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Abstract

The combination of induction axioms is investiga-
ted. It is shown how a pair of competing induction
axioms (which e.g. are suggested by a heuristic of an
induction theorem prover on a specific verification
problem) are combined yielding a new induction
axiom. The relation implicitly defined by the new
axiom is the set-theoretic union of the well-founded
relations implicitly defined by the induction axioms
initially given. The proposed approach is non-heu-
ristic but safe in the sense that an induction proof
with the new axiom can be obtained whenever an
induction proof with one of the given axioms would
have been successful. Based on a result of Bachmair
and Dershowitz for proving term rewriting systems
noctherian, a commutation test is developed as a de-
ductive requirement to verify the soundness of the
combined axiom: It is shown how so-called commu-
tation formulas can be derived by machine from the
given axioms such that a verification of these for-
mulas (e.g. by an induction theorem prover) guaran-
tees the well-foundcdness of the relation defined by
the combined axiom. Examples are presented to
demonstrate the usefulness and strength of the pro-
posed technique.

1 Introduction

One crucial point in proving thcorems by induction is to
find an induction axiom for a given conjecture ¥ as the
right instance of the Generalized Principle of Noetherian
Ifnduction: [Vme M. [Vke M. chm = ¢k} - y(m)]
— ¥me M. y(m). The invention of a "successful™ well-
{ounded relation <, for a statement constitules the creativi-
ty of a human, and also of an automated expert in induction
theorem proving. This problem has two aspects: (1) a
proof strategic aspect, which means that the relation <y
induced upon alfows to prove the induction formula
[Vme M. [Vke M. k <)y m - y(k}] = y(m}], and (2) a
soundness aspect, which means that the relation <,
induced upon must be indeed well-founded.

To be successful we should use a relalion <y, which -
considered as a set - is as large as possible because when
proving w(m), called the induction conclusion, we may
use y(k) for all k with k <y, m as induction hypotheses.
Therefore, the larger <, is, the more induction hypotheses
(k) arc available. As a consequence, iff two well-founded
relations <y, and <y, are (o our disposal such that <y <
<M, we always choose to induce upon <y, because it is
guaraniecd that whencver we find a proof using <pgy,» WE
also find a proof using <yq,. We call this the subset prin-
ciple. Bul if ncither <y © <y, NOT <)y, © <y, 18 known,
we may choose to induce upon <y U<y, By the subset
principle this approach is safe in the sense that we always
find a proof by induction upon <p; W<y, whenever an
induction upon <y, or <y, would have been successful.
But it may happen that the relatons <y, and <y, are 100
small to support a successful induction whereas the induc-
LON upon < <y, may work. It is shown in this paper
that our proposal 1o combine induction axioms not only is
safe, but is also wseful and yiclds strong and successful
induction axioms,

However, the union of well-founded relations is not ne-
cessarily well-founded, so well-foundedness of <y i<y,
has to be verified to guarantee the soundness of the
approach. We therefore demonstrate how formulas can be
derived by machine, the truth of which entail the soundness
of the combined induction axiom. Thus, new and useful
induction axioms arc computed, leaving the verification of
their soundness to the induction theorem proving system.

Our proposal to compute new induction axioms can be
integrated into all induction theorem provers based on the
explicit induction paradigm, e.g. the systems described in
[ Aubin, 1979; Boyer and Moore, 1979; Bundy et al., 1991;
Biundo et al., 19861. It is currently being implemented in
the INKA induction theorem prover, a system under
development at the Technische Hochschule Darmstadt.

