
SCOTT: A Model-Guided Theorem Prover 

J o h n S laney 
Automated Reasoning Project 

Centre for Informat ion Science Research 
Austral ian National University 

GPO Box 4, Canberra, A C T 2601 
Austral ia 

A b s t r a c t 

SCOTT (Semantically Constrained Otter) is a 
resolution-based automatic theorem prover for 
first order logic. It is based on the high per­
formance prover OTTER by W. McCune and 
also incorporates a model generator. This finds 
finite models which SCOTT is able to use in 
a variety of ways to direct its proof search. 
Clauses generated by the prover are in turn 
used as axioms of theories to be modelled. Thus 
prover and model generator inform each other 
dynamically. This paper describes the algo­
r i thm and some sample results. 

SCOTT (Semantically Constrained Otter) is a resolu­
tion based automatic theorem prover for first order logic. 
So much is hardly revolutionary. What is new in SCOTT 
is the way in which it blends traditional theorem proving 
methods, best seen as purely syntactic, with techniques 
for semantic investigation more usually associated with 
constraint satisfaction problems. Thus it bridges two 
aspects of the science of reasoning. It was made by mar­
rying an existing high-performance theorem prover to an 
existing model generator. Neither parent program was 
much modified in this process. The resulting combined 
system out-performs its parents on many problems, for 
some of which it is currently the most effective prover 
available. 

1 T h e P a r e n t s 

1.1 Syn tax : O T T E R 

The theorem prover OTTER, written by W. McCune 
and based on earlier work by E. Lusk, R. Overbeek and 
others, is a product of Argonne National Laboratory 
and is widely regarded as the most powerful program of 
its type for certain classes of problem ([McCune, 1990; 
Lusk and McCune, 1992]). Its basic method is forward 
chaining, applying a rule of inference R, seen here as a 
partial function on clauses, to generate new clauses as in 
Figure 1. The clauses are divided into two disjoint sets, 
the set of support and the usable list Initially the set 
of support is non-empty. Clearly the proof search may 
terminate with a successful proof, or the set of support 
may be emptied, showing that there is no proof in the 

Figure 1 : Basic O T T E R A l g o r i t h m 

chosen search space, or it may fail to terminate. First 
order logic being undecidable, this is to be expected. 

The simplest rule applied by OTTER is binary reso­
lution, together with unification and factoring. More in­
teresting and powerful variants include hyper-resolution, 
negative hyper-resolution and unit resulting resolution. 
For equational reasoning the available rules include the 
various forms of paramodulation and term rewriting (de­
modulation). 

A crucial part of the algorithm is the decision as to 
whether each deduced formula is "new". In general 
this means that it is not subsumed by any formula al­
ready kept. Much of the high performance of OTTER 
is due to its sophisticated techniques for reducing the 
time spent computing subsumption and related proper­
ties. These techniques are not the focus of the present 
paper. Also not shown in the simple version of the algo­
r i thm in Figure 1 is the rewriting due to demodulation 
and the like which may take place before the subsump­
tion test. Nor have back subsumption and back demod­
ulation (whereby the generated clause is used to sim­
plify the existing clause database) been made explicit, 
although in many applications they are important. 

1.2 Semantics: F I N D E R 

Deduction is only one form of reasoning. Another is 
the generation of models of a given theory. A model of 

Slaney 109 



a theory shows that theory to be consistent, but it also 
shows much more. It is an account of what it might be like 
for the theory to be true. It divides the whole language 
into truths and falsehoods in a way consonant with the 
theory. Thus, given an effective means of detecting the 
truth values it assigns to formulas, it can be used to 
reach out beyond the given basis to determine semantic-
properties of all formulae. 

If a theory has finite models, one way of generating 
them is to fix the domain as consisting of a few objects 
(say three objects, or thirty) and then to perform an 
exhaustive search in the space of functions definable by 
enumeration over that domain. A model is an interpreta­
tion of the non-logical symbols in the theory's language 
making all of its axioms true. Since all of the struc­
tures in question are finite, it is easy to recognise models 
when they are found. There are, of course, more efficient 
and less efficient methods of searching. FINDER(see 
[Slaney, 1992]) performs a backtracking search, building 
a database of facts about the search space to enable it to 
avoid ever having to backtrack twice for the same reason. 
The details are interesting but are not germane to the 
present application since any reasonable constraint satis­
faction algorithm could be used to much the same effect 
provided it is not heavily dominated by the overheads of 
starting up a search. 

