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Abstract

We propose a translation approach from modal
logics to first-order predicate logic which com-
bines advantages from both, the (standard) re-
lational translation and the (rather compact)
functional translation method and avoids many
of their respective disadvantages (exponential
growth versus equality handling).

In particular in the application to serial modal
logics it allows considerable simplifications such
that often even a simple unit clause suffices in
order to express the accessibility relation prop-
erties.

Although we restrict the approach here to first-
order modal logic theorem proving it has been
shown to be of wider interest, as e.g. sorted
logic or terminological logic.

1 Introduction

Today's calculi for modal logics can be divided into two
main groups. The first group is concerned with the ex-
tension of already existing calculi for classical logic by
suitable additional inference rules. Typical examples
can be found in [Fitting, 1983] where the well known
tableau calculus and the sequent calculus are appropri-
ately extended and [Wallen, 1987] in which the connec-
tion method is utilized for reasoning within modal logics.

The other group tries to exploit the experience and
progress made in the development of classical predicate
logic calculi and defines a translation morphism from
modal logics to classical logic such that calculi which are
known to be efficient can be utilized. The simplest one
of those certainly is the so-called relational translation
method ([Moore, 1980]) which makes the implicit model
semantics explicit in the translation. Its disadvantage
lies in the size of the resulting formulae which get expo-
nentially bigger than the original ones.

Based on Wallen's ideas, Hans Jiirgen Ohibach and
others ([Ohlbach, 1989; Ohibach, 1991; Auffray and En-
jalbert, 1992; Farinas del Cerro and Herzig, 1988]) de-
veloped the functional translation approach which avoids
exponential growth of the translated formulae.

Here the number of clauses and literals inside clauses is
exactly as big as ifthe modal operators would have been
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ignored (although, of course, literals get bigger by the
addition of extra arguments). The disadvantage of this
approach lies in the handling of the modal theory (as e.g.
reflexivity, transitivity, symmetry, directedness) which
gets encoded by certain equations and thus requires a
rather strong equality handling mechanism. However,
some of these properties and their combinations allow
for the definition of suitable theory unification proce-
dures, although finding such an algorithm is indeed a
non-trivial task.

The approach proposed in this paper can be viewed
as a mixture between the relational and the functional
translation method. It is tried to combine their respec-
tive advantages and to avoid their disadvantages if pos-
sible. To be more precise, it consists of both, a rela-
tional translation which does not result in an exponential
growth in the number of clauses and a functional trans-
lation which does not require that the modal theory has
to be described by (more or less untractable) equations.

This paper is organized as follows: Section 2 is a brief
repetition of the modal logic syntax and model seman-
tics. In addition it describes the relational translation
formally. Section 3 is concerned with the definition of
what we call a functional simulator and its application
to the result of a relational translation. This result gives
rise to some considerable simplifications which are ex-
emplified in section 4. How this result can be extended
to varying domains and multiple modalities is shown in
section 4.6 and 4.7. Finally, in section 5, we summarize
the effect of the approach.

2 Modal Logics

It is out of the scope of this paper to give an overview
over modal logics in general. The reader not famil-
iar with modal logics is referred to [Chellas, 1980] and
[Hughes and Cresswell, 1968].

Nevertheless, at least the notions of interpretations
and satisfiability have to be repeated briefly, since they
will be needed in later sections.

By a modal logic interpretation ¥y we understand a
tuple ((W,R), Sioc, T, #) where W is a non-empty set of
worlds and R is a binary accessibility relation between
worlds, T is one of these worlds (the actual world), ¢ is a
variable assignment and Dyq¢ is @ mapping from worlds to
signature structures which consist of a domain and inter-



pretations for the given function and predicate symbols.

For convenience let us start with a constant domain
structure, i.e. we assume that the domains of the respec-
tive signature structures are all identical. Thus, if we
refer to some domain V we mean the domain common
to all signature structures. The case of varying domains
will be handled in section 4.6.

Definition 2.1 (Satisfiability} A modal logic tnier-
pretation Iy = (W, R), Do, 7. #) 15 said o satisfly a
Jormula ® if Qm M O, where = is recursively defined
as follows:

Im(x) = ¢(z)

Om(f(....4,...)) = f(...,9m(t),...)

SmEMP(. .. i P(..,9mk),..)

Om M OO iff Oumix] Em ® for every
world x with R(r, x)
Im Eu O if Swm(x} FEm ® for some

world x with R(r, x)

where Om{x| differs from Qm only with respect to the new
current world x and f (P) denotes the function (pred-
scale) assoctated with f (P) by the signature struciure
Siee(r). ) _ . .