2  Computing Induction Axioms

The operation of an induction theorem proving system
based on the explicit induction paradigm can be sketched in
the following way (see [Walther, 1992] for a more detailed
account): After some function is defined by the user of the
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system, a so-called relation description (r-description for
short) is computed from the user's definition in a uniform
way. Given, for instance, the functions

Junction quot(x,y:number):number <

ify=0then

ifx<ythen()

ifx2yayz0then succ(quot(x—y ¥))
and

Junction hatf(x:number):number ¢=

ifx=0then 0

ifx=1then0

iFx=0Ax#]1 then succ(half((x—1)-1})
as input, the r-descriptions Dgyo = {(x2yAy=0, {{x/x-y,
y/y11)} and Dpgyr = {(x#0ax21, {{x/(x~1)-1}})} are com-
puted from the recursive cases of the algorithms.! An r-
description D is a finite and non-empty set {C,.....C, } of
alomic r-descriptions C; = (@;, A;), where the range for-
mula @; is a quantifier-free formula and A, is a finite and
non-empty set of substitutions, called the domain substi-
tutions. The set rV(D) of relevant variables in D is the
set of all variables mentioned in D, e.g. x and y in Dgyar.
angd the set of induciion variables iV(D) of D contains all
relevant variables which are substituted for by the domain
substitutions. Each r-description D defines a relation <p
on some cartesian product of the set of constructor ground
terms, e.8. qum defines a relation <guor © (T(Z Jnumber X
‘T(Z Jnumber)© Biven as (@ b} <quo (¢ @) iff I x/c, y/d]

F xzyay#0, a=31 x/c, yv/dl (x—y) and b=3I x/c, y/d] (¥y).
9 is the interpretaiion for the known functions, which
accepts some ground term from T(I) as input, e.g,
plus(suce(0) succ(0)), and always relurns a coastructor
ground term from T(Z°) as output, e.g. succ{succ(0)).
Also $(q)=q may be assumed for all constructor ground
terms q. The interpretation 3 can be applied also o terms
with variables if variable assignments like [ x/c, y/d] are
used. For the above r-descriptions, (2,3) <quor (5.3) <quat
(8.3) <quor - is & chain wrt. the relation defined by Dy,
and 1 <pgif I <half & <half .- 1S @ chain wri, the relation
defined by Dy, The relations obtained are well-founded
because only terminating functions are accepted by an
induction theorem prover, and therefore these r-descriptions
are catled well-founded.

Since each well-founded r-description D defines a well-
founded relation <p and likewise a well-founded sct, we
may uniformly associate an induction axiom with D. Given
an r-description D = {(¢., A @, 4,)) with relevant
variabies x* and a formuia y with frec vanables x*,Dis
associated with k+1 induction formulas, the base case
y,, and the step formulas V¥, . The range formulas ¢
in lhe alomic r- descnpuons of ﬁ define the cases of the
induction steps and the domain substitutions 8e A, are used
to form the induction hypotheses. The base case is obtained
as the complement of all the range formulas in D and [\vo

. Ay — YV x*. ) is an induction axiom.

l To ease readability we often use the usual mathemati-

cal notation, e.g. x>y, x+y, x-y, x=1, 2 etc.,

instead of the terms formally required, e.g. gi{x y}=true,
plus(x y), minus(x y}, pred{x), succ{succ(0)} elc.
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Consider, for instance, some formula w[x.,y] with free
variables x and y. The induction formulas to prove Va,y.
yix,y] are computed from Dy as

yo=Vxy x<yvy=0- y[xy] and
¥y = VY. x2y A y20 A ylx/x-y, yiy]l - yixyl.
But if Dpayy is used instead of Dy, the induction formulas
for proving V¥ x.y. w[x,y] are obiained as
o= Vx. x=0vx=1l 5 ¥y y[xy] and
V) =V x x20 A x21 A Vy. yx/(x-1)}-1, y]
-V yy(xyl

