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Abstract

We investigate two realizations of parallel ab-
ductive reasoning systems using the model
generation theorem prover MGTP. The first
one, called the MGTP+MGTP method, is
a co-operative problem-solving architecture in
which model generation and consistency check-
ing communicate with each other. There, par-
allelism is exploited by checking consistencies
in parallel. However, since this system con-
sists of two different components, the possibili-
ties for parallelization are limited. In contrast,
the other method, called the Skip method, does
not separate the inference engine from consis-
tency checking, but realizes both functions in
only one MGTP that is used as a generate-
and-test mechanism. In this method, multiple
models can be kept in distributed memories,
thus a great amount of parallelism can be ob-
tained. We also attempt the upside-down meta-
interpretation approach for abduction, in which
top-down reasoning is simulated by a bottom-
up reasoner.

1 Introduction

Abduction, an inference to explanation, has recently
been recognized as a very important form of reasoning for
various Al problems that deal with commonsense knowl-
edge as well as scientific and engineering knowledge. For
example, in diagnosis, plan recognition and design, when
we observe the behavior of a system, we want to identify
the hypotheses that can explain the observation. Also,
in natural language understanding, sophisticated user in-
terfaces and communication among intelligent agents, it
is recognized that an explanatory capability may play a

* Address after April 1993: Department of Information
and Computer Sciences, Toyohashi University of Technology,
1-1 Hibarigaoka, Tempaku-Cho, Toyohashi 441, Japan.

+Current address: Department of Information Engineer-
ing, University of Industrial Technology, 4-1-1 Hashimotodai,
Sagamihara, Kanagawa 229, Japan.

++ Address after April 1993: Department of Computer Sci-
ence and Intelligent Systems, Faculty of Engineering, Oita
University, 700 Dannoharu, Oita-shi, Oita 870-11, Japan.

102  Automated Reasoning

crucial role [Charniak and McDermott, 1985]. One of the
most popular formalizations of abduction in Al defines
an explanation as a set of hypotheses that, if combined
with the background theory, logically entails the given
observed formula. This deductive-nomological view of
abduction has enabled abduction to be implemented us-
ing deduction, in particular with resolution-based proof
procedures. Along this line, there have been a number
of resolution-based abductive systems [Pople, 1973; Cox
and Pietrzykowski, 1986; Poole et a/., 1987; Stickel, 1989;
Demolombe and Farinas, 1991; Inoue, 1992].

Thus, we can expect that studies on automated ab-
duction may fill the gap between traditional, fast de-
ductive techniques and more advanced, Al-oriented corn-
monsense reasoning. From the viewpoint of automated
deduction and theorem proving, however, automated ab-
duction is a hard and challenging problem. This is be-
cause:

1. Abduction is not a proof-finding problem but a
consequence-finding problem (see [inoue, 1992]).

2. Usually, each abductive explanation is required to
be consistent with the background theory. While
consistency checking is expensive (undecidable in
general), it is essential for some practical applica-
tions of abduction (design problems, for example),
since we are interested in systems that can reject
inconsistent theories to obtain acceptable theories.

In this paper, we propose several techniques for imple-
menting abduction that use fast deductive techniques to
realize fast abductive systems. In particular:

1. We provide new implementation methods for abduc-
tion using model generation theorem provers such
as those in [Manthey and Bry, 1988; Fujita and
Hasegawa, 1991]. |Instead of finding some logical
consequences of the given axioms, our methods gen-
erate some models of such formulas.

2. These methods are implemented in parallel on a
parallel inference machine. Parallelization is an im-
portant source for realizing faster abduction.

3. Top-down, goal information is incorporated in these
bottom-up procedures. This is an extension of the
Magic Set method for deductive databases [Bancil-
hon et a/., 1986; Bry, 1990] to deal with abduction.



