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Abstract

The aim of this work is to combine advanta-
geously the two existing approaches for theo-
rem proving in non classical logics: proving in
the considered non classical logic (called here
the direct approach) and proving in classical
logic by way of translation -called here the
translation approach. Some results in propo-
sitional S5 show evidence of the relevance of
this approach. We assume a translation from
S5 into first-order logic and then we define a
partial inverse formula translation from first-
order classical logic into S5. Semantic relations
are proved to hold between the backward trans-
lated formulas. We answer positively (for S5)
to one conjecture stated in a previous work by
the authors. An Interpolation Theorem stat-
ing a property stronger than refutational com-
pleteness is also proved. A plausible conjec-
ture stronger than the Interpolation Theorem
is proposed. These results are interpreted in
the framework of a slight variant of an exist-
ing resolution calculus for S5. We illustrate
our method on a simple example. Future work
includes applications of the approach to other
modal logics.

1 Introduction

The interest in non classical logics is now unanimously
accepted in Artificial Intelligence and in Computer Sci-
ence. Concerning the way to mechanize them, there are
two approaches:

. the direct approach: it consists of building (or us-
ing existing) specific proof systems for these logics (see
for ex. [Fitting, 1983; Enjalbert and Farinas del Cerro,
1989])

* the translation approach: a problem expressed in a
non classical logic (from now on called source logic) is
translated into classical logic (from now on called target
logic). The problem is therefore solved in the target logic
(see for ex. [Ohlbach, 1988]).

Each approach has good defenders -see for ex. [Thisle-
waite et al., 1988; Ohlbach, 1988]. The direct approach
naturally arose the first. Relating logics is a technique
that has been used in pure logical studies: in correspon-
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dence theory and in definability theory. It has been
also used in automated deduction for non classical log-
ics as an alternative to implement specific calculi for
each non classical logic and it is the theoretical founda-
tions of the second approach. Historically the innovative
work of E. Orlowska introduced the notion of resolution-
interpretability of a logic into another -see [Orlowska,
1980J. More recently A. Herzig and H-J. Olhbach (see
[Heme, 1989; Ohlbach, 1988] and a related work by M.
Chan [Chan, 1987]) emphasized the idea of logic mor-
phism, which is implicitly used in the previous work of
E. Orlowska. Their works in which unification plays a
central role were applied to several classes of modal and
temporal logics.

The two approaches have drawbacks -and obviously
advantages. The direct approach needs the construction
of new theorem provers whereas the translation approach
generates proofs from which the relation with the initial
problem is difficult to grasp. In this paper we contend
that the two approaches are not mutually exclusive but
can be profitably combined. We propose to build from
the proofs obtained after translation, partial (possibly
total) proofs in the specific systems for non classical log-
ics, with the help of inverse translations. So, it becomes
possible to add the advantage of the efficiency of theo-
rem provers for classical logics with that of presenting
results (in the present case partial proofs) in the source
logic. A computer system implementing this hybrid ap-
proach would allow the user to formalize his problem in
his favorite logic and to get a reasonable solution in the
same logic.

We do not consider in this work neither the problems
inherent to the translation approach such as the nature
of the classical logic into which the translation is done
(first-order logic, fragment of second-order logic ...), nor
the theoretical limits of translation (definability) or the
choice of proof systems for non classical logics -tableaux,
resolution, matings and so on.

In order to show how cooperation between the trans-
lation approach and the direct one is possible we shall
define a partial backward translation from classical first-
order logic (from now on abbreviated FOL) into propo-
sitional logic S5. Semantic relations hold between the
backward formulas and we shall show that some S5-
clauses that logically entail some backward translated
formulas, can be derived in a variant of the resolution



system RS5 [Enjalbert and Farinas del Cerro, 1989]. In
that way we shall answer positively (for S5) to one of the
conjectures stated in [Caferra et al., 1993]. Actually, we
shall study how the proofs in FOL can be useful to build
proofs in S5 with resolution methods.