The r-descriptions obtained from terminating functions
necessitate further computations for subsequent induction
proofs: Domain generalizations and range generalizations
are computed and each range generalization then is separated
which finally yields an r-description providing certain
proof-technical advantages.? For instance, the well-
founded r-description qu— = {(x2yay20, {{x/x-¥} D} isa
domain generalization of the above r-description D,
having only x as an induction variable. Domain generali-
zations are obtained by removing some substitution pairs
from the domain substitutions thus extending the domsin
of the defined relation, as D, is obtained by removal of
yly. This extends the defined relation to (a b} <quot’ {c d}
iff 3 x/c, y/d) Exzyay20 and a=3[ x/¢, y/d} (x—y).
Note that b may be any constructor ground term here
because now no replacement is demanded for the relevant
variable y. Consequently, (2,8) <gyor {5.3) <quor' (6.1)
<quot' - i§ @ chain wrt. the relation defined by Dgyor. To
prove ¥ x,y. y[x,y], the following induction formulas are
obtained if the domain generalization Dgyoc is used:

Y, =V xy x<yvy=0-+ylxy] and

W, =Y xy. x2y A y20 A Vu. yix/x-y, y/u] - ylx.yl.
The variable y in this example is universally quantified
(after being renamed to x) in the induction hypothesis
yIx/x-y. y/u], and this yields a stronger induction than
Wil.h unm.

The well-founded r-description Do, = {(x20Ay=0,
{{x/x-¥}})} is a range generalization of the above r-
description Dgyor- It is obtained by replacing the range for-
mula in Dy by some weaker requirement, thus exiending
the range of the defined relation. For instance, {2,9) is a
minimal element wrt. <quo because 229 does not hold.
But (2,9} is not minimal wrt. <g,,« because 2#0 A 920,
and therefore (0,...) <qua~ {2.8). The advantage of a range
generalization is that the fewer minimal elements a well-
founded relation has, the fewer elements have to be treated
as base cases of an induction based on this relation. To
prove ¥ x.y. ¥[x,y], for instance, the following induction
formulas are obtained if the range generalization Dgyy~ i
used:

¥o =V x.y. x=0 v y=0 — yix,y) and

¥, = =V xy. x#0 A y20 A Vu. wix/x-y, ylu] - y(x.y].

2 The computation of a domain generalization corres-
ponds 1o the computation of a measured subset as defined
by [Boyer and Moore, 1979}, the computation of s range
generalization corresponds te the computation of a
revised machine and the computation of a separation cor-
responds to the computation of a superimpased machine.



Using its termination proof facility, cf. [Boyer and
Moore, 1979; Walther, 1988], an induction theorem prover
checks each domain and range generalization for well-foun-
dedness and those which fail the test are not considered any
further. After this test only the generalized (well-founded) r-
descriptions are used for computing induction axioms. This
does not restrict provability, because «p &« < if D' is an r-
description obtained from D by a domain or a range genera-
lization.

If some statement g has to be verified by the induction
theorem prover, r-descriptions are suggested by an indue-
tion heuristic in order to compute induction axioms from
them, cf. [Aubin, 1979; Boyer and Moore, 1979]. By
recognizing function "calls" in the statement, the r-
descriptions associated with the called functions arc selected
from the set of well-founded r-descriptions already compu-
ted. However, those r-descriptions which fail to meet cer-
tain variable requirements are disregarded. The remaining r-
descriptions are modified by replacing some relevant non-
induction variables with the corresponding terms in the call
(if necessary).

Given, for instance, the statement V x. y; = ¥ x. quot(x

4) = hal{haif(x)), the r-descriptions unot'” = {{(x20A4=0,
{{x/x-4}}}} and Dy yp = {(x20, {{x/(x-1)-1}})} are sug-
gested by an induction heuristic. The r-description Dy - is
a range generatization of Dy ¢ and Dy~ is built from the
r-description D_ - by repiacing thc non-induction variable
yof Dguor With 4 to match the argument in the call.