FINDER accepts input in a fairly friendly format. It 
works with first order theories in clausal form couched 
in a many-sorted language. Function symbols must be 
given first order types in terms of the sorts. There are a 
few pre-defined function symbols: for example, each sort 
comes with an identity relation, symbolised by ' = ' Each 
sort is also equipped with a total order, symbolised with 
' < ' and ' > ' . Evidently, this convention does no harm and 
it is often useful. A clause is a set of literals and is true 
iff for every assignment of elements from the domains to 
variables occurring in it one of those literals is true. 

It is worth noting that what FINDER does is rather 
different from logic programming. In the first place, it 
imposes no order on the evaluation of clauses and has no 
'flow of control'. The clauses meet each candidate model 
in a body; if they are all true then the model is good, 
while if any clause is false, the model is adjusted to deal 
with that badness, resulting in a new candidate. In the 
second place, F INDER is not able to show the nonexis­
tence of models and hence cannot prove sets of clauses 
inconsistent. It returns a null result if there is no model 
within a specified finite search space, but always leaves 
open the possibility that there may be models outside 
that space. In the third place, it finds and specifies the 
models without any reference to the Herbrand universe. 
The domain consists simply of the first object, the sec­
ond object and so forth, any relationship with terms of 
the language being accidental. 

2 P u t t i n g i t Together 
There are several distinct ways in which semantic infor­
mation such as the t ruth value of a formula in a model 
can be used to direct proof searches. The oldest and sim­
plest is goal deletion. In attempting to show by backward 
chaining that a goal formula is a theorem of some theory, 

Figure 2: Basic S C O T T A l g o r i t h m 

we decompose the goal into simpler subgoals and work 
recursively on those. In typical cases, most of the sub-
goals are unprovable. Having discovered that a subgoal 
cannot be reached, the proof search must backtrack and 
try another. Hence techniques for rapidly detecting and 
deleting unprovable subgoals are valuable. One good 
technique is to test goals for truth in some simple model 
of the theory. Any that are false are unprovable and 
may be deleted. See [Ballantyne and Bledsoe, 1982] and 
[Thistlewaite et al, 1988] for some discussion. OTTER 
is a forward chaining prover, so goal deletion is not the 
main present concern, though it is fairly obvious how a 
method similar to that of SCOTT could be used for goal 
deletion in backward chaining systems. 

Another use for semantic information is in the false 
preference strategy. This is appropriate to forward 
chaining proof search and uses some model or models 
in which the goal is false. The strategy is to prefer par­
ent clauses of inferences to be ones false in the guiding 
model or models, on the thought that the goal is more 
likely to be deduced from clauses which imply it in the 
models than from those which do not. Since this is only 
a heuristic, it can usually be shown not to affect the 
prover's completeness. SCOTT (optionally) implements 
the false preference strategy in a straightforward way, 
testing each kept clause against a guiding model and as­
signing greater weight to clauses which are true in the 
model than to those which are false. 

Most interesting for present purposes is the idea of 
semantic resolution. Given any model M, a simple the­
orem assures us that if there is a derivation of the empty 
clause from a set of clauses using unification, resolution 
and factoring then there is one in which no inference 
has parents both of which are true in M. This is a well 
worn result, for a fuller account of which see [Chang and 
Lee, 1973] or [Slagle, 1967]. SCOTT implements seman­
tic resolution by means of two very simple amendments 
to OTTER's algorithm. These are underlined in Figure 
2. The safe clauses are those true in the guiding model. 
They are "safe" because they are known to form a con-

110 Automated Reasoning 



Figure 3: Basic T E S T E R A l g o r i t h m 

sistent set whose immediate consequences may therefore 
safely be omitted. If the given clause g is safe then it may 
not react with other clauses unless they are unsafe. This 
cuts down the number of generated clauses sufficiently 
to have a marked effect on OTTER. 