There are different reasons to consider S5. S5 propo-
sitional formulas have a reasonable normal form -S5-
clauses in [Enjalbert and Farinas del Cerro, 1989]. It can
be used as a model of autoepistemic reasoning [Moore,
1985]. Moreover the translation from S5 into FOL we
shall use, is quite simple. Finally the problem of decid-
ing S5-satisfiability is only’ NP-complete [Ladner, 1977].

The paper is structured as follows. The next section
recalls the features for S5 we shall work on. In section
3 the inverse formula translation is defined and different
semantic results are presented to state the main theo-
rem on partially ordered sets of S5-formulas. Section 4
states a result similar to the "consequence finding theo-
rem" [Lee, 1967] for the inverse formula translation in a
variant of RS5. We also propose a plausible conjecture
related to this theorem. In section 5, a simple example is
fully treated. Finally we propose different ways to con-
tinue this work.

2 Preliminaries

We assume familiarity with the syntax and semantics of
propositional S5. The standard definitions of satisfia-
bility and validity will be used -see [Hughes and Cress-
well, 1968]. The set of well-formed S5-formulas will be
noted MFor. We now recall one normal form for the
S5-formulas [Enjalbert and Farinas del Cerro, 1989]. In
the sequel, by the term 'clause' (resp. 'literal') we shall
mean a clause (resp. literal) in the classical logic.

Definition: A S5-formula is said to be in conjunctive
normal form iff it is a conjunction of formulas of the
form: Cv Oy v ... vODy v OC, vV ... V T where
C and the Di's are clauses and the Cj's are conjunctions
of clauses. Each conjunct is called a S5-clausc. £

Fact 1 Every S5-formula is equivalent to a formula in
conjunctive normal form.

2.1 Translation into First-Order Formulas

The proposed translation is standard (see for ex. [Chel-
las, 1980; Miura, 1983]) and it preserves validity. The
translation ie based on the naive cne where the binary
predicate R for the accessibility relation is deleted. If F
denotes a Si-formula then 7T(F) denotes its translation.
We use an auxiliary function Tr with the profile. Term
x MFor — FOLFor -through all this paper 'term’ will
mean 'firsi-order term’. The constant ’aw’ stands for
“actual world” and T(F) = Tr(aw, F).

1. Te(t, P) = P(t) for P propositional variable

2. Tr(t, fAg) = Tx(t, DHATY(t, g)

3. Tr(t, =) = ~Te(s, 1)

4. Tx(t, Of) = V2’ Tx(s', f), 2’ is a new variable symbol
5. Tr(t, Of) = 3z” Tr(z", f), 2" is a new variable symbol

Fact 2 A formula f is S5-valid sff T (f) is FOL-valid.

'The satisfiability problem for usual logics such as S4 has
a higher complexity

Notatlion: A first-order literal will be noted either Q(1)
or 8P(l), with s € {A, =} (A the emply string), P a
predicate symbol, 1 a list of terms and Q a predicate
symbol preceded by one element of {A, =}.

2.2 A Resolution Proof System

We recall the rules of the elegant resolution system RS5
defined in [Enjalbert and Farifias del Cerro, 1989]. D,
¥, C and C' denote clauses, E a conjunction of clauses
and the symbol ', is a cenjunctive operator.

’ ’ T
3¢-rule %%Q if | and ¥ are

complementary literals

CvD(pv D) C'vD(-pvD’)
O0-rule oveNO(Dv DY) :

CvogEvD ~pv D' E)
o‘rule CvolvD pvD ~pv D',
[C-rule CVD('Eeé,vD YL ifland ' are complemen-
tary literals
Clas-rule Q’?’fﬂv"ﬂ (resolution rule for classi-
cal logic),
Fact-rule %ﬁ (factoring), (] L-rule 67".5'—1,
0 i-rule M(L:i.ﬁl

RS5 is a variant of the system RT [Enjalbert and Far-
ifias del Cerro, 1989] for the logic T on which the special
form of the S5-clauses has been taken into account. Ev-
ery modal formula without nesting of modal operators
is S5-satisfiable iff it is T-satisfiable. RS5 is sound and
complete for the refutation [Enjalbert and Farifias del
Cerro, 1989].