3 Combining Induction Axioms

The r-descriptions obtained as suggestions of an induction
heuristic are rated and compared, e.g. by using the sub-
sumption heuristic [Boyer and Moore, 1979] or the con-
tainment test {Walther, 1992], and those which fail the
tests are rejected. But in general more than one r-description
survives the comparison, e.g. D .- and Dy, in the
example above, and we have to decide what 10 do with
them. Obviously, statement y, can be easily proven by
induction upon <qua~ (but not upon <p,;). However, this
is only known afier a proof is computed. So. the problem
is to find a well-founded relation which guarantees prova-
bility whenever an induction proof using either the <g,,~-
or the <, ¢-induction is successful. We snmply usc
ot Y <nar @nd with the subset principle provability is

not destroyed. So the induction axiom for y, is computed
as:

¥V x. x=0) — quot(x 4)=half(half(x)) ,

¥ x. x20 A quot{((x—1)-1} 4)=halfChalf((x—1)-1))

A quot{x—4 4)=haif(hatf(x—4)) -» quot(x 4) = half(hali(x})

V x. quot(x 4) = half(half(x)) . 3

The induction hypothesis quot{{{x-1)=1) 4) =
halithalt{(x—1}-1)) stcms from the <, -induction and the

3 Here snd subs

used, like 420 can
"¥ x:number” by "¥x."

uently obvious simplifications are
omitted here, We also abbreviate

induction hypothesis quot{x—4 4) = half{half(x—4)) stems
from the <, ,~-induction. Both induction formulas can be
casity proven. Therefore statement y, is an inductive truth
which intuitively means that all quantifiers in a formula
range over constructor ground terms only. We define SF
v x.9 iff 3I x/q) Fo for all constructor ground temms q
which may be substituted for x and Thy,y = {y | Yy isa
closed formula such that 3F y}. An induction theorem
prover tests whether a formula ¥ is a member of the set
Thy, of alt inductive true theorems.*

A straightforward idea for formalizing this approach is to
use the union Dy D, of a pair of r-descriptions D, and D,
as the r-description from which the induction axiom is
computed, because <p,p, = <p,'I<p,. But generally non
valid induction formulas are gencrated if the union of r-
descriptions is used. In particular Dy~ Dpar = {(x20,
{{x/x—4} 1) (x#20, {{x/(x~1)-1}})} yields two step formu-
las for statement vy, , viz.

(1) ¥ x. x#0 A quol(x—4 4)=half(half(x-4})

— quot(x 4) = half(half(x)) , and

(2 V¥V x. x20 A quot(({x—1)-1) 4) = half(half((x-1)-1))

— quot(x 4) = halfthalf(x)) ,
one of which is not provabie by first-order means: The
induction hypothesis can be used to prove step formula (1),
but this is not the case for step formula (2). The reason for
this failure is that not all required induction hypotheses
WIL. <quor~\I<hati aI¢ provided by step formula (2). How-
ever, this problem can be avoided if a separated r-descrip-
tion is used. This is an r-description D such that the range
formulas of D exclude each other, i.e. [Vx* —@,v—p;le
Thy,,; for all members (¢,, A,) and (p,, A;) of D, and a
separated r-description guarantces that all possible induction
hypotheses wrt. <p are provided by a step formula, cf.
[Walther, 1992]. To avoid unseparated r-descriptions when
forming the union of rclations, we propose the separated
union, i.c. a separated r-description such that the relation
implicitly defined is the union of the relations implicitly
defined by the constituting r-descriptions:

Definition 3.1 For a pair of r-descriptions D, = {(9,.
8@y 8,0} and Dy = {(M;, 8 ),.-.M,. O}, the
separated wnion D,®D, of D, and D, 1s the smallest r-
description such that for each atomic r-description (¢;, A;)
€ D, and each atomic r-description (n;, 8;} € D,

(1) (@, A Mg, A;) € D;BD,,

(2) (9p A M, ;) € D1OD;, and

3 (e ATI,.A v 8)e D1$D2.
where @, abbreviates —«pl . A =@, and 1, abbreviates
—ﬂ]l A A —ﬂ’]h.

Theorem 3.1 [Walther, 1991) For each pair of separa-
ted r-descriptions D; and D,: §)] l:)l$l)2 is a separated r-
deSCIiplim. and (2) CDIQDZ = ‘Dl J CDZ .