1 he cases for the logical connectives and quantifiers are
just as in classical first-order predicate logic and are
therefore omitted here.

The various modal logics known from the literature
mainly differ in the properties associated with the re-
spective accessibility relations. The most common ac-
cessibility relation properties are reflexivity, symmetry,
transitivity, euclidity, seriality, directedness and linear-
ity. All of these properties but one (linearity) will be
handled in this paper.

2.1 Relational Translation

The idea behind relational translation is to make the
implicit semantical parts of modal logic explicit in the
predicate logic variant of the given modal logic formula.
Hence we assume a new sort W distinct from the domain
sort D, a new constant L which is supposed to represent
the actual (or current) world, a relation symbol R which
denotes the accessibility relation and, for every function
and every predicate symbol f (P respectively) a new
function symbol /' (predicate symbol P') which accepts
one more argument than f (P), namely a world (or ac-
tually a term representing a world).

The following definition describes the formula mor-
phism {®]. which accepts a modal logic formul®and
a term w (which denotes a world) and results in a first-
order predicate logic formula. It can be viewed as a di-
rect translation from the satisfiability definition 2.1 into
classical logic.

Definition 2,2 (The Formula Morphism |¢),)

[#]w =

£
ff(w;---.[tijw,...)

Gt Ye =

LPCotin. Yo = Pw,., [tnlws - )

(=] P = VoW R(w,v) = |®],
|OP [ w = JuW R(w,v)A [P,

The remaining cases are treated by the usual homomor-
phic extension. The initial call for the translation of an
arbitrary formula @ then simply is |®],.

This translation indeed behaves as desired We for-
mulize this by the theorem below. For a proof see eg
[Moore, 1980; Ohlbach, 1989; Nonnengart, 1992])

Theorem 2.3 Relational translation is sound and com-
plete, i.e. a modal logic formula & is satisfiable if and
only if [(bj‘ A Axioms is (predicate logic) satisfiable,
where Axioms denotes those formulae which stem from
the additional properties of the accessibility relation of
the modal logic under consideration (i.e. the accessibility
relation properties).

The big disadvantage of this relational translation lies
in the exponential growth of the resulting formulae such
that already fairly simple theorems can hardly be proved
because of the enormous search space. In the following
section we therefore introduce an alternative translation
method which has its origin in the functional translation
approach, but is rather a mixture between functional and
relational translation.

3 Functional Simulation

Given a binary predicate R it is possible to split R into
predicates R4, Ry ... such that each of the R; denotes
a (partially) functional relation. Intuitively this can be
done as follows: arrange the pairs which belong to R,
in a two-dimensional array such that every column is re-
sponsible for R-pairs with identical first element Having
completed this procedure the resulting field contains all
element pairs of R and each row of this field represents a
subrelation of R which is evidently (partially) functional
by construction. Thus, instead of (or additionally to)
reasoning with R we can reason with the respective sub-
relations from the above construction. Note that it is not
really necessary to consider the so generated elements
as relations (or partial functions). Since by construction
there are no more of them than denumerably many (pro-
vided R is denumerable) we can equally consider a new
sort of the same cardinality and a new function symbol
which is supposed to denote something like the apply-
function.

The following section provides with a formal defini-
tion of such functional simulators and some of its most
important properties.

3.1 Functional Simulators

Definition 3.1 (Functional Simulators) Let S5 and
T be two nom-emply denumerable sets and lel R be a
non-emply binary relation over S x T

Then define for any patrs {r,y) and {u,v) n § x T
(z,y) =~ (u,v) iff £ = u.

Obvtously = denoles an equivalence relafton. It s thus
possible to introduce equivalence classes || by:

{z, 1))/~ = {{v,v} € Ri(z,y) = (u,v)}
and
R/f-‘-s = {[(:ly)]/ﬂ i (x!y) € R’}
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Both [(z,y)]/w and R/p are denumerable, therefore
there exist surjective mappings 6 : Nat — R/s and
6; : Nat — 0(i}. Then define f; = {6:(j) | ¥ € Nat}.

We call Fr = {f; |  €Nat} a functional simulator of K
on S xT. An clement 5€ 8 is called normal wrt. R f
there exists a t € T such that (s,t) € R.