3 Partial Inverse Formula Translation

The proposed partial inverse translation transforms
FOL-formulas into $5-formulas. It applies to the set of
first-order clauses that are deduced from the translation
of 85-formulas. We shall note Rpop the operator giving
the set of all the resolvents of two clanses and similarly
Froy for the factorization rule. The symbol Fg.,FoL
denotes the derivalion operator for classical resolution.

3.1 Definitions

Let § = {C),...,Cn} be a set of S5-clauses. We note
TC; the FOL-formuia T(C:} and T'C] the skolemized
(in the usual sense) form of 7C;. Only Skolem con-
stants (noted a,) are introduced. T'C has the following

form : Ay(aw)V ..V Knx(aw) V Li{z,) v .. v LT3 (z))
Voo v Lh(zg) v oV LR 2Ry v (ML (@) v . v
M (@)) A A (MY @)V MU 6, ))
VoV (M) (Vo VM al)) AL A (MY g (an)Y
v ML) ) 1)) where the a,’s are constants and

Lou(l)
the z;’s are variables. So from the formula T'C] we get

i, u(k) clauses.

Definition: Let S be a set of Sh-clauses equivalent to
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the S5-formula F. We note §’ the set of clauses generated
from S. Every clause ¢ such that §’ Fg..ror ¢ is called
a F-clause. &

A clause ¢ is a f-clause {generic term) if there is a
S5-formula f’ such that ¢ is a f’-clause with the above
definition. By definition we restrict the application of
the backward translation only to the f-clauses. Every f-
clause ¢ has the form: K,(aw)v ... V Ky(aw) v Li(z;)V

NIV v L (zx)v v L 2k ) VM (ey)

V. VMMa) v . v MEag)v. vMI ) ay).
Informally if ¢ is the inverse translation, then ¢(c) =

KiV VKNV O(L V..V ET OV v DLV v L)

vOMIv..vMPIY v voMiv.. v MT™). We now
define formally the partial inverse formula translation.
Backward translation for clauses

The principle of the backward translation is to gather
the literals that have some modal context in common. In
the particular case of S5, a modal context is simply a
variable, or a constant. For other logics such as 54 a
notmal form for the clauses must be found -see {Caferra
and Demri, 1992]). Indeed, the inverse partial formula
translation is basically defined for clauses and then for
the conjunction of clauses. We first define auxiliary func-
tions.

e generate-op(t) := if t is a variable then (O else ¢

e BCY:=aw% Cisaterm%

We extend £ to literals, clauses and sets of clauses.
Definition of ¢: Let D be a f-clause L), v .. v L,. We
define a partition with the literals of D, i.e., we define
the set of classes {C;,1 < i € k}. Moreover the classes
satisfy the following properties. For 1 < j < k,

1. Forall P.Q € C,‘, 9= tF Yy L; = s.'PL.'(!L') %

2. ForallPeC; and Q¢ C; 19 £ 7

It can be easily checked that the decompomtion in classes
is unique. The definition of ¢(D) uses a function & map-
ping a class § to a Sh-formula:

a({h, ,fp]) = % S= {f], .,,,fp}, f,' = s,-}-",-(r:.-) %

if cy = aw then 5,/ Vv ... V 5,F, else generate-
op{e1).V{si F; | 8; Pi(ci) € 5}

$(D) = oC1} V... V a(Cy).