4 An induction theorem prover only provides a suffi-
cient requirement for W& Thind because, due to Godel's
First Incompleteness Theorem, neither Thind is decidable
nor semi-decidable.
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Since <Dl [ <D]0D2 and <D2 c <DleDZ by Theorem 3.1,
we may always use the separated union D, @D, instcad of
D, or D, to compute an induction axiom. With Lhe subset
principle it is guaranteed that an induction proof with
D,®D, always can be obtained whenever an induction
proof with D, or with D, is successful. We compute
Dauot~@Dpyr = {(x#0, {{x/(x-1)-1}, {x/x—4} 1)}, and the
above induction axiom for y; was obtained from (his r-
description.

4  Commuting Induction Axioms

However, since the union of well-founded relations general-
ly is not well-founded, the well-foundedness ofDIEB[)2 has
to be verified before it is used to compute an induction
axiom. For solving this problem the termination proof fa-
cility of an induction theorem prover may be used. Actually
this will be our ultimate resort, but first we shall attempt
to verify the well-foundedness of Dl(BD2 directly from the
well-foundedness of I}y and D,.

To do so we borrow a technique from the area of term
rewriting. There a problem quite similar to ours arises,
viz. to prove that a term rewriting system RjUR; is noc-
therian, where Ry and R, are noetherian term rewriting sys-
tems. For this problem the notion of quasi-commutation
has been proposed:

Definition 4.1 [Bachmair and Dershowitz, 1986] For a
pair of relations <, and <, on some sel S, <, quasi-
commuies over <, iff (*) for all g1re S with ¢ <, ¢
<; r some ('€ § cxists such that ¢ <*, ¢ <, r, cf.
Figure 1(i), where <*, , denotes the reflexive and transi-
tive closure of <, u<,.

Theorem 4.1 [Bachmair and Dershowitz, 1986] If <,
quasi-commuics over <,, then <, <, is well-founded iff <
and <, are well-founded.

Quasi-commutation can be used to verify the well-
foundedness of <\ <, as demonstrated by Theorem 4.1: If
<, and <, are well-founded, only "<; quasi-commulcs over
<," Of clse "<, quasi-commulcs over <" has to be verified
for proving the well-foundedness of < <,

(< ue)* <,
Q=== t Qe=-=-=
[N 4
<3 ' <2 < )
1 )
1 [}
1 mmevea— T | i T
<1 <1
(i) quasi-commulation (ii) A-commutation
<
q q .- 'y
- ]
<3 s\\<2 <2 : <2
‘\ [}
LY 1
| Ser— t emssiii T

< <
1 . . 1 .
(iii) €-commutation (iv) 1-commutation
Figure 1
3 We have two altempts to establish the well-
foundedness of <;\<,, because “guasi-commules over” is
not a symmeiric property.
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To check for quasi-commutation in our application, we
have to fonmulate a syntactical requirement in terms of
relation descriptions which is sufficiem for requirement {*)
in Definition 4.1, This is necessary because our relations
are not explicitly given but are implicitly defined as the
semantics of r-descriptions. So requirement {*) in Defini-
tion 4.1 ¢ssentially is a semantical property which neces-
sitates a syntactical counterpart for our purposes. But re-
quirement {*) cannot be characterized by a finite set of for-
mulas because the transitive closure <* cannot be characte-
rized. So we have 1o be satisfied with thosc approximations
of requirement (*) which are finitely representable and we
define:

Definition 4.2 For a pair of relations <; and <, on
some set §, <, quasi-commutes over <, with type A iff
(**) for all ¢g,t.re S with ¢ <, 1 <, r some ('€ §
exists such that ¢ <, ¢’ <, r, where A is some finite
string over {1,2}, a <, , b stands for "some ce § exists
such that @ <, ¢ <, b ", and 2 <¢ b means 2 = b
(where £ is the cmpty string).

