Difference Unification”

David A. Basin
Max-Planck-Institut fur Informatik
Im Stadtwald, Saarbriicken, Germany
(basin@mpi-sb.mpg.de)

Abstract

We extend work on difference identification and
reduction as a technique for automated reason-
ing. We generalise unification so that terms are
made equal not only by finding substitutions
for variables but also by hiding term structure.
This annotation of structural differences serves
to direct rippling, a kind of rewriting designed
to remove differences in a controlled way. On
the technical side, we give a rule-based algo-
rithm for difference unification, and analyze its
correctness, completeness, and complexity. On
the practical side, we present a novel search
strategy for efficiently applying these rules. Fi-
nally, we show how this algorithm can be used
in new ways to direct rippling and how it can
play an important role in theorem proving and
other kinds of automated reasoning.

1 Introduction

Motivation and Context

Heuristics for judging similarity between terms and sub-
sequently reducing differences have been applied to auto-
mated deduction since the 1950s when Newell, Shaw, and
Simon built their "logic machine" [NSS63] for a proposi-
tional calculus. Their intent was to simulate the be-
havior of a human on the same task. More recently,
in resolution theorem proving, a similar theme of dif-
ference identification and reduction appears in [BS88;
Dig85; Mor69]. In this work a partial unification results
in a special kind of resolution step (E or RUE-resolution)
where the failure to unify completely produces new in-
equalities that represent the differences between the two
terms. This leads to a controlled application of equal-
ity reasoning where paramodulation is used only when
needed. The intention was not to design a human ori-
ented problem solving strategy, but rather, to use differ-

*This research was partially funded by the German Min-
istry for Research and Technology (BMFT) under grant ITS
9102 and a SERC postdoctoral fellowship. The responsibil-
ity for the contents of this publication lies with the authors.
We thank the Edinburgh Mathematical Reasoning Group for
their encouragement and criticism, in particular Alan Bundy
and Andrew lIreland.

116 Automated Reasoning

Toby Walsh
Dept. of Al, University of Edinburgh,
80 S. Bridge, Edinburgh, Scotland
(tw@aisb.ed.ac.uk)

ence identification and reduction as a means of reorder-
ing a potentially infinite search space.

Here we report on research sharing both these cog-
nitive and pragmatic aims. We have developed a gen-
eral procedure called difference unification for identify-
ing differences between two terms. Difference unification
extends unification in that it decides if terms are syntac-
tically equal not only by giving assignments for variables
but also by computing what incompatible term struc-
ture must be removed. This incompatible term struc-
ture, called wave-fronts, is marked by annotations which
are used to direct a special kind of rewriting called rip-
pling; rippling seeks to reduce the differences between
the terms by moving the wave-fronts "out of the way"
while not disturbing the unannotated parts of the terms

Related Work

This research is the outgrowth of previous work at Ed-
inburgh in inductive theorem proving. There Bundy
[Bun88; BS+92] suggested that in proofs by mathemat-
ical induction, the induction conclusion could be proven
from the induction hypothesis by rippling on the in-
duction conclusion. Rippling has been employed in the
OYSTER/CLAM prover. A similar kind of rewriting
was developed independently by Hutter [Hut90], from
ideas in [Bun88], and employed in the INKA system.
Both systems have enjoyed a high degree of success stem-
ming from several desirable properties ofrippling. These
include (see [BS+92]) that rippling involves very little
search and rippling always terminates since wave-fronts
are only moved in some desired (well-founded) way —
usually to the top of the term.

Research Contributions

Motivated by a desire to apply rippling outside of induc-
tive theorem proving, in BW92 we introduced differ-
ence matching which extends matching to annotate the
matched term so it can be rewritten using rippling. We
list there, as well as in [WNB92] several applications of
this idea. In this report we take another step forward.
Our contributions are several fold. First we extend dif-
ference matching to difference unification whereby sub-
stitutions and annotations are returned for both terms.
The rule based algorithm we give uses conventional uni-
fication in a transparent way whereby other additions to
unification, such as equations or higher order patterns,



can be easily made. We prove the algorithm given is
both sound and complete with respect to its specifica-
tion. Second, unlike difference matching, difference uni-
fication can return a large number of matches which we
are not interested in; there may be exponentially many
ways to annotate two identical terms. Hence, we de-
marcate two restricted classes of useful answers (which
we call strongly and weakly minimal). Further, we give
a novel search strategy (a meta-interpreter) that finds
answers in these classes with minimal search. Third,
we give a thorough analysis of the complexity of dif-
ference unification and subproblems. Finally, we pro-
vide examples of how difference unification can be used.
In doing so, we present a new paradigm for theorem
proving/problem solving whereby proof proceeds by al-
ternating between annotating differences and reducing
them. This combination is different from previous work
combining rippling and difference matching since here
successful rippling does not guarantee successful rewrit-
ing of one term with another; rather, it must be seen as
one step, in possibly many, of difference reduction. This,
along with differences from traditional rewrite based the-
orem proving, is developed in the next section.