Backward translation for conjunctions of clauses
The partial inverse formula translation is extended to
conjunctions of clauses. To do so, superclasses are de-
fined in so for as sets of classes. In order to compute
$(C1 A ... ACn) the partition {c}, ...,c*} is associated to
each clause C; and 50 is t(""4) for each class ¢]. The point
is now to compute superclasses considered as subsets of
the set {c], for 1 <1 < N, 1 < j € u,;}. A superclass
{ci],...,ci" } satisfies the following properties
l.forl<a<b<n i, #1

2. forl1 <a<b<n, e = bt and 151 o aw

By definition ¢/(SC)=generate-op(t(17 ) A {#(B(cli ),
1<k<n}

HOIA ACN) =V {{c], 1<j<N), t<i &
¥y, ., 1 €in <wun}and e({c1,....,e1}) := % the c;’s are
classes % if {c;,...,c;} does not contain any superclass
then a{c;) A ... A a(c;) then let {scy, ..., 5c4} be the su-
perclasses contained in {e;, ..., c;} %they are disjoint%
a(e1) A ... Aale)[sc; — ¢'(acy), ..., sea — ¢'(8cy)].
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For N = 1, we obtain the restricted definition for the
clauses. Moreover if no superclass can be found in ¢(C) A

...ACN) then =55 $(CL A...ACN) ¢ 6(CiIA... A$(Cn).

Fzample: A = Q(z) vV R(z) v M(a) V P{a),
B = P'(aw) v M'(a) (the only variable is 'x')
¢AY=0D(QVR)VO(MVP)
HAAB)= (OQVRAPIVIO(QVR)AOM IV(O(MV
PYAPYWOM(MVP)AM)
In A, the class {Q(x}), R(x)} has been considered as the
superclass {{P(a), M(a)}, {M'(a)}} in AAB.

The detailed proof of the next lemma as well as the
other omitted proofs of this paper can be found in [Ca-
ferra and Demri, 1993)].

Lemma 1 Let a and b be two f-clauses. It is decidable
whether f=55 dla A D) & d(a) A ¢(b) end ¢la A D) Ess
d(a) A ¢(b) holds.

This lemma can be extended for n clauses. Further-
more, the equivalence holds ifl the different clauses do
not share any Skolem constants.

3.2 Partially Ordered Sets of S5-formulas

The next lemma states that if the resolution or the fac-
torization rules are used then there exist semantic re-
lations in S5 between the backward translation of the
corresponding clauses.

Lemma 2 fLet a, b and ¢ be f-clauses. If b € Fpor (a)
then ¢fa) Ess &(t). If ¢ € Rpor(a,t) then ¢la A
b) =55 #(c).

The next proposition answers positively (for proposi-
tional S5) to conjecture 1 in {Caferra et al., 1993]: the
formula f entails the inverse translation of f-clauses.

Proposition 1 Let f be ¢ 55-formule equivalent to the
aet S of S5-clauses. Let S5’ be the set of clauses ob-
tained from the translation of 5. For all f-clause ¢, if

S' FResroL ¢ then f=gs ¢(c).

Proof: The proof can be obtained by using the results
about induced model in [Miura, 1983). Let SB = (W, R,
m) be a substructure of the 85-model (W, R, m, w). In
[Miura, 1983], it is shown that an induction trarslation
W can be defined for 55 such that Yu € W (SB, u) |ss {
it W(SB}(aw — u) Epgr Tr{f, aw). In the terminology
used in [Miura, 1983), (W(SB), u) is an induced FOL-
model.

Let I = (W, R, m, up) be a $5-model such that I sy
f{SB = (W, R, m)). We therefore get that W(SB}{aw
— wg) = Iy =ror T(f). We note I;o + Sko a model
with the interpretation of Skolem constants {the Axiom
of Choice is used here) such that Iy, + Sko Froc T(f)
and Ig.r + Sko [=por S'. Since the resolution is sound,
if S’ FResFoL ¢ then f]gl + Sko f:po;_ c.

We know that the clause ¢ has the format:
Pi(aw)V. VP (aw)VQi(z)V..vQT () V.. VvQL(z1)V
V@2 (za)VR(81)V .. VRT(a1)V..VRY}a1)V ...V

R‘;‘"(a,) where the z,’s are variables and the n;’s are

(Skolem} constants.
We get 11, lEroL (Pi(aw)V.. VP, (aw)) v (Y2, Q}(z1)V



L VQUE) Vo V (Y2a QL(21) V ..V @1%(2a)) V
EnRBRI M)V .. VR ) V .. V CypRplyp) V...V

Ry (vo)).