Before the guiding model can be used it must be found. 
The clause testing module which assigns labels to given 
clauses calls FINDER from time to time, to generate a 
model of a set of clauses or to return the information that 
no model was found within the delimited search space. 
The logic of the clause tester is given in Figure 3. Note 
that at any given time it is either in generating mode or 
in simple testing mode. At the start of the proof search 
it is in generating mode; after a while it stops trying to 
generate any new models and becomes just a tester. This 
is because model generation is expensive in comparison 
with testing and because there comes a time when no 
better model can be found without enlarging the search 
space to an unacceptable degree. The cutoff point at 
which the mode is switched may be set as a parameter, 
the default being after 100 clauses have been evaluated. 
Also at any given time the tester has associated with it 
a theory T (the set of safe clauses so far) and a model 
M of that theory. The further procedure 'Model' is the 
model generator (in effect FINDER, in SCOTT's case) 
and its parameter is the theory to be modelled. It must 
be given a finite search space, so that it always com­
pletes even when it fails to find a model. In order to 
set up the semantic apparatus consistently, FINDER is 
called initially with the theory consisting of the clauses 
(if any) in the init ial usable list. If it fails to model this, 
the whole proof attempt fails, since otherwise dynamic 
semantic resolution would not fit with the set of support 
algorithm. 

Two input scripts are needed for SCOTT. One is the 
normal OTTER input consisting of the problem to be 
solved. It specifies the init ial contents of the usable list 
and the set of support, together with any settings for 
OTTERS optional parameters such as which rules to 
use, what weight l imit to set and what results should be 

printed. The other is a FINDER input file, consisting 
of the sort and function specifications for the problem, 
together with any clauses in the init ial usable list and op­
tionally FINDER settings such as verbosity modes. Ex­
pert knowledge about the problem domain may be added 
in the form of extra clauses to help direct F INDER to 
the models. In practice this facility is best used spar­
ingly, as the program may make more intelligent choices 
of model than the "expert". Any extra clauses given to 
FINDER are not communicated to the OTTER part of 
the prover, so they do not form part of the proof. 

3 Case Studies 
A systematic evaluation of SCOTT has yet to be made, 
since it has been designed and developed only in 1992. 
The following sample results show its effect in three se­
lected cases where OTTER is already one of the most 
effective theorem provers available. These involve con­
densed detachment axiomatisation of propositional log­
ics and are among the hardest solved problems in the 
field. It would have been easy to show dramatic speedup 
effects in cases where OTTER does poorly—non-Horn 
ground problems for example1 but it is of more inter­
est and value to improve what OTTER does best. 

3.1 Classical Pu re I m p l i c a t i o n 
One problem set for which OTTER is particularly suit­
able is determined by the single axiom for the classical 
propositional calculus of pure implication 

given by Lukasiewicz. The problem is to derive from this 
some axioms known to be sufficient for the theory, using 
the rule of condensed detachment 

where is the most general unifier of A and C. A con­
venient sufficient axiom set consists of these five:2 

A very simple OTTER input file for the first axiom, for 
example, reads as follows. 

1An amus ing examp le is the p igeonhole p r o b l e m w i t h 
naive i n p u t , where the t i m e taken in one case is reduced f r o m 
hours to a b o u t a m i n u t e . However , on closer e x a m i n a t i o n i t 
emerges t h a t the F I N D E R hal f o f S C O T T ac tua l l y solves 
t he p rob lem comple te ly in a few mi l l i seconds, af ter w h i c h 
the O T T E R hal f labours t h r o u g h a p roo f search, t r e a t i n g 
the so lu t ion j u s t as a h i n t ! 

2 A x i o m 4 is in fact r edundan t , b u t i t has been i nc luded in 
the p rob lem set because i t is n ice ly i n t e r m e d i a t e in d i f f i cu l t y 
between ax ioms 3 and 5. 