Figare 1(ii) illustrates Definition 4,2. Obviously, quasi-
commutation with type A entails quasi-commutation, but
not vice versa becavse A is a fixed string. For instance, <,
quasi-commutes over <, with rype £ if for all g.t,re S
with ¢ <, 1 <, r also ¢ <, r, cf. Figure Kiii), and <,
quasi-commutes over <, with type 7 iff for all g..re S
with g <, £ <, r some '€ § cxists such that g <, ¢
<Gn ¢f. Figure 1(iv).

We have climinated transitivity by using quasi-comma-
tation with a rype and are able to represent this weaker
requirement in terms of relation descriptions and formulas
derived lrom them. For the sake of brevity we shall confine
oursclves here Lo the cases of quasi-commutation with type
£ and type 1. Morcover, we shall confine ourselves to rela-
ticn descriptions censisting of ene atomic r-description
with one domain substitution only, and refer o [Walther,
1991] for the general form. We start with the type T case:

’

Definition 4.3 For a pair of r-descriptions D) = {(¢,
{61} and D, = {(n, {61)1, D, quasi-commutes over D,
with type I (1-commutes for short) iff for some variables
x*:

(1) rV(D,} = Dom(8) = rV(D,) = Dom(8) = x*,

@) [Vx*. ¢ A 8(n) >N A B(p)le Thy,, , and

(3) [Vx*. @ A B(M) > Axexe BE(x)=0®B(x))]e Thy,,.
Theorem 4.2 {Walther, 1991] If an r-description D 1-
commutes over an r-description D, then <p, quasi-
commuies over <p,, with type 1.

Requirement (1) in Definition 4.3 is the !-variable
requirement and the formulas in requirements (2) and (3)
are the I-commutation formulas. If these formulas hold,
then <p, quasi-commutes over <p, by Theorem 4.2, hence
<p,\s<p, is well-founded by Theorem 4.1 (provided <p, and
<p, are well-founded), and since <p g, = <p,U<p, by
Theorem 3.1, D@D, isa well-founded r-description.



Hence we demand that an induction theorem prover verifies
the 1-commatation formulas before D, @D, is used 10 com-
pute an induction axiom. For the above example, the 1.
commutation formulas to verify that Dy, 1-commules
over D, .~ are computed as:

(Z) Vx. x20 A ((x-1)-1)20 — x20 A (x-4)#0 and

(3) ¥ x.x#20 A ((x-1)-1)=20

= ((x4)-1)-1 = ((x=1)-1)—4 .

QObviously formula (2) does not hold, so 1-commutation
of Dy Over Dy is tested:©

(2% ¥ x. x20 A (x—4)=ﬁ0 - x#0 A ((x-1>-1)20 and

(30 ¥ x. x#0 A (x—4)0 = ((x~1)-1)-4 = ((x-4)~1)-1.

Also obviously these 1-commutation formulas are true
and conscquently the weli-foundedness of Do ®D, .- is
verified. This proves the seundness of the induction axiom
initially used for statement y,, cf. Section 3.

Next we consider guasi-commutation of sype g:

Definition 4.4 For a pair of r-descripuions DI = {(p,
{81} and D, = {(n, {8})}, D, quasi-commutes over D,
with type € (€-commutes for short) iff for x* =
V(D urV(D,) :

(1) all variables in 1 € Dom(®&),

(2) [Vx*. ¢ A8(n) - nleTh, 4, and

(3) IVx*. ¢ A 3N} > Axepomie) HOx))=8(x)le Thy,,.

Theorem 4.3 [Walther, 1991) If an r-description D) -
commutes over an r-description D, then <p, gquasi-
COMMUILS Over <p, With type €.

Reqguirement (1) in Deflinition 4.4 is the e-variagble
requirement. The {ormulas in requirements (2) and (3) arc
the e-commutation formulas and we demand that an induc-
uon theorem prover verifics these formulas before D, ®D,
15 used 10 compute an induction axiom.

