Extending the Resolution Method with Sorts

Christoph Weidenbach*
Max-Planck-Institut fur Informatik
Im Stadtwald
6600 Saarbrucken, Germany
email: weidenb@mpi-sb.mpg.de

Abstract

In this paper | extend the standard first-order
resolution method with special reasoning mech-
anisms for sorts. Sorts are unary predicates.
Literals built from unary predicates are called
sort literals. Negative sort literals can be com-
piled into restrictions of the relevant variables
to sorts or can be deleted if they fulfill special
conditions. Positive sort literals define the sort-
theory. Sorted unification exploits the sort re-
strictions of variables with respect to the sort
theory. As occurrences of sort literals are not
restricted, it may be necessary to add addi-
tional literals to resolvents and factors and to
dynamically change the sort theory used by
sorted unification during the deduction process.
The calculus | propose thus extends the stan-
dard resolution method with sorted unification,
residue literals and a dynamic processing of the
sort information. | show that this calculus gen-
eralizes and improves existing approaches to
sorted reasoning. Finally, | give some appli-
cations to automated theorem proving and ab-
duction.

1 Introduction

One promising approach for increasing the strength of
automated reasoning systems is the integration of theo-
ries into the standard first-order resolution calculus. For
special theories there are more efficient methods than
standard resolution. One theory that has been investi-
gated is the theory of unary predicates called "sorts", see
e.g. the logics of Beierle et al. [Beierle et al, 1992], Cohn
[Cohn, 1992], Frisch [Frisch, 1991], Schmidt-SchauB
[Schmidt-Schaufi, 1989], Walther [Walther, 1987], or
Weidenbach et al. [Weidenbach and Ohlbach, 1990]. All
these approaches offer special language constructs and
reasoning facilities for sorts. They differ in the restric-
tions imposed on the sort theory and the way the sort
theory is processed. This will be discussed in more detail
in Section 4. In the following 1 will explain why the ap-
proach presented in this paper generalizes and improves

*This work was supported by the ESPRIT project 6471
MEDLAR of the European Community

60 Automated Reasoning

existing results. What all approaches have in common is
the incorporation of sorted reasoning in the unification
algorithm. Here is an example for sorted resolution in
comparison with standard resolution.

The database A consisting of the clauses

A

(1) Man(pecter)

(2) Man{z} = Human(z)

(3) Human{y) = Human{father(y))

(4} Human(y} A Human(z) = Love(y,z)

can be represented in a sorted formalization by the
database A’ of clauses:

Al

(1} Man(peter)

{2) Human(xpsn)

(3) Human(father(ynuman))
(4) Love(ynuman, ZHurman)

An immediate difference between A and A’ is that A’
contains fewer literals. The negative sort literals (2)1,
(3)1, (4)1 and (4)2 of A are replaced by restrictions on
the variables. (In order to refer to clauses and hterals
the clause number and the position of the literal in the
clause are used. Thus (4}1 refers to the literal Human(y)
of clause (4).) Second, there are infinitely many non re-
dundant resolvents derivable from A (e.g. clause (3) with
itself) whereas in A’ no resolution step is possible at all.
In order to derive the query Love(peler,father(peter))
from A and A’ the clause

(5) ~Leve(peter, father{peler))

15 added to the databases. Using A four resolution steps
and one factorization step are needed, whereas using A’
one single resolution step between (5)1 and (4)1 yields
the empty clause. Sorted unification checks whether the
terms peter and father(peter) are of sort Human. This
can be done by exploiting the sort theory consisting of
the positive sort literals (1)1, (2}1, and (3)}1 of A’. Thus
third, the sorted approach succeeds with fewer inference
steps. This simple example demonstrates the advantages
of sorted reasoning compared to standard resolution.