We use the parallel model generation theorem prover
MGTP [Fujita and Hasegawa, 1991] that is implemented
in the parallel logic programming language KL1 [Ueda
and Chikayama, 1990]. Since the MGTP can be used for
both testing the (un)satisfiability of an axiom set and
generating the minimal models of a range-restricted ax-
iom set, every function necessary for abduction can be
realized on it. To this end, we show two different program
transformation methods each of which converts an ab-
ductive problem into a model generation problem. The
basic idea behind such a transformation has also been
employed to compute stable models [Gelfond and Lifs-
chitz, 1988] of general and extended (disjunctive) logic
programs in [inoue et al, 1992a].

This paper is organized as follows. In Sections 2 and 3,
abduction and the MGTP prover are summarized. Sec-
tion 4 presents two realizations of parallel abductive sys-
tems using the MGTP. In Section 5, we evaluate these
systems by applying them to a logic circuit design prob-
lem. Some extension of the presented abductive systems
and related work are discussed in Section 6.

2 Abduction

The definition of abduction we consider here is similar
to that proposed in [Poole et al., 1987]. An abductive
framework is a pair {£.T"), whe1Zis a set of formulas
(the background theory) and T is a set of literals (the
hypotheses or abducibles). Let G be a closed formula (the
goal). A set E of ground instances of T is an explanation
of G from {E., ") if

1. LUEREGQG, and
2. £ U E is consistent.

An explanation of G is minimal if no proper subset E'
of E is an explanation of G.

The computation of explanations of G from (%, I} can
be seen as an extension of proof-tin ding by introducing
a set of hypotheses from V that, if they could be proved
by preserving the consistency of the augmented theo-
ries, would complete the proof of G. Alternatively, ab-
duction can be characterized by a consequence-finding
problem [Inoue, 1992], in which some literals are allowed
to be hypothesized (or skipped) instead of being proved,
so that new theorems consisting of only those skipped
literals are derived at the end of deductions instead of
just deriving the empty clause. In this sense, abduc-
tion can be implemented by an extension of a top-down,
backward-chaining theorem-proving procedure. For ex-
ample, Theorist [Poole et al., 1987] and SOL-resolution
[Inoue, 1992] are extensions of the Model Elimination
theorem proving procedure [Loveland, 1978].

However, there is nothing to prevent us from using a
bottom-up procedure to implement abduction. In fact,
we have developed an abductive reasoning system called
APRICOT/0 [Ohta and Inoue, 1990], which consists of a
forward-chaining inference engine and an ATMS [Reiter
and de Kleer, 1987]. The ATMS is used to keep track of
the results of inference in order to avoid both repeated
proofs of subgoals and duplicate proofs on different hy-
potheses deriving the same subgoals.

Thus, the two reasoning architectures, top-down and
bottom-up, are complementary, yet both have merits
and demerits for computing abduction. As Inoue [1992]
pointed out, SOL-resolution is direct in the sense that
it is both sensitive to the given goal clause and re-
stricted to searching only those formulas consisting of
candidate hypotheses only. However, top-down reason-
ing may result in redundant proofs of subgoals. On the
other hand, bottom-up reasoning eliminates redundancy,
while it may prove subgoals unrelated to the proof of the
given goal.

These facts suggest that it is promising to simulate
top-down reasoning using a bottom-up reasoner, or to
utilize cached results in top-down reasoning. The former
simulation has been proposed for definite Horn databases
as the Magic Set [Bancilhon et a/., 1986] or upside-down
meta-interpretation [Bry, 1990] methods. As Stickel
[1991] argues, this approach is better for abduction than
the simulation of bottom-up reasoning by a top-down
reasoner. This is because caching is more complicated
and less effective for abduction since the search space
for abduction is larger than that for deduction. There-
fore, [Stickel, 1991] attempts the upside-down meta-
interpretation approach for abduction for Horn and non-
Horn clauses. While Stickel does not consider the consis-
tency of abductive explanations in his procedure, his ap-
proach has been extended to abduction for Horn clauses
by incorporating consistency checking for a parallel ver-
sion of APRICOT/O0 in [Ohta and Inoue, 1992].