As an example demonstrating the uscfulness of e-com-
mutation, consider the functions minus1 and minus2 given
as

function minus1(x,y:numberynumber «=

if X<y then ()
if x>y then succ(minusl(x succ(y)))

Sfunction minus2(x,y:number):number «
if x=0 then O
if x#0 A y=0 then x
if x#0 A y20 then minus2(x—1 y-1)

and the statement Vx,y. ¥, = Vx,y. minus1(x y} = minus2{x
y). An induction heuristic could suggest D, ;. .- = {(x#0,

{{x/x-1}D} and D ;, 2+ = {(y#0, {{y/y-1}})} both

obtained by domain and range generalization from D ;.. o

= {(x#0Ay20, {{x/x-1, y/y-1}1)}, and also suggest
Dpinunt = 1G>y, {x/x, y/succ(y)} D}

®The falsification of those formulas usually is trivial,
at least if some facility looking for counterexamples for
system-computed conjectures is applied, cf. [Protzen,
1992], yielding here x=3 as a counterexample.

The lests for 1- and for e-commutation fail for almost all
combinations of the three r-descriptions, simply because
the variable requirements are not satisfied, But the £-
variable requirement for verifying that D,; ., £-commutes
over Do o is satisfied and the e-commutation formulas
arc compuled as

(2 Vxy. x>0y A x20 5 x20 and

(3 ¥Vxy. oy A x2) - x-D=(x-1).

The verification of both formulas is trivial. Therefore,
DminusIQDm‘musT = {{x20Axsy, {{x/x-1}}}, (x>y,
{{xfx~1}, {xfx, y/succ(y)}}) } is a well-founded r-descrip-
tion from which the following induction axiom is com-
puied for .

¥ x,y. x=0 — minus1l{x y)=minus2{x y) .
V¥ xy. x20 A xSy AV z. minus)(x-1 z)=minus2(x-1 z)
— minus1{x y)=minus2{x y) ,
Y x,y. x>y AV z minusl(x-1 z)=minus2(x-1 z)
A~ minus1(x succ(y))=minus2(x succ(y))
— minusl(x y)=minus2(x y)

¥ x.y. minusl{x y)=minus2(x y)

The induction hypothesis minust{x succ(y)) = minus2{x
succly)) stems from the <. q-induction and the induc-
tuon hypothesis ¥z. minust{x—1 z} « minus2{x—1 z)
(appearing in both step formulas) siems from the < ;. .9--
induction. Since the variable 7 in the latter induction hypo-
thesis is universally quantified, the induction is so strong
that the statement can be proven with one trivial lemma
only, viz, [V x,y. X0 A x<y — y=0] is required for the first
step formula, Both induction hypotheses are used in the
proof of the sccond step formula. The hypothesis stem-
ming from D, ;..o must be used twice, viz. with Z sub-
stituted by y and with z substituled by y-1. The success of
the D inus1 PP minue2 -induction is remarkable because the
functions minus1 and minus2 differ significantly in their
recursion structure. This usually necessitates that an
induction theorem prover is supported by additional lem-
mata which rclate one function 1o the other if only one of
the suggested r-descriptions is used o form an induction
axiom. This is not needed here, and we consider this as an
evidence for the strength of the proposed method.

As a further example, consider the function plus given as

Junciion plus{x,y:number):number <=
if x=0theny
if x20 ther succ{plus(x-1 y))

and the statement Vxy. \4 = Vx.y. plus(x y) « plus(y x}.
An induction heuristic could suggest D,.. = {(x#0,
{{x/x-1}D} and also D .. = {(y#0, {{y/y~1}}}}, both
obtained by a domain generalization from Dy, = {(x#0,
{{xfx-1, y/y}})} (after a variable renaming for D plug™ 10
maich the argument in the call). All tests for 1- and for &-
commutation fail because the variable requirements are not
satisfied. Analysing the case, we sce that Dy, ©D
{(x#0 A y=0, {{x/x=1}}), (x=0 » y#0, {{y/y-1}}), (x20 A
y20, {{x/x-1}, {y/y-1} D} cannot be well-founded because

Walther 99



- (0 1) Spiue (1 0) < gy © 1) ;elus (1 0)
is an 1nfmllc <plus'uplus~-Chain in (2° Ynumber
T(E Yuamber- But Since <ppyy and <pyy,- are well-founded,
an obvious remedy is 1O usec some subses lus* of <plus’
(or of <pige respectively), hoping that <ppuesplus 13
well-founded at least.