There exista a S5-clause ¢’ such that T{c') is equal to
the above formula modulo the renaming of variables. So
by umsing the equivalence relation of the beginning of this

proof, we get [ g5 . Q.E.D.

From the properties previcusly stated, we can build
from a deduction in FOL, partially ordered sets of S5
formulas semantically related to each other.

Theorem 1 Let I/ be a set of S5-clauses equivalent to f.
We note 5’ the set of clauses obtained from U by using
the iranslation T, the introduction of Skolem funciions
and the clgusal transformation. Let (1y,..., I} be a de-
duction from S' by resolution and faciorization. Then
there cxisis a partially ordered set -p.o.s.- (5§, I} such
that (conditions SC)

o 5 is a finite aet of S5-formulas with f, ¢(l,) € § and
I is a partial order on §

o If(f1g)then fEss g

e fis minimal i (S, I} and ¢(l,,) s mazimal n (5, 1)
o The non orienied graph (5, 1) connects f and ¢(1,,)

Proof: By induction on the number of steps s used to
deduce {,,.

Base Case : I, € 5" (6 = 0)

Proposition 1 states that { g5 ¢(i;m). The p.os. ({f,
#Im)}, {(f, 6(im))}) satishies SC -this p.os. tnvially
satisfies the conditions.

Induction Step

Let ({1,..., im) be a deduction such that /,, has been de-
duced in 841 steps.

Case | (I, € F(i;)): There exists, by the induction
hypothesis, (5;, [;) satisfying the semantic conditions
with ;. We consider the pos. (S {¢(im}}, U
{(¢({;),¢(Im))}. 1t can be easily shown that this struc-
ture satisfies SC for l,, -see Lemma 2.

Case 2 (I, € R{l;, It)}: There exists {(by the induction
hypothesis} a p.o.s. (S5;, I;) (resp. (S, Ii)) satisfying
SC for I; -resp. Ip. We consider the pos. (5 (JS: U
{605 AG(). 65 AL, 8 )}, I; U Te U 18U A 6L,
#(1;)), (6(5) A dlle), 6(k)), (9l A Ix)@(d;) A 61k }),
(8(f; A L), ¢(Ilm)}}). It can be easily shown that this
p.o.ks. satisfies SC for I, -see Lemma 1, 2. Q.E.D.

In the fourth condition the backward translation gen-
erates S5-formulas related semantically with the initial
formula f. In Corollary 1 we shall present a stronger
result.

The relationship between backward translated formu-
las should be compared with the definition of conse-
quence relation as a partial erdering on well-formed for-
mulas in [Scott, 19745‘.

The partial order may be total so that there exists
a sequence (fy,..., fu) such that for 0 < i < u ~ 1,
fi EEss fiy1 where fo = f and fu = é(lm). The fol-
lowing corollary states a sufficient condition to get such
a sequence.

Corollary 1 (Seguence of Semantic Entaiiments) If the

hkypothesis (lf L€ 'Rpo[,ﬂj, f;-) then ':55 ¢(fj A l';,) =S
&(1;) A &(ly)) is added to Theorem | then there exisls o

sequence (fo,..., Ju) such that far 0 < i<u-1, f; Ess
fiy) where fo = f and f. = é(im).

The sequence built with the proof of Theorem 1 is not
necessarily minimal. Iis length may be reduced as well
as the size of formulas. The condition 55 ¢(I; A ly) &
&(I;) A o(le) is decidable -Lemma 1.