3 MGTP
This section outlines the model generation theorem
prover MGTP [Fujita and Hasegawa, 1991; Inoue et

al., 1992a] on which our parallel abductive systems are
based. The MGTP is a parallel and refined version of
SATCHMO [Manthey and Bry, 1988], which is a bottom-
up model generation theorem prover that uses hyperres-
olution and case-splitting on non-unit derived clauses.

Each clause in an axiom set ¥ input to the MGTP is
expressed in the form:

Al.....Am-"*C]J ..... Cl-ktl"'

(1}
where A,’s (1 < i <mim > 0)and Cyu's (1 €5 <
n 1 <t <k k> 1on > 0) are atoms, and all variables
are assumed to be nniversally quantified at the front of
the clause. Clause {1} represents the formula (A; A... A
A DUCIAA . ACLKIV . V{Cra A AC )
in the standard notation of first-order logic. The left-
hand side of — is called the entecedent of the clause,
while the right-hand side is called the consequent of the
clause. When n = U, the clause Ay, ..., A,, — i3 called
a negative clause and means that whenever a ground
instance of A; A...A A, is true, there is a contradiction.
When n = 1 and &y = 1, the clause Ay,.... Ay — Cy;
is called a definite clause. A Horn clause is cither a
definite clanse or a negative clause.

In the following, an interpretation iy defined as a set of
ground atoms as nsual, and is often called a model can-
didate. Given a current aet A of model candidates, the
MGTP applies the following operations to every model
candidate M € M and generates the new set M’
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1. (Model candidate rejection) If there is a nega-
tive clause of the form:

Ay A, —

and a substitution o such that M = (4; A ... A
Am)o, then M is discarded.

2. (Model candidate extension} If there is a non-
negative clanse of the form:

Al?' ‘. ;Am — C].la sa. |Cl.kl | e | Cﬂ,ly" '9Cn,k..
and a substitution & such that M = (A;A.. . AAp)o

and M = (CisA...AC 3, )oforalli=1,...  n,
then M U {Cia,...,Cis, 0} i8in M’ forevery i =
1,....n.

3. Otherwise, M is in M’.

Here, we call the process of obtaining a substitution ¢ a
conjunclive matching of the antecedent against elementa
in M. This process does not need full unification if ev-
ery clause is range-restricted [Manthey and Bry, 1988],
that is, if every variable in the clause has its occurrence
in the antecedent. In this case, since every model can-
didate constructed by the MGTP contains only ground
atoms, it is sufficient to consider matching instead of full
unification. The MGTP also imiproves efficiency by re-
moving redundant conjunctive matching with a ramified-
stack algorithm [Fujita and Hasegawa, 1991].

In the following, we assume that function symbols in
the language are only constants and that the number of
constants is finite. Given a set ¥ of clauses and the initial
set of model candidates My = {0}, the MGTP applies
the above two operations to M, and generates AMf;. This
process is repeated as long as Mg # M, bolds. I
the MGTP cannot apply any operation to some model
candidate set M, (that s, M, is closed under the above
two operations}, it stops and returns M,. If M, = @,
every model candidate has been rejected so that ¥ is
unsatisfiable. Otherwise, since cach interpretation M ¢
M, satisfies every ground clause from £, M is a model
of E. For example, if & consists of the four clauses:

- R{A), R(z)— S(z), R(z)— P(z)|Q(z),
Q(z), S(z) —

then using the MGTP we get:

Mo = [0}, My = ((RON), M, = ((RA)SCa)) ),

Mg = {{R(A),5(A), P(A)}, {R(A),5(A), Q(A)}}. and
M, = {{R(A), S(A), P(A)}} = M,. Now, let us denote
the set of minimal (in the sense of set inclusion of atoms)
model candidates from M as mm(M) Then, the set of
mintmal models of T can be precisely given by min{M,)
{Inoune et al., 1992a; Inoue and Sakama, 1993).