In general, the sorted unification algorithm is more
complex than standard unification. As compared to

standard resolution this has to be taken into account.
For nearly all examples the behaviour of sorted uni-
fication is not harmful. In particular, for sort theo-
ries that are difficult the sorted unification process is
much more efficient than standard resolution. This will
be explained in Section 4. For A’ the complexity of
sorted unification is the same as for standard unifica-
tion, A’ is a simple database. It can be processed (after
translation in the respective formalism) in the described
way by all approaches mentioned above [Beierle et al.,
1992; Cohn, 1992; Frisch, 1991; Schmidt-Schaufi, 1989;
Walther, 1987; Weidenbach and Ohlbach, 1990]. For the
next database A” this is not the case. The unary predi-
cates Man and Woman cannot be represented as a sort
in the logics of Frisch, Schmidt-Schaufi, and Walther.
They can be represented in the logics of Beierle et al.,
Cohn, and Weidenbach, but their calculi consist of more
rules other than the usual resolution and factorization
rule. In this paper | will show how any unary predicate
can be processed as a sortjust by modifying the standard
resolution method. Now consider A*:

A

(1) Man(peter) ¥V Woman(peter)
(2) Love(Xman ,mary)
(3) Love(ywoman, Paul)

(4) ~—Love(peter,paul)

From A" the query Love(peter, mary) must be derivable.
Adding the clause (5) -Love(peter, mary) to A" offers
only two resolution possibilities between (4)1 and (3)1
and between (5)1 and (2)1. For the two resolution steps
sorted unification has to guarantee that peter is of sort
Woman or peter is of sort Man, respectively. Clause
(1) is valid if peter is of sort Man or peter is of sort
Woman. Therefore at least one declaration of clause
(1) has to be considered for sorted unification. For &/,
the sort theory consists of sort literals occurring in unit
clauses. Now it becomes obvious that considering such
sort theories is too restrictive to get a complete calculus.
From every clause consisting of positive sort literals ex-
actly one literal must be chosen for the sort theory (see
also Theorem 8). For A" if we choose (1)1, Man(peter)
as the sort theory, from (5)1 and (2)1 we derive by reso-
lution (6) Woman(peter). The literal Woman(peter) is
the result of sorted unification, because (1)1 is not the
only literal of clause (1). Clause (6) subsumes clause (1).
The sort theory must be changed to the sort literal (6)1,
Woman(peter). Then the empty clause is derived from
(4)1 and (3)1.

The example demonstrates three important aspects of
the resolution method extended with sorts:

* A notion of "conditional well sortedness" is needed,
where the additional literals of declarations com-
ing from non-unit clauses are collected. (See Sec-
tion 2.2.)

* The declarations considered by sorted unification
have to be changed dynamically during the deduc-
tion process. (See Theorem 8.)

* From each clause which consists of declarations only,
at least one declaration must be chosen for sorted

unification in order to obtain a complete calculus.
(See Theorem 8.)

The next section introduces the new sorted resolu-
tion method. The method is applied to two examples
in Section 3. Section 4 relates the new sorted resolu-
tion method to existing work in a more abstract way.
The paper ends with a short summary in Section 5. All

roofs are omitted and can be found in an internal report
p\/\/eidenbach, 1991].

2 The Sorted Resolution Method

The starting point of the new method is the standard
resolution method for first-order logic. First, the stan-
dard syntax is extended with sorts. Then the notion of
well sortedness is introduced. Finally, the modified res-
olution and factorization rule and the sorted unification
procedure are presented.

2.1 Syntax and Semantics

Syntax: The standard signature T consisting of the sets
Vx, Pg, Fx of variables, predicates, and functions respec-
tively, is extended in the following way. Unary predicates
are called sorts. St is the set of all sorts (Sg C Pr). The
function S, $: Vg — SgU{T}, where T ¢ E, maps vari-
ables to sorts such that for each sort § € SgU {7} there
are infinitely many variables £ with S{z) = 5. In ex-
amples (as in A’, A"} it is indicated that a variable z
has sort S by writing 5. I not stated otherwise, vari-
ables not annotated with a sort have sort 7. Terms,
literals, clauses, formulae and substitutions are defined
m the usual (unsorted) way. Literals built from sorts
are called sort lhierals. Positive sort literals are called
declarations.

With DOM{c):= {z | xo # z} we denote the finite
domain of a substitution ¢. Specific substitutions are
described by their variable-term pairs, e.g. {x +~ a} de-
notes the substitution z maps to a.

The function ¥V maps terms, formulae and sets of such
expressions to their variables.