4 Modal Consequence Finding and In-
terpolation

In Section 3, it has been shown that semantic relations
hold between the initial S5formula and the backward
translation of clauses obtained with classical resolution.
We shall show that 1n a variant of the resolution system
RS5 -called RS5'- a partial "consequence finding the-
orem” similar to the one in [Lee, 1967] can be found.
For a set of S5-clauses S, all the §5-clauses with a given
format that are logical consequences of S admit an in-
terpolant S85-clause derivable from S in RS5. Unfortu-
nately it cannot be extended to ail the S5-clauses -see the
counterexample in this section. A plausible result would
be to connect syntactic and semantic properties about
the backward translated formulas as it was mentioned in
[Caferra et al., 1993]. At that time, we ignored the re-
sult in [Lee, 1967] for the classical logic but we consider
that a aimilar result in the systems for the non-classical
logics would be a skilled criterion to compare diflerent
proof systems.

We shall call ('-rule the following rule S¥252 . We
call RS5 the system (RS5H\{G-rule})U{0O'-rule}. In
RS5', the O-rule is a derived inference rule and the ['-
rule is sound so 5% is sound and complete.

The following theorem gives conditions to ensure the
existence of an interpolant clause in the system RSH'.
Theorem 3 can be seen a8 a partial modal equivalent
of the so called “consequence finding theorem”. The
consequence finding problem is stated in [Inoue, 1991):

“Gaiven » set of formules T and & resolution procedure P,
for any logical consequence D of T, can P derive a logical

consequence O of T auch that C subsumes 7

The problem for classical logic has been solved in [Lee,
1967];

Theorem 2 (Consequence Finding) Grven a set S of
clauses, if a clause C is o logical consequence of S, then
for some n < 0. there exists a clause T € R™, such that
T tmphes C.

The above theorem can be seen as an “extended com-
pleteness theorem for resolution”, i.e., not cnly refuta-
tional completeness. The following theorem provides
conditions to ensure the existence of an interpolant
clause in the system RS55'.

Theorem 3 (Interpolation) Let S be a set of $5-clauses.
Let ¢ be a S5-clause with the format dvO(c,)v...vO(e,)
where d and the ¢;’s are clauses. If § =55 ¢ then there
erisls ¢ S5-clause ¢' such that S Fpsgr ¢ and & f=54 c.

The set S can contain any kind of S5-clauses.

2R™ ia the n'" resolution operalor
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Proof (sketch): The (constructive) proof is tedious. It
is based on the format of c, on the refutational complete-
ness of RS5 and on the proofs of the completeness of the
system RT [Enjalbert and Farinas del Cerro, 1989]. Two
base cases are distinguished and the general case com-
bines them. Q.E.D.

Corollary 2 {Lemma Discovery) Let S be a set of S5-
clauses equivalent to £ For all f-clause c such that ¢(c)
has the formal of Theorem 3, there exists cgy such that

StRoy css and cs5 s ¢(c).

We believe this result can be extended to every I-clause
with RS5, but we were not able to completely prove the
property stated in the following conjecture.

Conjecture 1 Let S be a set of S5-clauses equivalent to
fand c be a f-clause. Then there erists a S5-clause ¢’
such that Stgep ¢ and ¢’ =55 $(c).

If S is unsatisfiable then the information given by the
Interpolation Theorem is too weak®. However, if S is
minimally unsatisfiable, Corollary 2 and Conjecture }
can be relevant for any proper subset of 8.

Moreover RS5 is not strongly complete | i.e.. if S |=g5
¢ then S Fgrss ¢. Obviously, if § = {Q(P v Q), 0~ @}
then S hss OP and S Kgss OF -but S Fgss 0(-Q A P).
The natural deduction system in [Corcoran and Weaver,
1969] can be mentioned as an example of strongly com-
plete system, with S5-formulas instead of S5-clauses.

Furthermore Theotem 3 cannot be generalized to all
the S5-clauses: the following counterexample proves this.
S ={Qv{P,0R)} then S |=s5 @V (P AR) but there
is no Sh-clanse c,; such that S Fges c,5 and e,5 |55
QVO(PAR).