4 Abduction by Model Generation

Here, we introduce two realizations of abductive reason-
ing systems built on the MGTP.! Figure 1 illustrates the
abstract architecture for these systems. We consider the

1We have also developed several parallel abductive sys-

terns using the MGTP other than the two described in this
paper. See [Inoue et al., 1992b].
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(Model Generation)——-—-Output
{1

(Consistency Checka

Figure 1: Abduction Architecture based on MGTP

first-order abductive framework (Z,T’), where £ is a set
of range-restricted Horn clauses and T is & set of atoms
{ abducibles). Each abductive system first {ransforms the
given abductive framework (X, T') into a set of clauses in
a suitable form. Then, the MGTP is used for both (a)
Model Generation of the transformed formulas and (b)
Consistency Checks of some set of formulas augmented
with hypotheses. These twe functions correspond to the
two conditions for each explanation E of G from (E,I')
defined in Section 2: (i) EUE b= G and (it) T U E is
consistent. Here, we convert the problem of finding E by
(1) to some model generation problem (a). In this case,
since T is a set of Horn clauses, each set TU E for any E
from I' is a set of Horn clauses and has a unique minimal
model. In this way, the problem of finding explanations
of G can be reduced to that of finding models of L that
satisfy G. The MGTP, thus, outputs every model M of
the transformed clanses such that M contains a minimal
explanation of the given goal.

The two abductive systems below differ in how they
transform the abductive framework (X, T). The first one,
the MGTP+MGTP method, is a co-operative system in
which Model Generation and Consistency Checks com-
municate with each other. The second one, the Skip
method, on the other hand, does not separate Model
Generation from Consistency Checks, but expands some
model candidates while pruning others. Both methods
are natural extensions of standard model generation for
deduction to model generation for abduction.

4.1 MGTP+MGTP

The MGTP+MGTP method is illustrated in Figure 2.
In this method, two kinds of MGTF’s are combined:
one MGTP is used for Model Generation, and the other
MGTP's are used for Consistency Checks. Then, MGTP-
1 works as a forward-inference engine, while MGTP-2
only tests the {un)satiefiability of the given axioms. In
this system, each hypothesis H in I' is represented by
fact(H, {H}), and each definite clause in ¥ of the form:

A]A...AAM*'C

is transformed into & Horn clause of the form:

Joct{A1, Ey),..., fact(Am, Em) — fact{C,cc( | E:)).

=1
(2)



MGTP-1 Hypotheses

MGTP-2

M Sat / Unsat cC

Model Generation Consistency Checks

Figure 2: MGTP+MGTP

where E; is a set of hypotheses from I' on which A,
depends, and the function cc is defined as:

E) = E i XU FE is consistent;
cclB) =1 il otherwise.

Especially, a positive unit clause — C is transformed
to — fact(C,9). In this case, since each transformed
clause is a Horn clause, a global model candidate M ia
nmaintained as a unique mode] candidate in M at every
stage of computation. M containg a sct of atomic for-
mulas in the form of fact(A, F') that represents a meta-
atatement that U E = A, and is stored in MGTP-1.
Each time MGTP-1 derives a new ground atom, the con-
sistency of the combined hypotheses is checked by calling
an MGTP-2. ? Notice that MGTP-1 never uses any nega-
tive clause in ¥ for Model Generation.

In MGTP-2, cach clause of % is used aa i, and, iu par-
ticular, the negative clauses arc necessary. This MGTP
is used just for Consistency Checks, and whenever a set
of hypotheses E is received, it tries to find a model of
LU E. If a model is found then it returns E itself, else
returna nil, which ie a code for eliminating the derived
fact, Note that even when LU E is consistent we do not
have to generate all of its minimal models.

The parallelism in this method comes from calling
multiple MGTP-2's at once. However, since every trans-
formed clause is Horn, no case-aplitting occurs so that
MGTP-1 may not be parallelized. Therefore, the cffect of
parallelization depends heavily upon how much consis-
tency checking can be performed in parallel at once.