Semantics: The semantics of sorted variables is given
by the two relativization rules

YeF — Yy(S(y} = Flz—y))
JzF — 3y (S(y) AF{z— y})

where ${z) = §, §# T, 8(y) = T and y does not occur
in the formula F. Variables of sort T (the top sort) have
the same semantics as standard variables. If the first
relativization rule is applied to A’, A is obtained. The
database A is special case of a sorted database where all
variables have sort T.

2.2 Conditional Well Sorted Expressions

The processing of A" showed the need for an extended
notion of well-sortedness. A conditional well sorted ex-
pression consists of a well sorted expression in the usual
sense [Schmidt-Schaufi, 1989; Frisch, 1991] plus a set
of literals. Conditional expressions are written with a
prime.

Weidenbach 61

Definition 1 {Conditional Expressions)

A pair (L,C) is called a conditional declaratron (con-
ditional term, conditienal substifution} if C is a finite set
of literals and L a declaration (term, substitution).

The next step is to define what we mean by a sort
theory. A sori theory L is a set of conditional declara-
tions, The noticn of well-sorted terms and sorted unifi-
cation is defined with respect to a sort theory £. The
sort theory is always a part of the database (signature),
although it is separated away and static in nearly all
approaches known so far [Stickel, 1985, Walther, 1987;
Schmidt-SchauBl, 1989; Biirckert, 1991; Frisch, 1991,
Beierle et al., 1992; Cohn, 1992). In this approach the
sort theory is chosen dynamically from the database. In
the course of generating new clauses it may happen that
the sort theory changes (see A”). Nevertheless we can
assume that £ is always finite and all conditional dec-
larations are variable disjoint. The following definitions
are presented with respect to a fixed sort theory £.

Definition 2 (Conditional Well Sorted Terms)
The set of conditional well sorted terms (abbreviated
by cws. terms) 75 of sort S is recursively defined by:

o for every variable z € Vg, (x,0) € T5(,,

e for every conditional declaration (S{t),C) € L,
t.C)eTs

+ for every conditional well sorted term ({,C) € 75
{S # T), substitution o:= {z) — t1,...,zn — L},
with {1;,C;) € Ts(,.) for all 1, {U' C;) € D for some
finite set of literals D, (to, Co U D)€ Ts

» for every term t we have (¢,0) € Tr

We define 7¢: = {(t,8) | (¢,8) € Ts}. The relation C
denotes the subsort relationship. If 5 and T are sorts,
then we define § T T ifl there exists a variable £ with
S{z) = Sand z € Tp. A sort S is called empty if Ts
does not contain a ground term. A conditional substi-
tution o' = (7, C) is called conditional well sorted if for
every z; € DOM (), (ziv, () € Ts(¢,) for some C; and
(U; Ci} € C. The composition of two cws. substitu-
tions can be computed by r'o’:= (re, Ko U C), where

= (a,C), 7 = (1, K). The result of the composition
18 again a cws. substitution. Thus the set of all cws.
substitutions forms a monoid.

The relation C and the test whether a sort is empty
can be decided in linear time with respect to the number
of declarations in £. The qu&stion whether a term t is
included in Ts for some sort S is decidable in at most
O{n? + m) time where m = |L| and n is the number
of symbols in t [Weldenbach 1993]. This is important
because these relations are frequently needed in sorted
vnification and for the application of the resolution rule.

Example: Applying Definition 2 to A’ with
£ = {(1}1‘(2)1,(3)1}: Tran = {(peter,9), (z1,9),
(z2,0),...} where S(z;) = Man and Thuman = Tian U
{(fether' (peter), 8), (father'(3;),9), (41,9), (12,9),...}
where S{y;) = Human and Man C Human, Man C T,
HumanC T.

Applying Definition 2 to A” with £ = {(1)1},
TMan = {(21,0), (22,0), ..., (peter, { Woman(peter)})}

62 Automated Reasoning

with S(2;,) = Man. Twoman = {{ws.0)} with S{y,) =
WomanA The sort Woman 1s empty. If we choose

= {(1)2} the sort Man would be empty and Twoman
contalns the term (peter, { Man(peter)}). For a complete
resclution calculus it suffices to chocse exactly one of the
literals {1}1 or (1)2.

The algorithm COMP compiles negative sort into vari-
able restrictions. This is done with respect to the sort
theory L consisting of all declarations which occur in a
unit clause. COMP is a generalization of the sort gener-
ating algorithm SOGEN suggested by Schmidt-Schau8
[Sechmidt-Schauf, 1989].