Now, given a denumerable binary relation R over SxT
and a functional simulator Fr of R we know by construc-
tion that

e Fg denotes a denumerable set of partial functions
fromSto T

e If v is normal w.r.t. R then for any f € Fg f is
defined on u and R{u, f(u)}) holds.

o If R is left-total, then Fg consists of total functions
and for any €S and any f€ Fr: R(u, f(u)) holds.

e For any u€ S and any v €T if R(u,v) then there
exists an f € Fgp such that f(u) = v

3.2 Application to the Relational Translation

In the sequel we assume that the modal logic formu-
lae are already transformed into negation normal form,
i.e. all implications and equivalences are removed and
the negation signs occur solely in front of the atoms.
Evidently, any modal logic formula can easily be trans-
formed into an equivalent one which is in negation nor-
mal form.

For convenience we also assume in the sequel that
we are dealing with serial modal logics unless other-
wise stated. The case of non-serial modal logics will be
broached in section 4.5.

Definition 3.2 (The Formula Morphism {®]%)
Let @ be a modal logic formula in negation normalform.

[O®)s =3f:Fr |®]},
In any other case |®|% behaves as [®f..

The notation u:f is used for readability instead
of apply(f, u). It is shorter and reflects the order
of the <-operators in the original formula. Thus,
for instance, the formula OOP gets translated into
3f: Fp3g: Fr P’(:9:f) where bracketing to the left is
assumed.

According to the functional simulator properties de-
scribed above we define the two simulator axioms Sim;
and Simg as:

Simy = VYu,v: W R(u,v) = Jz: Fruz = v

and
Simg = Yu: W Vz: Fg R{u,u:z)

What has been gained so far? It is not too hard to
see that the new formula morphism behaves as desired
provided the two simulator axioms 8im; and Simy are
added to the clause set. But Simj introduces an equality
and one might expect that equations devour all that has
been gained so far.

Fortunately it is not that bad. As the following theo-
rem shows this simulator axiom Simy is in fact superflu-
ous and thus merely the unit clause from Sim2 has to be
added to the clause set.
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Theorem 3.3 Let M be a (serial) modal logic and let ®
be a M-formula. Then

Em® if AziomsASim; EpL [®)F

where Axioms denotes the correspondence axioms for the
modal logic M and k=pL denotes the usual predicate logic
satisfiablity relation.

Proof: From Theorem 2.3 we know that

Em® iff Axioms py |®],

Thus, and because of the fact that for any R there exists
a suitable functional simulator, we obviously have that

Em

simply because under the assumption that FR is a func-
tional simulator of R (i.e. the simulator axioms hold), the
two formulae |®], and {@]F are logically equivalent. Re-
mains to be shown that 8im; is in fact superfluous. Writ-
ten in clause form $im gets: —R(u,v) V u:f{u,v} = v
where the symbol / is new to the whole clause set. As
it is known from the area of equality reasoning, it is
never necessary to paramodulate into or from variables.
Therefore the equality from Sim; needs to be applied
only from left to right. However, as a simple induction

iff Axioms A Sim A Sim; Epp (9]

translation contains a universally quantified FR-variable
and thus, no application of the Sim; equation from left to
right is possible. Since the one direction is not possible
and the other direction is not necessary we can simply
forget about the whole clause and we are done.

We have gained quite a lot already: there is no ex-
ponential growth in the number of clauses any more (in
fact, the number of clauses generated is exactly as big
as if we entirely ignored the modal operators as can be
shown by a simple induction; although the clauses them-
selves might get bigger of course) and the price to be paid
is merely the addition of a simple unit clause, namely
R(u,u:z) from Simy. Nevertheless, we can do even bet-
ter.

Another fairly easy induction shows that the result
of the translation of some arbitrary modal logic formula
does not contain any positive R-literals. This is remark-
able, for it allows to examine the theory clauses which
stem from the properties of the underlying accessibility
relation independently of the clauses produced by the
translation. And this indeed leads to some further con-
siderable simplifications.

4 Simplifications

The main idea behind the following simplifications is as
follows: since we know that the translation of modal logic
formulae into predicate logic produces clauses which do
not contain any positive R-literals, the only possibility
where we can have positive R-literals is via the accessi-
bility relation properties, i.e. via Axioms and Simgz

Call a clause positive in R if it contains no negative
R-literal and consider the set of clauses which are posi-
tive in R and which are derivable from Axioms and Sim2
by finitely many resolution steps. We call this set gen-
erated from Axioms and Simp then. Now it is not very



hard to see that the set generated from Axioms and Sim;
suffices as the modal logic theory since any negative R-
literal which occurs in Axioms can only be resolved with
the help of Axioms itself (and R(u, u:x) of course). This
means that any clauses which generate the same set will
do for our purposes as well. For more details see [Non-
nengart, 1992).