42 Skip

No matter how good the MGTP+MGTP method might
be, the system consists of two different components. The
possibilities for parallelization therefore remain limited.
In contrast, the Skip method does not separate the in-
ference engine from consistency checking, but realizes
both functions in only one MGTP. In this method, the
MGTP is used not only as an inference engine but also
as a "generate-and-test" mechanism so that consistency
checking is automatically performed. We can utilize
the capability supplied by the MGTP to extend and re-
ject model candidates. Therefore, multiple model can-
didates can be kept in distributed memories instead of
keeping a single, global model candidate M as in the
MGTP+MGTP method. Thus, a great amount of OR-
parallelism induced by case-splitting can be obtained.

2Note that transformation (2) is similar to the method
proposed by Stickel [1991], except that we additionally con-
sider the function cc for consistency checking.

The most direct way to implement reasoning with hy-
potheses is as follows. For cach hypothesis H in I', we
supply a clause of the form:

- H | -KH , (3)

where “KH means that “¥ is not assumed to be true in
the model”. Namely, each hypothesis is assumed either
to hold or not to hold. Note here that we consider each
literal ~K H not as a new formula in a suitable modal
logic, but as a newly introduced atom in a program,
hence we are still within the classical first-order logic.
Then, for dealing with ~KH, we need the axiom schema:

-KH H —

The above schema is an integrity constraint saying that
H cannot be true and disbelieved at the same time. In
this way, each model candidate containing both H and
-K H is rejected.

The above technique, however, may generate 2ITI
model candidates, and is, therefore, often explosive for a
numnber of practical applications. To reduce the number
of generated model candidates as much as possible, we
can use a method that delays case-splitting for each hy-
pothesis. ¥ That is, we do not supply any clause of the
form (3) for any hypothesis of T', but, instead, introduce
hypotheres when they are necessary. When abducibles
Hy.....Hy, (n > 0) from I" appear in the antecedent of
a Horn clause in ¥ as:

AyA L AAANH A ANH, = C.
| e ———

abducibiea

for every hypothesis H. (4}

we transform this clause into a non-Horn clause:

Al, PR A; - H].....Hm C | —|KH1 ] | —rKH,,.
(5)

In this transformation, each hypothesis H; in the an-
tecedent is shifted to the right-hand side of the clause in
the form of ~KH;. Moreover, each H; is skipped instead
of being resolved, and is added to consequent C of the
rule since C becomes true whenever all A;'s and H;'s
are true. This operation is a bottom-up counterpart of
the Skip & Cut rule in the top-down approach defined
for SOL-S resolution in [Inone, 1992, Section 5.2]. Just
like the transformation in (3}, we need to supply the
achema (4) for the Skip method. For example, suppose
that E consists of the clauses:

Person(z), Cold(z) — Sneeze(r),

Person(z), Hayfever({z) — Sneeze{r).

— Person{Tom),

Person(z). Cold(z), Hayfever{z) = ,

and the abducibles are T' = { Cold(z), Hayfever(z)}.
Then, (E.I) is transformed to the following clauses A
by the Skip method:

Person(x) — Cold{(z), Snecze(x) | ~K Cold(z),
Person(z) — Hayfever(z), Snecze(z) | ~K Hayfever(z),
—~+ Person( Tom),

Person(z) — -K Cold{z) | ~K Hayfever(z)

~KH.H —~ for every hypothesis H .

3The basic ideas behind the schema (4) and the delayed
approach was first proposed for the processing of negation as
failure with the MGTP in [Inoue et al., 1992a).
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Let G = Sneeze( Tom) be the observation. Using the
MGTP, two minimal models containing G are obtained
from A as:

M; = {Person(Tem), Cold( Tom).
Sneeze{ Tom), K Hayfever( Tom)} ;
My = {Person(Tom)}), Hayfever{ Tom),

Sneeze{ Tom), —K Cold( Tom)} .

By extracting the abducibles from M\ and M2, we can
get the two explanations of (7, Ey = {Cold{Tom)} and
E, = { Hayfever( Tom)}.

4.3 Upside-Down Meta Interpretation for
Abduction

As discussed in Section 2, bottom-up abductive systems
can enhance their efficiency by incorporating the goal in-
formation and by simulating top-down reasoning. Here,
we present two program transformation methods based
on upside-down meta-interpretation (UDM) approaches
defined by [Bry, 1990; Stickel, 1991]. We first apply such
a UDM transformation to the input clauses X, generat-
ing L', then further transform (L',T') by using a trans-
formation for the MGTP+MGTP method or the Skip
method defined in previous subsections.