Algorithm 3 (COMP) The input of the algorithm 1s
a database of clauses A.

(1) Select all declarations occurring in unit clauses for

(2) For every clause C = =T(z) v C":
(a) if §(z) C T and S(z) is not emply or z €
V(C"), delete ~T(z)
(b) f T C S(x) and # € V(') replace by
C'{x o yr}
{c} 1f a new unit clause containing a declaration is
derived, add the declaration 1o £

COMP i1s an cfficient algerithin in at most Ofm®) titne
where = |A| for some database A,

Example: Applying COMP to A results in A’. The
only declaration occurring in a unit clause is Man(peter},
whence £ = {(1)1} (Step 1 of COMP). By Definition 2
the sort Man is not empty and Human is empty. Step 2
of the algorithm is now applicable to (2)! because Man C
T. A new unit clause 18 derived and the declaration
Human(z pran) is added to £. Now the sort Human is
not empty and Step 2 is applicable to (3)1, (4)1, and
(4)2 of A resulting in A’

2.3 Sorted Resolution

for the definition of the sorted unification procedure
GSOUP (General Sorted Unification Procedure) the
standard notions of unification theory (see [Siekmann,
1989]) are used. The input of the unification procedure
is a unification problem I' = {s; = {, ..., 8, = {,}.
I' is called solved if it has the form T = {z, = 1,, ...,
Zn = tn}, where z; # z; fori # j, z; ¢ V(t;) for all 4
and j, and t; € Tg(;,) for all ©.

Definition 4 (GSOUP} The f{ollowing five sorted
rules (see Table 1) and the six standard rules Tautol-
ogy, Decomposition, Application, Orientation, Clash,
and Cycle (e.g. see [Siekmann, 1989]) are applied to the
unification problem I' until it is solved or the problem is
found to be unsolvable.

In order to compute a cws. substitution from a solved
unification problem, we have to do the following. Let
['= {#1 = t1,...,2n = ta} be the solved unification
problem, then o: = {2y + ¢,...,2, — t,} is the corre-
sponding unifier. ¢':= (o,C) is a cws. mgu if we have
(t;,Ci) € Ts(s,) for all i and C = U; Ci. From a solved
unification proLlem it may be possible to compute gev-
eral (but only finitely many) cws. mgu's.

. {=t}uT
d R Sl Sl
Sorted Fail STOP.FAIL
if there exists a variable y € V({z = ¢} UT) such that S(y) is empty or if ¢ ¢ T5(s)
and none of the rules Subsort, Common Subsort, Weakening VT, and Weakening VV
are applicable.
{z=y}uT
bsort _
Subsor (y=2)UT
ze Ts{y) and ¥ ¢ Ts'(z]
Common {z=y}uT
Subsort {z=z}u{y=z}uT
fS(z)=85 8Sy=T,8:z)=R z¢ T} and y ¢ 72 and R is 2 maximal sort with
RC S, RCT
- {z = f(ts,. . ., tu}}UT
Weakenin
VT 8 ‘{I=f{t],.-.,tn)}u{t]=S],,,.,£“=3|-;}UF
if S(2) = 8, z ¢ V(1 .., ta)), flt1, ..., tn) € T and there is a conditional
declaration (8'(f(s1,..., 8. N, C)E L, SC S
. {z=y}url
Weakenin
vV 8 {;r::f(sl,.,.,sn)}U{y:f(tl,,..,tn)}U{sl=tl,.‘.,sn=t,-,}UI‘
ifS(z) =8, SW=T,y¢ T and = ¢ ’TT! and there are conditional declarations
(S'(f(51, . su)) OYEL, S CSand (T(f{ty, ..., L)), D)EL,T'CT

Table 1: The Sorted Rules of GSOUP

Lemma 5 (GSOUP is Sound and Complete) Ifo’
is a conditional substitution computed by the procedure,
then ¢’ solves T and ¢’ is conditional well sorted. If ¥
is a cws. ground substitution solving T, then there is a
cws. substitution o' computed by the unification proce-
dure and a cws. substitution A, such that ¢’A’ = ' with
respect to V(T"). If in the rule Sorted Fail, the condition
concerning empty sorts is erased, the unification proce-
dure is complete with respect to all cws. substitutions.