But fortunatcly we know some subset of <, Since
Dplu, was obtained from D, = by a domain gcncrahzau{)n

<plus & <piug NOlds {(and Ig:erefore Dpiu, Was ignored in

favour of D, .- when r-descriptions wcre suggested for yy).
We now test Dpy,, and Dy for quasi-commutation. Here
the 1-variable requirement is not satisfied but the e-variabic
requirement is when £-commutation of Dy, over Dy, is
iested. The e-commulation formulas are computed as:

@) Vxy. x#20 A y#0 - y»20 and

(3} Vay. x20 A y20 = (y-1) = (y-1).

The verification of both formulas is trivial. Therelore,
Dplu,QDplm- = {(x20 A y=0, {{x/x-1, ¥/¥}}). (x=0 A
y20, {{y/y-1}}). (x#0 A y20, {{x/x-1, y/y}. {y/y-1} D}
is a well-founded r-description from which the induction
axiom for y; 1s computed as:

Vxy x=0Ay=0 - plus(x y)=plus(y x) ,
Y x,y. x#0 A y=0 A plus(x-1 y)=plus(y x-1)

— plus(x y)=plus(y x),
Vxy. x=0 A y20 A V 7. plus(z y-1)=plus(y-1 2)

— plus(x y)=plus(y x) ,
¥ x.y. x#0 A y20 A plus(x—1 y)=plus(y x-1)

A Y z. plus(z y-1)=plus{y-1 z)
- plus(x y)=plus(y x),

¥ x.y. plus(x y)=plus(y x)

The induction hypotheses plus{x—1 y} = plus(y x-1) stem
from the <_, .-induction and the induclion hypotheses ¥ z.
plus{z y—1) = plus(y—1 z) stem from the <le~-induciion.
Since the variable z in the latter induclion hypotheses is
universally quantified, the induction is so strong that the
stalement can be proven without an additional lemma. All
induction hypotheses are required for the proofs of the step
formulas, where the latter hypothesis must be used twice
in the proof of the third step formula, viz. with z sub-
stituted by x, and with z substituted by x—1. Without vsing
the relation description Dy, ®D , . o form an induction
axiom, additional lemmara such as [¥x. plus(x 0)=x] (lo
prove the base case) and [Vx,y. plus(x succiy)} =
succplus{x y))] (1o prove the siep case) are needed 10 verify
stalement 4, cf. [Boyer and Moore, 19791, This is not
required here and we consider this as an evidence for the
strength of the proposed method.

Based on the above analysis we demand for an imple-
mentation that an induction theorem prover considers the r-
descriptions from which the domain generalizations were
computed, if the quasi-commutation tests fail for the gene-
ralized forms, as we did for the example ahove,

100  Automated Reasoning

5 Concluding Remarks

There are cases where commutation with a type may not
help because quasi-commutation with a type is not a neces-
sary requirement for quasi-commutation, which in turn is
not a necessary requirement for the well-foundedness of the
union of well-founded relations. If all commutation tests
fail, then the termination proof facility of an induction
theorem prover has to be used, cf. [Boyer and Moore, 1979;
Walther, 1988], hoping that it can prove the well-
foundedness of the separated union. However, this should
always be the ultimate resort. Such direct well-foundcdness
proofs usually are much more difficult than the proofs
necessitated by the commutation tests, as it easily can be
observed from the examples presented above. This is
because the latter deduction problems embody the knowled-
ge that the given relations are well-founded and, therefore,
quite often can be proven by propositional reasoning and
case analysis only.
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