The first transformation, called the simple UDM
transformation, transforms each definite clause of ¥ in
the form:

A, Ay - C (6)
into the clauses:

goal{C), A;... .. Ag = (O,
goal{C) — goal{Ay),.... goal{A,.).

In this method, the MGTP operations are applied for
clause (6) only when goal(C) is present. Further,
goal(C) invokes the subgoals of (6) by deriving every
goal(A;). Thus, top-down reasoning is simulated in a
breadth-first manner.

For each negative clause A1,..., A, ~ in X, we can
apply the above transformation used for definite clauses.
Then, since the consequent of a negative clause is empty,
we supply — goal(A;) for every A;. This means that
any subgoal in every negative clause is evaluated. How-
ever, as Ohta and Inoue [1992] pointed out, many nega-
tive clauses are irrelevant to finding explanations of the
given goal from the abductive framework in general. If
we evaluate all the subgoals in all negative clauses, the
UDM method cannot achieve speedups compared with
non-controlled bottom-up abduction. To overcome this
difficulty, we restrict the evaluation of negative clauses to
those clauses relevant to the goal by using the abstracted
dependency analyzer [Ohta and Inoue, 1992] that ana-
lyzes logical dependencies between the goal and negative
clauses at the abstract (e.g., predicate symbol) level.

The second transformation, called the left-to-right
UDM transformation, simulates top-down reasoning in
such a way that for clause (6) each subgoal goal(A;+i)
{1 < i £ m — 1) is invoked only after the previ-
ous subgoals goal(A\),...,goal(A;) have been solved.
Thus, this method simulates ordered-linear resolution in
a depth-first manner. In this method, each clause of
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Table 1: Evaluation of Abductive Systems
Table 1-1: Normal Transformation

Problem | limit MGTP+MGTP skip
300-40 4.0/ 7.5(64) 1.2/ 13.7(64)

GCD 400-50 | 31.2/3.3(64) | 23.3/ 19.4(64)
500-60 | 54.3/ 2.6(64) | 26.1/ 20.6(64)

Table 1-2: Simple UDM Transformation

Prohlem Himit MGTP+MGTP Skip
Subtractor | 500- 117 1.3(64) | 0.6/ 1.2(64)

Table 1-3: Left-to-Right UDM Transformation

Problemn Timit MGTP+MGTP Skip
Subtractor | 500-60 0.8/ 1.0(146) 12,77 3.1{64)
[Notation] T / R{PEs)

:  The smallest execution time (sec)
R: The speedup ratio of T to the time
obtained with a single PE (times)
The number of PEs used when T is
obtained (numnber}

PEs:

form (6) is transformed to:

goal(C) — goal{A,), cont,, (V),
conty 1(V), A1 — goal(Az}. conti2(V),

ctmt.‘c_m{V), Ap = C,

where k is the identifier of eacl clause C in X, and
conty (V) keeps the obtained substitutions V for the
variables appearing in A;,...,A,,. As in the simple
UDM transformation, the abstracted-dependency anal-
ysis is also employed for evaluating negative clauses in
this transformation.

5 Evaluation

This section presents an evaluation of two abductive sys-
tems, the MGTP+MGTP method and the Skip method,
by applying them to a design problem. The problem is to
design a logic circuit that calculates the greatest common
divisor (GCD) of two integers expressed in eight bits by
using the Euclidean algorithm [Maruyama et a/., 1988].
The solutions are those circuits satisfying the given con-
straints on the basic cell count and delay time (the area-
time limit). There are several kinds of knowledge on the
design of circuits (about 120 clauses): datapath design
knowledge (i.e., how to construct a GCD circuit by com-
bining components) at the top level, component design
knowledge (e.g., a subtractor can be constructed from
the combination of a one's complement circuit and an
adder) at the next level, and technology mapping rules
(e.g., an adder can be constructed from a series of some
CMOS standard cells) at the low level. The problem can
be represented as abduction, in which we assume that
some combination of components may satisfy all con-
straints. Thus, if hypotheses derive a contradiction with
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the background knowledge, we see that the sub-design
violates some constraints.