Lemma 6 Sorted unification is undecidable and of uni-
fication type infinitary.

Lemma 6 is a worst case result. For restricted sort
theories better results are known (see [Schmidt-SchauB,
1989; Uribe, 1992; Cohn, 1992; Weidenbach, 1993]).
GSOUP can be implemented in a way such that it has
the appropriate complexity properties for restricted sort
theories.

For the resolution rule it is necessary to keep track
of the sorts S; occurring with the variables of the
parent clauses but not with the variables of the re-
solvent. Every disappearing S; must be non-empty
and the corresponding conditions have to be added to
the resolveni. For example, building a resolvent be-
tween -~ Love(Zasan, mary) and Love(z pqn, mary) by us-
ing £ = {{Man(peter), { Woman(peter)})} results in the
clause Woman(peter). Note that the unification prob-
lem T' = {2pan = zpan) i8 s0lved, (2pman, 8) € Tatan,
and the only cws. unifier is ({2 pan — ZMan},).
Definition 7 (Resolution and Factorization) The
tules are

P(ty, ...tV
Resolution P51, ..., 80) V Co
CilovCawVDVE
where ¢/ = (0, D) is a cws. mgu of P{ty, ..., 1,) and
P(s1, ..., 8a) and E is a set of literals {conditions) which

guarantees the sorts attached to variables accurring in
the codomain of & but not in Cy e vV Caor v 1) to be non-
emply.

: H PUI:---; t,.)VP(S]_,.‘.‘ .’s‘")V(-'
Factorization Pl TTye v Cav D
where o' = (o, D) is a cws. mgu of P{t,, ..., 1) and

P(Sl, .

The soundness of the rules follows immediately from
their form and the soundness of the unification algorithm
[Weidenbach, 1991]. The set E of non-emptiness con-
ditions can be computed using Definition 2 for ground
terms.

Y En).

Theorem 8 (Completeness Theorem) Let A be a
clause database. We choose £:= {(Si(ti), {Li1, ---
Lin,)} such that for each clause C; € A only contain-
ing declarations we choose exactly one declaration S;(t;)
with C; = S{(ti) v Li.l V... .VLi,,.

If A is unsatisfiable there exists a derivation of the
empty clause using resolution and factorization. The set
L must be updated every time a new declaration clause
is derived.

Weidenbach 63

3 Applications

The first application is a puzzle called "The Lion and
the Unicorn" which can be found in one of Smullyan's
books [Smullyan, 1978] and was previously discussed
by Ohlbach, Schmidt-SchauB, and Weidenbach [Ohlbach
and Schmidt-Schaus8, 1985; Weidenbach and Ohlbach,
1990]. The lion and the unicorn are strange creatures
which lie on certain days of the week and tell the truth
on the other days. The lion lies on Mondays, Tuesdays
and Wednesdays and the unicorn lies on Thursdays, Fri-
days and Saturdays. In order to solve the puzzle it must
be figured out what day we have if they both make the
statement "yesterday was one of my lying days".

In standard first-order logic the example is expressed
by 47 clauses with 109 literals. After the application of
COMP 47 clauses with 55 literals are left. The example
is complicated because it contains recursive clauses and
sort literals occur together with three place literals.The
query is

3z p (Lies(lion, zp, f(zp)) A Lies(uni, 2p, f(zp)))

which states that there is a day x when both the lion and
the unicorn say that yesterday was one of the days they
lie. The query can be further complicated by increasing
the nesting depth of the function / (for "yesterday").

Using existing sorted approaches not all sorts can be
processed by sorted unification due to the restrictions
imposed on the sort theory. A consequence is that solv-
ing the puzzle with these approaches compares to solving
the problem with the standard resolution method. We
solved the problem on a Sparc ELC workstation with
16MB using OTTER 2.2 and STOP 0.9 (Sorted The-
orem Prover- a first prototype implementation of the
new resolution method with sorts.). The table shows
the number of clauses generated and the time spent by
the provers in order to derive the query depending on
the nesting depth of the function / in the query:

Nesting OTTER STOP

Depth | #clauses | #seconds] #clauses | F#seconds
1 64600 600 22 6
2 181486 1800 I8 9
3 1367151 31000 11 10
4 fail tail 10 12
5 fail Tail 70 13 |