So, we cannot build an interpolant between any two
formulas f and g by using the system RS5. The alter-
native syntactic interpolation lemma presented in [Cz-
ermak, 1973] cannot be adapted to RS5 -see also the
related semantic interpolation lemma given in [Gabbay,
1972]. Conject ure 1 can be seen as an intermediate plau-
sible result between Theorem 3 and the modal equivalent
of the Lee's Theorem. Furthermore we conjecture that
Proposition 2 can be extended to RS5. We believe that in
spite of the relative lack of interest of consequence find-
ing in research of automated theorem proving for classi-
cal logics, results about modal consequence finding could
generate applications for Artificial Intelligence. That is
why we propose the following result with the hope that a
modal equivalent may exist for the system RS5 -or RS5"

Proposition 2 Let § be 6 minimally snsatisfieble sel of
propositional clauses. Let ¢ be a non tautological clouse
(#£ L). There ezisis ¢ clause d (# L) such that Stp.,pc
d and d [=pc ¢ iff Varprop(c) C Varprop(SP.

In the case of unsatisfiability, this is stronger than
Theorem 3. We conjecture this proposition has a modal
equivalent.

5 Example
*Empty clause as interpolant

! Varprop gives the set of propositional variables
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We illustrate on a simple example the results of the pre-
vious sections. We consider the valid Sh-formula { =
(O(A =2 0B)AO(C=> 0D)) = ((AvC)= O(BV D)).
From a proof in FOL, we construct a partially ordered
set of §5-formulas with - { as a minimal element and we
present a deduction in RS5 that enables us to apply with
{, Corollary 1 and Conjecture 1. The set of S5-clauses
S={AvC 0O~8 0-D 0BvO~A O-CVv(OD} is
equivalent to = f. The translation of § into FOL gener-
ates the set of clauses { A(aw}Vv Claw), -8(zy), ~[Nzq),
B(ay) vV ~A(z3), ~C(24) V D(az)}.

1

Dlaz)
~ C(x4) v D{a2)

C{aw)
{A(aw) v Claw) |

~A(x3)
B(at)v-A(x3) |

Figure 1: Refutation with classical resolution

From the proof in Figure 1, Lemma 2 and Theorem 1
we get a p.o.s. of Sb-clauses ; its construction is based
on Theorem 1. Moreover in this case Corollary 1 is ap-
plicable so we get the following sequence of semantic en-
tailments. Each formula of the sequence logically entails
the next one.

1.1

2. (AVC)A{O-B)AO~DA(QBYVO-A) A(O-CV O D)
3. AvO)AO-DA(D-CVODIAD-A

4. O0-DA(@-CVvoD)AC

5. 0-DAOD

6. 1

The properties of the previous sections allow us to built
other p.o.s. of S5-formulas. Furthermore we present a
refutation in RS5 -Figure 2. From Conjecture 1, every
backward translation of a clause in FOL admits an in-
terpolant in RS5. The proof in Figure 2 contains all the
required interpolants that are the backward translations
themselves but it is not always the case.

6 Conclusion and Future Work

With respect to the aims stated in Section 1, it has been
shown that from a standard translation of S5-formulas
into first-order logic it is possible to define a partial
inverse formula translation having interesting semantic
properties -Theorem 1, Corollary 1. The properties of
the inverse translation have been used to prove a theo-
rem concerning consequence finding in S5 using a vari-



“B Aal) vIO-A |
0-B

Figure 2: Refutation with the proof system RS5

ant of the resolution system RS5 -Corollary 2. Corollary
2 can be used as a syntactic criterion to guide proofs
in RS5'. We also answer positively to one conjecture
and partially answer to a second one -see [Caferra et ai,
1993].

The inherent limitations of our work are threefold.
The expressive power of propositional logic S5 is obvi-
ously limited. The extension of our results to first-order
S5 is not straightforward because there is neither In-
terpolation Lemma for first-order S5 [Fine, 1979], nor
reasonable normal form for all the quantificational S5-
formulas. We have shown that RS5 is incomplete for
consequence-finding. Finally it should be mentioned
that the computation of S5 normal forms remains ex-
pensive.

The main lines of future work are to prove Conjecture
1 of Section 4, to extend the present results to other
modal logics (K, S4 ...) with expectable increasing dif-
ficulties and to consider other proof systems -tableaux,
matings.

