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Abstract 

The combination of induction axioms is investiga­
ted. It is shown how a pair of competing induction 
axioms (which e.g. are suggested by a heuristic of an 
induction theorem prover on a specific verification 
problem) are combined yielding a new induction 
axiom. The relation implicitly defined by the new 
axiom is the set-theoretic union of the well-founded 
relations implicitly defined by the induction axioms 
initially given. The proposed approach is non-heu­
ristic but safe in the sense that an induction proof 
with the new axiom can be obtained whenever an 
induction proof with one of the given axioms would 
have been successful. Based on a result of Bachmair 
and Dershowitz for proving term rewriting systems 
noctherian, a commutation test is developed as a de­
ductive requirement to verify the soundness of the 
combined axiom: It is shown how so-called commu­
tation formulas can be derived by machine from the 
given axioms such that a verification of these for­
mulas (e.g. by an induction theorem prover) guaran­
tees the well-foundcdness of the relation defined by 
the combined axiom. Examples are presented to 
demonstrate the usefulness and strength of the pro­
posed technique. 

1 Introduction 

However, the union of well-founded relations is not ne­
cessarily well-founded, so well-foundedness of 
has to be verified to guarantee the soundness of the 
approach. We therefore demonstrate how formulas can be 
derived by machine, the truth of which entail the soundness 
of the combined induction axiom. Thus, new and useful 
induction axioms arc computed, leaving the verification of 
their soundness to the induction theorem proving system. 

Our proposal to compute new induction axioms can be 
integrated into all induction theorem provers based on the 
explicit induction paradigm, e.g. the systems described in 
[ Aubin, 1979; Boyer and Moore, 1979; Bundy et al., 1991; 
Biundo et al., 19861. It is currently being implemented in 
the INKA induction theorem prover, a system under 
development at the Technische Hochschule Darmstadt. 

2 Computing Induction Axioms 
The operation of an induction theorem proving system 
based on the explicit induction paradigm can be sketched in 
the following way (see [Walther, 1992] for a more detailed 
account): After some function is defined by the user of the 
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Using its termination proof facility, cf. [Boyer and 
Moore, 1979; Walther, 1988], an induction theorem prover 
checks each domain and range generalization for well-foun-
dedness and those which fail the test are not considered any 
further. After this test only the generalized (well-founded) r-
descriptions are used for computing induction axioms. This 
does not restrict provability, because if D' is an r-
description obtained from D by a domain or a range genera-
lization. 

If some statement ψ has to be verified by the induction 
theorem prover, r-descriptions are suggested by an indue-
tion heuristic in order to compute induction axioms from 
them, cf. [Aubin, 1979; Boyer and Moore, 1979]. By 
recognizing function "calls" in the statement, the r-
descriptions associated with the called functions arc selected 
from the set of well-founded r-descriptions already compu­
ted. However, those r-descriptions which fail to meet cer­
tain variable requirements are disregarded. The remaining r-
descriptions are modified by replacing some relevant non-
induction variables with the corresponding terms in the call 
(if necessary). 

4 An induction theorem prover only provides a suffi­
cient requirement for Thind because, due to Godel's 
First Incompleteness Theorem, neither Thind is decidable 
nor semi-decidable. 
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4 Commuting Induction Axioms 
However, since the union of well-founded relations general­
ly is not well-founded, the well-foundedness of has 
to be verified before it is used to compute an induction 
axiom. For solving this problem the termination proof fa­
cility of an induction theorem prover may be used. Actually 
this wi l l be our ultimate resort, but first we shall attempt 
to verify the well-foundedness of directly from the 
well-foundedness of and 

To do so we borrow a technique from the area of term 
rewriting. There a problem quite similar to ours arises, 
viz. to prove that a term rewriting system RjUR 2 is noc-
therian, where R1 and R2 are noetherian term rewriting sys­
tems. For this problem the notion of quasi-commutation 
has been proposed: 
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6The falsification of those formulas usually is tr ivial, 
at least if some facility looking for counterexamples for 
system-computed conjectures is applied, cf. [Protzen, 
1992], yielding here x=3 as a counterexample. 
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5 Concluding Remarks 
There are cases where commutation with a type may not 
help because quasi-commutation with a type is not a neces­
sary requirement for quasi-commutation, which in turn is 
not a necessary requirement for the well-foundedness of the 
union of well-founded relations. If all commutation tests 
fail, then the termination proof facility of an induction 
theorem prover has to be used, cf. [Boyer and Moore, 1979; 
Walther, 1988], hoping that it can prove the well-
foundedness of the separated union. However, this should 
always be the ultimate resort. Such direct well-foundcdness 
proofs usually are much more difficult than the proofs 
necessitated by the commutation tests, as it easily can be 
observed from the examples presented above. This is 
because the latter deduction problems embody the knowled­
ge that the given relations are well-founded and, therefore, 
quite often can be proven by propositional reasoning and 
case analysis only. 
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