A second application concerns abduction. There are
many applications for automated reasoning where ab-
ductive reasoning has to be applied. Of course, when
using abduction one is interested in finite representa-
tions of answers. Demolombe and Farinas [Demolombe
and Farinas, 1991] proposed an inference rule, called
L-inference, which can be used to automatize abduc-
tive reasoning. The L-inference rule is a special reso-
lution rule. | will show that extending this rule with
sorts allows the generation of finite answers to abduc-
tive queries, where the standard rule without sorts com-
putes infinite answers. Assume the query "Which as-
sumptions guarantee that Love{x,y) holds ?" is asked
to the database A (see Section 1). Applying the stan-
dard rule amounts to compute all resolvents between the

64 Automated Reasoning

clause
L{z,y) vV =Love(z, y)

and the clauses in A. The literal L{xy) is an extra
literal introduced by Demolombe and Farinas method
which is used to collect the instantiations made to the
variables in the query literal. It is possible to derive
infinitely many non-redundant clauses, e.g. clauses ofthe
form

L(father'(z), father’ (y)) V — Human(z) V ~ Human(y)

Applying L-inference to A’ the only possible resolution
step uses clause (4) and results in

L(yHuman y zHuman)

Thus the sorted answer is that two objects love each
other if they are humans. This is the natural answer.
The example demonstrates that the resolution method
with sorts terminates in more cases and derives natural
answers.

4 Discussion

The approach of Schmidt-SchauB [Schmidt-SchauB,
1989] extends Walther's work [Walther, 1987]. The res-
olution method with sorts is an extension of Schmidt-
SchauB's approach. If all declarations occur in unit
clauses and all negative sort literals can be compiled
by COMP then all conditional parts of cws. terms are
empty. If in addition all sorts S are non-empty, the
resolution method with sorts is the same as Schmidt-
SchauB's order-sorted resolution calculus.

The framework presented by Frisch [Frisch, 1991] is
more restricted than my approach. He separates the
sort theory from the database. A sort theory is built
from sort literals only and must be equivalent to a Horn
theory. Sort literals are not allowed to occur with other
literals in the database. As a consequence all sorts are
a priori assumed to be non-empty. In addition, he does
not answer how the sorted reasoning is to be performed,
which in my approach is done by the notion of cws. terms
and GSOUP.

The logic of Cohn [Cohn, 1992] also does not give
an answer how sorted reasoning has to be performed
(an oracle is assumed). He imposes no restrictions on
the occurrence of sort literals, but does not incorporate
declarations occurring together with other literals in the
sorted reasoning process. This leads to a calculus which
consists of more inference rules than the usual resolu-
tion and factoring rule. In addition, unifiers which are
not well sorted (with respect to Definition 2) have to be
considered for the inference rules also. Therefore, the
resolution method with sorts is much more restrictive in
the number of applicable inference steps.

The same arguments that hold for Cohn, apply to
the work of Beierle et al. [Beierle et al., 1992]. Al-
though he gives a fully developed calculus, his extended
order-sorted unification algorithm is nothing else than
unsorted unification plus the collection of a negative sort
literal for each component ofthe unsorted unifier. Hence,
his resolution method is also less restrictive in the num-
ber of applicable inference steps than the method pro-
posed in this paper.

Compared to the work of Weidenbach and Ohlbach
[Weidenbach and Ohlbach, 1990] | switched from a static
processing of the sort theory to a dynamic one. As a
consequence the number of declarations considered by
the unification algorithm has been reduced significantly.
The new method also needs fewer inference rules. Thus
the method presented in this paper is more restrictive in
the number of applicable inference steps than our own
previous work.

The frameworks of Stickel [Stickel, 1985] and Biirckert
[Biirckert, 1991] propose methods for integrating theo-
ries into the resolution method. The resolution method
with sorts is not an instance of these frameworks, be-
cause it is assumed that the theory is static during the
deduction process. The sort theory C changes during the
deduction process. This allows for less inference rules
and a more restricted calculus in the number of applica-
ble inference steps.