References

[Caferra and Demri, 1992] R. Cafer ra and S. Demri. Se-
mantic entailment in non classical logics based on
proofs found in classical logic. In CADE-11, pages
385-399. Springer-Verlag, LNAI 607, June 1992.

[Caferra and Demri, 1993] R. Caferra and S Demri.
Cooperation of direct and translation methods in
propositional S5 (long version), 1993. Forthcoming.

[Caferra tt ai, 1993] R. Caferra, S. Demri, and M. Her-
ment. A framework for the transfer of proofs and
strategies from classical to non classical logics. Stu-
dia Logica, 52(2), 1993.

[Chan, 1987] M. C. Chan. The recursive resolution
method for modal logics. New Generation Comput-
ing, 5:155-183, 1987.

[Chellas, 1980] F. B. Chellas. Modal Logic. Cambridge
University Press, 1980.

[Corcoran and Weaver, 1969] J. Corco-
ran and G. Weaver. Logical consequence in modal
logic: natural deduction in S5. Notre Dame Journal
of Formal Logic, X(4):370-384, October 1969.

[Czermak, 1973] J. Czermak. Interpolation theorem for
some modal logics. In Rose and Sheperdson, editors,
Logic Colloquium 75, pages 382-393. North-Holland
Publishing Company, 1973.

[Enjalbert and Farinas del Cerro, 1989]
P. Enjalbert and L Farinas del Cerro. Modal reso-
lution in clausal form. Theoretical Computer Science,
65:1-33, 1989.

[Fine, 1979] K. Fine. Failures of the interpolation
lemma in quantified modal logic. Journal of Symbolic
Logic, 44(2):201-206, June 1979.

[Fitting, 1983] M. C. Fitting. Proof methods for modal

and tntuitionistic logics. D. Reidel Publishing Co.,
1983.

[Gabbay, 1972] D. M. Gabbay. Craig's interpolation
theorem for modal logics. In Conference in Mathe-
matical Logic, London "70, pages 111-127. Springer-
Verlag, LNM 255, 1972.

[Herzig, 1989] A. Herzig. Raisonnement automatique en
logigue modale et algorithmes d'unification. PhD the-
sis, Universite P. Sabatier, Toulouse, 1989.

[Hughes and Cress well, 1968] G. E. Hughes and M. J.
Cresswell. An introduction to modal logic. Methuen
and Co., 1968.

[inoue, 1991] K. Inoue. Consequence-finding based on
ordered linear resolution. In 1JCAI-12, Sidney, pages
158-164, August 1991.

[Ladner, 1977] R. E. Ladner. The computational com-
plexity of provability in systems of modal proposi-
tional logic. SIAM J. Comp., 6(3):467-480, Septem-
ber 1977.

[Lee, 1967] R. C. Lee. A completeness theorem and a
computer program for finding theorems derivable for
given axioms. PhD thesis, University of California,
Berkeley, 1967.

[Miura, 1983] S. Miura. Embedding of modal predicate
logics into lower predicate calculus |I. Rassegna Inter-
nazionale Di Logica, 28:94-105, 1983.

[Moore, 1985] R. C. Moore. Semantical considerations
on nonmonotonic logic. Artificial Intelligence, 25:75-
94, 1985.

[Ohlbach, 1988] J.H. Ohlbach. A resolution calculus for
modal logics. In CADE-9, pages 500-516. Springer-
Verlag, LNCS 310, 1988.

[Orlowska, 1980] E. Orlowska.
their applications II. Fundamenta
3:333-362, 1980.

[Scott, 1974] D.Scott. Completeness and axiomatizabil-
ity in many-valued logic. In L. Henkin et al., editor,
Tarskt Symposium, pages 411-435, 1974.

[Thislewaite et ai, 1988] P. B. Thislewaite, M. A.
McRobbie, and R. K. Meyer. Automated theorem-
proving in non-classical logics. Pitman, 1988.

Resolution systems and
Informaticae,

Caferra and Demri 79