Slaney 111 



The predicate p is for provability, and the function sym­
bol i for implication. The goal is a Skolemized denial of 
the axiom to be derived. OTTER input for the other four 
problems is similar, with the different goals of course. In 
practice there may be some further settings such as a 
weight l imit and a l imit on the number of distinct vari­
ables per clause. The fifth problem is difficult. To the 
best of my knowledge, OTTER is the only prover to have 
solved it automatically.3 

The basic FINDER input used by SCOTT in tandem 
with the OTTER input reads as follows. This is for 
the first problem; for the second, it is necessary only to 
declare another constant b and to change the goal. 

In fact, it pays to use some expert knowledge amounting 
to the fact that the implication relation may be expected 
to be acyclic. By embedding that relation in the default 
total order on the values we may cause the FINDER 
half of SCOTT to avoid searching too many isomorphic 
subspaces. This alternative clause set is the one used for 
problem (3) and, with a change of goal, for problem (4). 

For hard problems like (5) we shall probably also want to 
help FINDER along with some more expert knowledge 
about what models of implication logics are like. In the 
experiment reported here it was directed to a good model 
by being informed ahead of time of some of the clauses 

3Since this paragraph was wr i t ten, the theorem prov­
ing group in the 'F i f th Generation' project ICOT in Tokyo 
have reported a proof using their Model Generation Theo-
rem Prover M G T P - N which however is closely modelled on 
O T T E R . 

1: OTTER 
1: SCOTT 
factor 

2: OTTER 
2: SCOTT 
factor 

1 3: OTTER 
3: SCOTT 
factor 

4: OTTER 
4: SCOTT 
factor 

5: OTTER 
5: SCOTT 
factor 

clauses 
generated 

2828 
245 
11.5 

3070 
450 

6.82 

8774 
1782 
4.95 

1204953 
220734 

5.46 

4282987 
1544423 

2.77 

clauses 
kept 

376 
68 

5.53 

386 
99 

3.90 

595 
130 

4.58 

1762 
1069 
1.65 

17508 
13967 

1.25 

clauses 
given 

70 
30 

2.33 

74 
35 

2.11 

134 
60 

2.23 

1196 
733 

1.63 

2285 
1823 
1.25 

time 
(sec) 
3.42 
1.13 
3.03 

3.72 J 
2.04 
1.82 

8.56 
2.59 
3.31 

1010 ' 
352 

2.87 

3865 
2070 
1.87 

Figure 4 : I M P P r o b l e m : Resul ts 

which it would eventually have modelled anyway. The 
OTTER input was also changed a l i t t le, by imposing a 
length l imit in order to cut down the number of clauses 
kept and by making it less verbose. 

Note that FINDER needs some termination condition 
such as a cardinality l imit or a time l imit. The more 
generous this l imit, the longer SCOTT wil l spend trying 
(and failing) to model inconsistent sets of clauses, but 
the more restrictive it is made the more likely SCOTT 
is to miss some useful model. At this stage, the course 
between these two undesirable outcomes is steered man­
ually, though clearly such heuristics are programmable. 

As wil l be observed from Figure 4, SCOTT improves 
on OTTER on every measure. The 'factor' in each case 
is the figure for OTTER divided by that for SCOTT. 
The counts of clauses give measures of the amount of 
work done. In each case about two thirds of the given 
clauses were labelled 'safe', so approximately four ninths 
(two thirds squared) of clauses which would otherwise 
have been generated are avoided because their parents 
are safe. The amount of the time spent generating mod-
els and testing clauses for safety was 23% for problem 4 
but only 8% for problem 5. In order to keep these ex­
periments tidy for easy reporting, very simple FINDER 
input was used. Where SCOTT is used to tackle really 
serious problems, the option of giving it extra seman­
tic information is clearly valuable. The input of expert 
knowledge and heuristics may be restricted to the se­
mantic side, leaving the theorem prover itself clean. 