Table 1 shows the experimental result of two abduc-
tive systems at run time on the PIM/m parallel infer-
ence machine developed at ICOT. The area-time limits
are set in three ways (300-40ns, 400-50ns and 500-60ns).
In order to evaluate two UDM methods, we also solved
a subproblem (the design of subtractors) of the entire
problem (the design of GCD circuits). *

As shown in the table, the run time for designing sub-
tractors in each system is, as expected, much shorter
than that for designing GCD circuits, since the reason-
ing is directed to the given subgoal. However, for the

“In order to avoid possible combinatorial explosion caused
by generating many redundant model candidates contain-
ing non-minimal explanations, we introduced some negative
clauses that can be generated automatically by analysis in
the Skip method. See [Inoue et o/., 1992b] for details.

Skip method, the simple UMD transformation works
better than the left-to-right UDM transformation, indi-
cating that the left-to-right simulation of top-down rea-
soning increases the sequential processing more than the
breadth-first manner.

Figure 3 shows the run time graph for the design of
GCD circuits with a 500-60ns limit, which is obtained
by varying the number of available processor elements
(PEs) between 1 and 64 on PIM/m. Figure 4 displays
the speedup ratio for the same problem when running
two abductive systems. All reasoning tasks split with
disjunctions are automatically allocated to the available
number of processors. As shown in these figures, the
Skip method provides better parallelism as well as faster
abductive reasoning than the MGTP+MGTP method.

6 Final Remarks

We have presented several new program transformation
techniques for fast, parallel and bottom-up abduction.
First, we have converted the Horn abductive problem
with consistency checking into model generation prob-
lems in two ways. Second, we have applied the two
kinds of upside-down meta-interpretation transforma-
tions to abduction to incorporate top-down information.
Although we need to further investigate how to avoid
possible combinatorial explosion in constructing model
candidates for the Skip method, we conjecture that the
Skip method will be the most promising from the view-
point of Qil-parallelism.

For related work on computing abduction wusing
a model generation theorem prover, Denecker and
De Schreye [1992] recently proposed a proof procedure
for object-level abduction defined in [Console et a/., 1991].
Their abduction does not consider the consistency of ex-
planations. But, in contrast to us, they compute the
models of the only-if part of a completed program that
is not range-restricted in general even if the original def-
inite clauses are range-restricted. To this end, they have
to extend the model generation method by incorporating
complex term rewriting techniques, while we can use the
original MGTP without change in the Skip method.

While we restricted the abductive framework (£, T)
to a pair of Horn clauses and atomic abducibles, we can
consider an extension of abduction which captures non-
monotonic and default reasoning. Then, another impor-
tant advantage of the Skip method is that it may eas-
ily be combined with negation as failure so that knowl-
edge bases can contain both abducibles and negation-as-
failure formulas as in the framework of [Kakas and Man-
carella, 1990]. This extension of the abductive frame-
work by incorporating negation as failure is formally dis-
cussed in [Inoue and Sakama, 1993].

Finally, efforts should be also devoted to investigat-
ing extensions of bottom-up first-order abduction to deal
with non range-restricted, non-Horn clauses and literal
abducibles, which can be dealt with by a top-down ap-
proach like SOL-resolution [inoue, 1992]. An example of
bottom-up abduction for non-Horn clauses without con-
sistency checking can be found in [Stickel, 199I], which
uses contrapositives in the form of definite clauses. This
technique may be incorporated for the MGTP+MGTP
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method with consistency checking. One difficulty lies in
the fact that, since the definite transformation using the
meta predicate fact does not involve any case-splitting
as is the case in the MGTP+MGTP method, it needs
AND-parallelisin [Hasegawa et al., 1992] for speed-up.
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