In the following application to some well known modal
logics we will make use of this fact. For historical rea-
sons we name the various modal logics with the help
of abbreviations for the respective accessibility relation
properties. Hence D is used for seriality, B for symme-
try, 4 for transitivity, 5 for euclidity, S4 for reflexivity
plus transitivity and S5 for reflexivity plus euclidity.

4.1 The Logics KD and KDB

Note that serial]ty is already covered by Sim2- For KD
there exists merely a single unit clause anyway and we
are already done.

For KDB a further unit clause can be derived between
Sim, and the symmetry clause which is R(u:x, u). Thus,
a single unit clause for KD (namely R(u, u:x)) and two
unit clauses for KDB (namely R(u,u:x) and R(u:x,u))
suffice for the description of the respective modal logic
theory.

4.2 The Logics KD4 and S4

Here the set generated by Axioms and Sim;, is infi-
nite. Nevertheless, its elements have a common struc-
ture which is R(u, u:xy . .. :x,) where n > 0 for S4 and
n > 1 for KD4. It is thus very easy to find an alter-
native clause set which generates exactly the same set,
namely the two-literal clause -R(u,v) V R(u,v:x) plus
R(u, u) for S4 and R(u, u:x) for KD4. The overall effect
of this translation is therefore that at least the transitiv-
ity clause gets simplified.

4.3 The Logics KD5, KD45, and S5

For these logics the generated set consists of the clauses
of the form R{u:z;...:2q, w4 ... Ym) where n,m > 0
for $5, n > 0 and m > 1 for KD45, and n,mm > 1 for
KD5. Again it would be very easy to find a suitable
clause set which generates the same clauses and which
is simpler than the original theory. However, we can
do even better if we exploit a useful result known from
the modal logic literature, namely that we are allowed to
consider only worlds which are accessible from the initial
world by finitly many R-steps. Thus, if we instantiate
the u from above with i and have in mind that any world
whatsoever can be described in the form tiyy ... :yn for
suitable instantiations of the y; we get R(u, v) for S5,
R(u,v:x) for KD45 and R(u:x,v:y) for KD5. These
unit clauses for S5 and KD45 even subsume Sim, and
hence their respective theories are determined by a sin-
gle unit clause. R(u:x,v:y) does not subsume R(u,u:x),
nevertheless it can be used for a simplification getting
R(i,i:x) (since all other cases are in fact subsumed by
R(u:x, viy). Note that these simplified versions nicely
reflect Segerberg's discovery ([Segerberg, 1971]) that S5
is characterized by the universal accessibility relation (a
non-degenerate cluster; therefore R(u,v) for all worlds

u,v) and that KD5 and KD45 are characterized by a
single world followed by a non-degenerated cluster with
the only difference that in the latter the single world has
access to any world in the following cluster whereas in
KD5 this is not necessarily the case.

Hence, the theories for S5 and KD45 are described by
a single unit clause respectively whereas the theory for
KD5 requires two simple unit clauses.

4.4 Other Interesting Properties

R is called directed if any two worlds which have a com-
mon predecessor in R also have a common successor in
R. The clause set generated by this formula and Sim2
is infinite. However, the special structure of translated
formulae allows to take the simple unit clause

Rlur, wy f(u,wz uy))

as a substitute for the directedness axiom. This can
be proved by showing that the application of any other
generated unit clause can be replaced by several appli-
cations of R{u:z,uy: f(u,wz,u:y)). In fact, this unit
clause nicely reflects our intention what the directed-
property is concerned for it states that for any two worlds
u:x and u.y (which are both accessible from u) there is
a world u:y:f(u, u:x, u:y) which can be accessed by u:x.

R is called dense if no world has a unique successor in
R (different to this very world). By a similar argument
to the above this property can be simplified to

R(u:g(y, u:z), u:z)

which states that for any u and any u:x accessible from
u there is a world u:g(u, u:x) between u and u:x; just as
we expected.