3.2 E x t e n d i n g I n t u i t i o n i s t I m p l i c a t i o n 

In [Karpenko, 1992] Karpenko raised the problem of find­
ing an axiom which would strengthen intuitionist pure 
implication to classical pure implication but whose ad­
dition to various substructural systems would produce 

112 Automated Reasoning 



Natural 

OTTER 

SCOTT 

factor 

Tuned 

OTTER 

SCOTT 

factor 

clauses 
generated 

22725376 

6395 

3553 

209242 

3428 

61.0 

clauses 
kept 

89639 

149 

602 

1862 

82 

22.7 

clauses 
given 

3606 

87 

643 

377 

52 

7.25 

time 
(sec) 

25591 

7.90 

3239 

289 

5.16 

56.1 

Figure 5: I n t u i t i o n i s t Logic : Resul ts 

new substructural logics. There are several solutions to 
this problem, one of which is the formula 

where A * B is defined as 

The theorem-proving problem is to derive from this, to­
gether with some standard axioms for intuitionist impli­
cation, goal 3 of the set given in the last example: 

A suitable set of 'standard axioms' is the following. 

and again the problem is easily set up for OTTER to 
solve by enumerating consequences by condensed detach­
ment. 

Observe that the second axiom assures us that the im­
plication relation is transitive. Hence we are entitled to 
add a new clause giving us the rule of condensed transi­
tivity. 

where a is the most general unifier of B and C. The 
OTTER input clause for this reads: 

This is a useful proof-shortening device. Figure 5 shows 
the results of running OTTER and SCOTT on this prob­
lem, first without any special settings, except for a l imit 
of three distinct variables per formula, then (after many 
experiments) with settings hand-tuned to help OTTER. 
It is worth noting that this problem was open until closed 
by SCOTT. 

OTTER 

SCOTT 

factor 

clauses 
generated 

4016344 

3047711 

1.32 

clauses 
kept 

11304 

17621 

0.64 

clauses 
given 

1991 

6558 

0.30 

time 
(sec) 

11708 

29593 

0.40 

Figure 6: M a n y Va lued Logic: Resu l ts 

3.3 M a n y Va lued Logic 
A similar problem to that presented by the Lukasiewicz 
single axiom arises in the axiomatisation of his many 
valued logic. This time there is a negation connective 
as well as implication. The rule of inference is again 
condensed detachment, and the axioms are: 

(1) 

(2) 

(3) 

(4) 
The thought behind axiom (3) is that 
defines AVB, so (3) amounts to the commutativity of 
disjunction. Now the hard problem is to show that im­
plication is a total order: 

In view of axiom 2, we may add the clause for condensed 
transitivity as before. Next, it is not hard to see that 
the logic being axiomatised satisfies a rule of replace­
ment of proved equivalents. We can secure the effect of 
replacement by adding a clause to make derived t w o way 
implications into equalities thus: 

together with settings to make OTTER add demodu­
lators (rewrite rules) whenever it derives a directable 
equality. This, for instance wil l cause any subformula 
of the form to be rewritten as A, thus eliminating 
huge numbers of redundant equivalents. 

Wi th careful setting of weight limits and the like, 
OTTER can now solve the problem. It takes 3 hours 
15 minutes on a Sparc-2, generating 4016344 clauses 
of which 11304 are kept and 1991 are given (added to 
UL). FINDER can easily be instructed to find a model 
of all the axioms except for the commutativity one, in 
which model negation is well-behaved in that is 
everywhere the same as and in which the goal 
formula is false. The results of running SCOTT with 
that FINDER file and with the same problem input as 
OTTER are interesting (Figure 6). Overall performance 
actually degrades, despite the fact that over 95% of all 
given clauses are labelled 'safe'. 

More useful for this problem is the false preference 
strategy. OTTER normally selects given clauses by 
weight, lightest first, taking the weight to be the number 
of symbols in the clause. SCOTT applying the false pref­
erence strategy with a safe-weight of S tests each kept 

Slaney 113 



value of safety weight S 

Figure 7: False Preference St ra tegy 

clause before its insertion in the set of support and adds 
S to its weight if it is true in the current model. This 
causes selection of 'safe' clauses to be delayed. Figure 7 
shows the effect on OTTER's proof search. Note that 
the scale is logarithmic. The case 5 = 0 is just OTTER, 
since dynamic semantic resolution was not used in this 
experiment. An improvement of almost two orders of 
magnitude is possible, but only if the choice of S is right. 
At present, no automatic method of finding an appropri­
ate value for S is known, though it seems likely that the 
optimal value will be similar for cognate problems. 