Sorted unification in our resolution method is unde-
cidable and of type infinitary (see Lemma 6). It is often
argued that unification procedures having this property
are not useful. But the result means that the sort the-
ory processed by sorted unification has this properties
in general. Hence the question is whether it is more effi-
cient to process the theory by the unification procedure
or by standard resolution. The notion of cws. terms pre-
vents sorted unification from performing inference steps
which are performed by standard resolution. In general
there may be infinitely many such steps. Thus using
GSOUP is much more efficient than weaker unification
algorithms combined with resolution.

5 Summary

Every standard first-order database can be thought of
as a database with sorts where all variables have sort
"any" (T). The algorithm COMP can be used to compile
negative sort literals into variable restrictions. If COMP
can save sort literals, applying the resolution method
with sorts is more efficient than standard resolution. If
COMP cannot save literals (all variables have sort T) the
resolution method with sorts derives exactly the same
clauses than the standard resolution method.

The resolution method with sorts generalizes and im-
proves existing approaches to sorted reasoning.

The resolution method with sorts terminates in more
cases than the standard resolution method. This is use-
ful for abductive reasoning, for example.

Acknowledgements

| would like to thank Alan M. Frisch, Renate Schmidt,
and the reviewers for many helpful comments on this

paper.

References

[Beierle et a/., 1992] C. Beierle, U. Hedstiick, U. Pletat,
and J. Siekmann. An order-sorted logic for knowledge
representation systems. Artificial Intelligence, 55:149-
191, 1992.

[Biirckert, 1991] H.J. Biirckert. A Resolution Principle
for a Logic with Restricted Quantifiers, volume 568
of Lecture Notes in Artificial Intelligence. Springer
Verlag, 1991.

[Cohn, 1992] A.G. Cohn. A many sorted logic with pos-
sibly empty sorts. In 11th International Conference on
Automated Deduction, CADE-11, LNCS 607, pages
633-647. Springer Verlag, 1992.

[Demolombe and Farinas, 1991] R. Demolombe
and L. Farinas. An inference rule for hypothesis gen-
eration. In Proceedings of the Twelfth International
Conference on Artificial Intelligence, pages 152-157.
Morgan Kaufmann, 1991.

[Frisch, 1991] A.M. Frisch. The substitutional frame-
work for sorted deduction: fundamental results on
hybrid reasoning. Artificial Intelligence, 49:161-198,
1991.

[Ohlbach and Schmidt-Schauss, 1985] H.J. Ohlbach and
M. Schmidt-Schauss. The lion and the unicorn. Jour-
nal of Automated Reasoning, 1(3):327-332, 1985.

[Schmidt-SchauB, 1989] M. Schmidt-SchauB. Computa-
tional aspects of an order sorted logic with term dec-
larations, volume 395 of Lecture Notes in Artificial
Intelligence. Springer Verlag, 1989.

[Siekmann, 1989] J. Siekmann. Unification theory. Jour-
nal of Symbolic Computation, Special Issue on Unifi-
cation, 7:207-274, 1989.

[Smullyan, 1978] R. Smullyan. What is the name of this
book ? Prentice-Hall, 1978.

[Stickel, 1985] M. Stickel. Theory resolution. Journal of
Automated Reasoning, 1(4):333—355, 1985.

[Uribe, 1992] T.E. Uribe. Sorted unification using set
constraints. In 11th International Conference on Au-
tomated Deduction, CADE-11, LNCS 607, pages 163-
177. Springer Verlag, 1992.

[Walther, 1987] C. Walther. A Many-sorted Calculus
based on Resolution and Paramodulation. Research
Notes in Artificial Intelligence. Pitman Ltd., 1987.

[Weidenbach and Ohlbach, 1990] C. Weidenbach and
H.J. Ohlbach. A resolution calculus with dynamic
sort structures and partial functions. In Proceedings of
the 9th European Conference on Artificial Intelligence,
pages 688-693. Pitman Publishing, London, August
1990.

[Weidenbach, 1991] C. Weidenbach. A sorted logic us-
ing dynamic sorts. MPI-Report MPI-1-91-218, Max-
Planck-Institut fur Informatik, Saarbriicken, Decem-
ber 1991.

Unification in
MPI-Report
Informatik,

[Weidenbach, 1993] C. Weidenbach.
sort theories and its applications.
MPI-1-93-211, Max-Planck-Institut fur
Saarbriicken, March 1993.

Weidenbach 65