4.5 Non-Serial Modal Logics

In non-serial modal logics we are not any more allowed
to assume that each world is normal with respect to the
accessibility relation R. Hence, the simple unit clause
from Sim2 (which is R(u, u:x)) is not valid anymore since
it might happen that x is not defined on u. Therefore,
assume a new unary predicate M{u) which is supposed
to denote "normality". The simulator axiom Sim;, thus
has to be changed to N{u) = R{u,wu:x}. Moreover, the
information that certain worlds are normal has to be
reflected in the formula morphism which becomes:

[O®[% = N{w) A3S: Fr | R[5,

Unfortunately, some of the nice results we got for serial
modal logics are lost this way. So, for instance, we get
again an exponential growth in the number of clauses
after translation. Nevertheless, the simplifications from
above still work provided some N-literals are added at
appropriate places in the simplified clauses.

As an example consider the logic K45 which is char-
acterized by either a single unconnected worlds or a
frame as we know it already from KD45. Analogous
to the argument for KD45 we get the theory clause
R{u,v:z),~N(v), i.e. the successors of every normal
world can be accessed by any world.

Again, the reader interested in more details is referred
to [Nonnengart, 1992].
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46 Varying Domains
Recall that we assumed constant domains in the Defini-

tions 2.1 and 2.2.

If we want to take varying domains into account a fur-
ther predicate has to be introduced, namely one which
expresses existence of domain elements in given worlds.
Thus the relational translation changes to

\Vo: D @], Vz: D E(u,z) = [®).
{3z: D &}, 3z: D E(u,z) A | @)y

where the predicate symbol E denotes "existence". The
other cases remain as in Definition 2.2. The idea is now
to functionally simulate this E-predicate just as we did
for theRI-predicate before. Hence, let FE be a functional
simulator for E, the formula morphism changes to:

|32: D &% = 3y: F |®)5[z/uy]

where [®|%fz/u:y] means that every x in |@]¥ gets re-
placed by uyy. Note that we asume that no domain is
empty and therefore each world is normal with respect
to E. If there are no extra properties given for E then
the theory is simply reflected by the simulator axiom
E(u,u:x) where the x now ranges over FE-

Usually, however, one is not really interested in arbi-
trary varying domains. Often one considers either in-
creasing or decreasing domains, i.e. either nothing gets
lost or no elements get newly generated. The axiom for
increasing domains is

Vu, v:W ¥z: D E(u, z) A R(u,v) = E(v,z)

Note that again the translation from above produces for-
mulae whose clause normal forms do not contain any
positive E-literals. We therefore look for a suitable
simplification by examining the clauses generated by
E(u,2) A R(u,v) = E(v,z) and E(u, u:x). This results
in

B(u,z) = E{uv,z)

which states that if x exists in world u then it exists
in any world accessible by u as well. Interestingly this
theory clause is not only characteristic for increasing do-
mains in the logic KD but also for KT, KD4 and S4. For
the logics KD5 and KD45 we can get even simpler ax-
ioms because of their simple characteristic frames which
guarantee identical domains everywhere but possibly for
the actual world. This fact can easily be represented
by the unit clause E(u:x, v.y) (where x ranges over FR
and y over FE) which states that every domain element
(denoted by v:y) is known to any world apart from the
initial world i. For i itself we still have the unit clause
E(u,u:x) which can thus be simplified to E(i,i:x).

Decreasing domains can be worked out in a similar
manner. We omit here the technical details and just
provide the result of the possible simplifications. For the
logics KD, KT, KD4 and S4 we get the theory clauses
E(u,u:y) and E(u:z,2) = E(u,z) where y ranges over
FE and x belongs to FR and for KD5 and KD45 we get
the two simple unit clauses E(¢, ¢:2) and E{u, v:z:y) with
the FE element x and the FR element y.

In the non-serial case we are again not allowed to ig-
nore the "normality"-property. So, for instance, we get
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the clause N{u) = E(u:z,v:y) for K45 and K5, i.e. we
have to assure that the FR-variable x is indeed defined on
u. This evidently has to be done for any of the above sim-
plifications. We omit details here; the interested reader
is referred to [Nonnengart, 1992].