4 Remarks 

SCOTT brings semantic information into the service of 
forward chaining resolution proof search. Looked at ab­
stractly, this is obviously a move in the direction of intel­
ligence. OTTER is powerful but blind. When asked to 
prove Axiom (1) in the Lukasiewicz implicational calcu­
lus problem, it starts performing exactly the same search 
as it does when asked for a proof of Axiom (4). In other 
words, it never refers to the goal except to check whether 
the proof is finished, so the goal has no effect on the 
search. The really remarkable fact is that such a strategy 
works at all! The effect of injecting models is to enable 
SCOTT to look ahead. Even a crude model carries infor­
mation. Whether through the false preference strategy, 
semantic resolution of a combination of the two, this in­
formation allows the goal to affect the direction of the 
search. In cases where this leads to incompleteness4 or 
inefficiency, it can be disabled since SCOTT has OTTER 
as a sub-program, so nothing is lost in the move from 

OTTER to SCOTT. Moreover, the addition a complex 
set of tools to OTTER, has opened new possibilities for 
heuristics on which research may usefully be focussed. 

In theorem proving, there are no magic bullets. No 
one technique gives easy solutions to all problems. Dy­
namic semantic resolution and the false preference strat­
egy are like most other worthwhile ideas in the field in 
that they work spectacularly in a few cases and solidly 
across a fair range, have litt le or no effect in other cases 
and sometimes make matters worse. Hence the present 
paper issues no claim to have solved all the problems. 
Indeed, in that it opens questions about the effective­
ness of semantic resolution relative to problem-specific 
models it may be taken to have posed some new ones. 
The significance of so doing depends in part on whether 
these are interesting problems. My feeling, for what it 
is worth, is that if we could explain both the successes 
and the failures of SCOTT in its various configurations 
then we should understand the heuristics of first order 
theorem proving better than we do. Meanwhile, whether 
it be seen as a theorem prover of a new type or simply 
as OTTER with yet another optional add-on, SCOTT 
is both an intriguing departure and a power tool. 

R e f e r e n c e s 

[Ballantyne and Bledsoe, 1982] M. Ballantyne and W. 
Bledsoe, On Generating and Using Examples in 
Proof Discovery, Mach ine In te l l igence, 10, pp. 3-
39. 

[Chang and Lee, 1973] C. Chang and R. Lee, Symbo l i c 
Logic and Mechan ica l T h e o r e m P r o v i n g , New 
York, Academic Press. 

[Karpenko, 1992] A. Karpenko, Lattices of implicational 
logics, B u l l e t i n of the Sect ion of Logic, 21, 
pp.82-91. 

[Lusk and McCune, 1992] E. Lusk, and W. McCune, An 
FJntry in Overbeek's 1992 Theorem Proving Contest, 
Jou rna l o f A u t o m a t e d Reasoning, forthcom-
ing. 

[McCune, 1990] W. McCune, OTTER 2.0 Users Guide, 
Argonne National Laboratory, Argonne, Illinois. 

[Slagle, 1967] J. Slagle, Automatic Theorem Proving 
with Renamable and Semantic Resolution, J o u r n a l 
o f the A C M , 14, pp. 687 697. 

[Slaney, 1992] J. Slaney, FINDER (Finite Domain Enu-
merator): Notes and Guide, Technical Report TR-
ARP-1/92, Australian National University Auto­
mated Reasoning Project, Canberra. 

[Thistlewaite et al, 1988] P. Thistlewaite, M. McRobbie 
and R. Meyer, A u t o m a t e d T h e o r e m P r o v i n g in 
Non-Class ica l Logics, Pitman, London. 

4SCOTT's dynamic semantic resolution is obviously com­
plete where the rule of inference is binary resolution, but 
incomplete in general for hyper-resolution and the like. Its 
completeness for condensed detachment is an open question. 

114 Automated Reasoning 


