less 
than the increase in the number of branches. Where 
the problem size was sufficient to make paralleliza-
tion worthwhile, however, almost linear speedup 
was achieved, since the OR-parallel computation re­
quires almost no inter-process communication. 

The new theorems are likely to be useful in research on 
the motivating problems from design theory [Bennett, 
1989]. Already we have been able to use the positive 
result of QG6.9, that 9 belongs to the spectrum of the 
equation xy.y — x.xy, to improve the results of Theorem 
7.28 in [Bennett and Zhu, 1992]. From the list of possible 
exceptions, we can now show that all of 33, 45, 65, 68, 
72, 81, 89, 105, 108, 117, 129, 153, 156, 168 and 177 
are in the spectrum. Combining this with the computer-
generated results, we now know that the latter does not 
contain 2, 3, 5, 6, 7, 10, 11, 12 but that it does contain all 
other values of n = 0 or n = 1 (mod 4) with the possible 
exceptions of 17, 20, 21, 24, 41, 44, 48, 53, 60, 69, 77, 
93, 96, 101, 161, 164 and 173. The negative results are 
harder to use in this way, though they do help to focus 
the search for exceptions. 

We wish to remark that the order 12 case of problem 
QGl would be the most interesting to see solved, since 
a solution would confirm or remove the only remaining 
undecided order for the existence of a (3,2,1 )-COILS(?;), 
which is an extremely simple and natural construction. 
The order 12 cases of problems QG3 and QG4 would also 
be interesting, since a solution to either problem would 
similarly complete its spectrum. Wi th respect to these 
problems, however, order 12 is too large for our current 
technique, as may be seen from the results in table 3, 
and so these problems remain open and just out of reach. 
The order 10 cases of QG3 and QG4 could probably be 
done, given many hours of computation time on PIM-m, 
but there would be rather l i t t le point to such an exercise 
since the results are known. 
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4 Append ix : Fur ther Research References 
Since the above was writ ten, we have continued to work 
on the seven problems described in this paper and some 
cognate ones. In this we have been joined by Mark 
Stickel of SRI. The full results of our more recent re­
searches wil l be published in due course in the math­
ematical literature, and the computational aspects de­
scribed more fully in a longer paper (in preparation) but 
a summary should be appended here. 

We have used three programs: MGTP, our general 
constraint satisfaction program FINDER [Slaney, 1992] 
and an implementation of the Davis-Putnam algorithm 
for solution of ground satisfiability problems. Each of 
these programs has now been successful in solving open 
problems concerning finite quasigroups. The most im­
portant of the recent results are positive solutions to 
QG3.12 and QG4.12. In each case, idempotent struc­
tures were discovered. These complete the spectrum for 
QG3 and QG4, and of course also for the associated 
classes of block designs and other combinatorial struc­
tures as detailed in [Bennett and Zhu, 1992]. We are far 
from being able to exhaust the search space for order 
12 of these problems in a reasonable time, but we have 
been able to see far enough into it to solve the existence 
problems. 

Another construction of value in determining the spec­
tra of classes of finite COILS is that of an incomplete 
model. This is a quasigroup with a smaller subquasi-
group missing. The postulates such as idempotence and 
any special equations are required to be satisfied except 
where some subterm falls into the 'hole'. We looked for 
incomplete models as well as for complete ones. 

The full list of previously open cases of QG1 QG7 now 
closed by one or other of the three programs is as follows. 

Q G 2 Incomplete model of QG8.2 (order 8 with missing 
sub-square of order 2) does not exist. 

Q G 3 Idempotent models of order 12 exist. 
Q G 4 Idempotent models of order 12 exist. Incomplete 

idempotent models of orders 10.2 and 11.2 exist. 
Q G 5 No model of order 10 exists. No idempotent model 

oforder 12, 13 or 14 exists. No incomplete idempo­
tent model of order v.k exists for 1 < k < v < 12. 

Q G 6 Model of order 9 exists. No model of order 7, 10, 
11 or 12 exists. No incomplete idempotent model of 
order v.k exists for 1 < A: < v < 12. 

Q G 7 No model of order 7, 8, 10, 11 or 12 exists. 

One additional negative result is that there is no self-
orthogonal idempotent quasigroup of order 12 satisfying 
the equation 

a(ba) = b 
It is known that there are such quasigroups of every order 
congruent to 1 (mod 3) except order 10, and that there 
is no such quasigroup of order congruent to 2 (mod 3). 
It is not known whether there is one of order congruent 
to 0 (mod 3). 
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