4.7 Multiple Modalities
4.7.1 A Simple Temporal Logic

Consider two KD4-modalities Op and Op where O
is responsible for the future and Qp for the past respec-
tively. Moreover assume that there is only one thing
said about their connection, namely that the associated
accessibility relations (i.e. the "later"- and the "earlier-
relation) are converse. Thus we have as a theory axiom:
RE(U, V) ¢ Rp(v, u) for any two worlds (time instants)
u and v. This leads to the following "time-theory":

Rp(u,uzF)
Rp(u,uzp)
Rp(u,v) A Rp(v,w) = Rp(u, w)
Rp(u,v) & Rp(v,u)

Because of the equivalence between Rr(u,v) and
Rp(v, u), it is not really necessary to consider both pred-
icates, i.e. we can for instance, replace any occurrence of
Rp in the translated formula as well as in the theory
axioms by Rr provided the arguments are reversed. We
thus get the theory axioms (where R is taken as a short-
formforRF):

Ru,uw:zp)
R{u:zp,u)
R(u,v) A R(v,w) = R(u,w)

With this we can now start our simplification process
which finally results in:

R{u, wzp)
R{u:zp,u)
R(u,v) = R{u,vzy)
R(u,v) = R(u:zp,v)

Whether or not these theory axioms should be prefered
to those from above is not merely a matter of taste. It
is indeed the case that the search space gets smaller in
the simplified case because the positive R-literal of the
transitivity axiom can unify with arbitrary negative R-
literals from the translated formula of the theory axioms
whereas the latter theory clauses do restrict this.

4.7.2 Multiple Agents

The logic KD45 seems appropriate for the forrnuliza-
tion of the Belief of Agents since it incorporates consis-
tency of beliefs (seriality axiom) as well as positive and
negative introspection (transitivity and euclidity axiom
respectively).

Now assume a set of agents where each agent's belief
obeys the KD45 properties. A first idea would be to
add the KD45 theory clause to the clause set for each
of these agents. However, since this would mean that
the KD45 properties hold over the whole world struc-
ture, we would automatically have that also each agent
considers his own and the other's agent's beliefs as con-
sistent with positive and negative introspection. Ifwe do



not want this, we have to assure that the KD45 proper-
ties only hold in the worlds which are accessible for the
respective agents. This can be done with the help of a
new predicate W which, given an agent and a world tells
us whether this world is accessible for the agent or not.
Formally: for all agents a and all g in Fg,

W,(t)
Walu) = Wo(u:z,)

where u ranges over the worlds of the whole universe and
Xa belongs to the functional simulator of 4 (agent a's
belief relation). Thus the respective agents theory of
belief is then given by

Wau) A Wo(v) = Ra(u,v:z,)

i.e. the KD45 axiom holds only for those worlds which
are accecssible for agent a. For all other worlds we still
have Na{u) =» Rq(u,u:z,) which states that nothing else
is assumed for the agent's beliefs. Finally, we have to
provide the correspondences between W and N which is
simply given by: Wa(u) = N,(u) (because of seriality).

Note that this technique also allows to express mu-
tual beliefs of many agents. To this end, we introduce a
mutual belief accessibility relation R!(B which evidently
must obey the KD45 properties as well (since each of the
agents does). Thus the simple unit clause Ryp(u, v:z,)
(for all agents a) will do for this purpose.

For more details on this issue the reader is again re-
ferred to [Nonnengart, 1992].

5 Summary

We proposed a translation method from modal logic into
first-order predicate logic which allows a considerable
simplification of the accessibility relation theory. This
approach is some sort of a mixture between the stan-
dard relational translation approach and the functional
translation method proposed by Ohlbach and others. It
shows to behave particularly nice in the application to
serial modal logics. So, e.g., the background theories for
the modal logics KD, KD5, KD45, and S5 get so sim-
ple that even a direct incorporation into the translation
morphism becomes possible.

A comparison between this approach and the fully
functional translation might be interesting at this stage.
For the logic KD both methods are identical as can easily
be checked. For S5, KD45 and KD5 the mixed approach
evidently works better (even if somebody is able to find
some suitable theory unification algorithm for these the-
ories) because of the simple background theory described
by a single unit clause respectively. What the logics
KDB, KD4 and S4 are concerned, we do not have a gen-
eral answer yet. We have to distinguish between theorem
provers which do allow the definition of arbitrary theory
unification algorithms and those which don't. In the lat-
ter case a rather strong equality handling mechanism
is necessary for the functional translation approach and
this might cause troubles for the prover. In the former
case the functional translation approach will be more ef-
ficient in general. Nevertheless, we can think of some
easy control strategy for the mixed approach in which
resolution steps between non-il-literals are allowed only

if the R-literals in the resolvent can be eliminated by the
theory clauses. We did not yet implement this, however,
there is some strong evidence that such a control strategy
makes the mixed approach behave only slightly worse (in
the worst case) compared to full functional translation.

This method (as it stands now) can only be applied to
modal logics which have first-order describable accessi-
bility relation properties. Part of our future work will be
to examine more properties and property combinations
which might be useful and/or interesting.
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