2 Applications

2.1 Normalization

We begin with a simple example that both introduces
notation and illustrates how difference unification can
be used to apply rippling in a new way: as an itera-
tive difference reduction technique. In rippling's original
role in inductive theorem proving, successfully rippling
the goal always allows use of the induction hypothesis.
More particularly, in an inductive proof the induction
conclusion is an image of the induction hypotheses ex-
cept for the appearance of certain function symbols ap-
plied to the induction variable in the conclusion. The
rest of the induction conclusion, which is an exact im-
age of the induction hypothesis, is called the skeleton.
The function symbols that must be moved are the wave-
fronts. For example, if we wish to prove p(x) for all
natural numbers, we assume p(n) and attempt to show
p(s(n)). The hypothesis and the conclusion are identical
except for the successor function s(.) applied to the in-
duction variable n. We mark this wave-front by placing
a box around it and underlining the subterm contained

in the skeleton, p). Rippling then applies just

those rewrite rules, called wave-rules, which move the
difference out of the way leaving behind the skeleton. In
their simplest form, wave-rules are rewrite rules of the

form a{ B(x)p = |pla(r)}
a{y) remains unaltered by their application. If rippling
succeeds then the conclusion Il is rewritten us-

that is, into

By design, the skeleton

ing wave-rules into some function of p(n);
f(p{n)) | (f may be the identity). At this point we can

call upon the induction hypothesis.

An analogous situation occurs in difference matching.
If we can match two terms, annotating one with wave-
fronts, then successful rippling allows rewriting one to

the other. However, this fails with difference unification
as both terms are annotated. For example, consider the
associative (infix) function symbol +. The following are
wave-rules(capital letters represent variables and lower
case letters constants and bound variables).

[(x+D)|+2~[X+(x +2) (1)

X+|XY+2)| = X+Y)+ 2 (2

As previously noted, rippling terminates because wave-
fronts in the rewrite rules must match those in the rewrit-
ten term and these are only moved in some well-founded
direction. We may therefore rewrite with the associativ-
ity of + in both directions. Consider proving

{a+b8)+ed+d=a+{b+{c+d)

If we difference unify the left hand side of this equa-
tion with the right, there are 10 annotated answers cor-
responding to the 6 ways of selecting any 2 constants
from the 2 terms and 4 ways of selecting any one. |In
general, we prefer only those with minimal amounts of
annotation. Furthermore, as wave-rules only exist to rip-
ple these minimal annotations, rippling would not find
proofs for the others. Picking minimal annotations (for-
mally defined in §3) narrows the choice to 2:

((a+d)+e)+d a+i(d+ (c+d) (3)

(a+t)+9]+d = [a+b+(crd)] @

Both of these will lead to proofs by rippling (the first
giving a left associative normal form, the second giving
aright). In what follows we concentrate on the first. The
left hand side of this equation is completely rippled-out:
no more wave-rules need (or can) be applied since the
wave-fronts are already outermost. The right hand side
ripples with (2) yielding

i

{((e+B)+c)+d|=|(a+b)+(c+d)

and now both terms are rippled-out. Though rippling is
done, we have not succeeded in proving the terms equal
since the wave-fronts themselves differ.

One might conclude that rippling has not accom-
plished anything but that would be false. It has reduced
the "inner difference" between these terms: each now
contain a copy of the previous skeleton a+ b intact. Dif-
ference unifying ((a + b) + c) + d against (a + b) + (c + d)
reveals this. There are 12 annotations in total, but only
3 are minimal, and only one of these can be rippled:

(et +)+d|= (a+0)+[c+d)]

We have made progress since these terms have a larger
skeleton. As before the left hand side is rippled-out; rip-
pling on the right with (2) yields the left hand side, so
we are done. This example illustrates a general phe-
nomenon: iterating difference unification and rippling
successively decreases the difference between two terms.

This combination can be very effective. In associa-
tive reasoning each iteration of difference unification and

Basin and Walsh 117



rippling increases the skeleton and hence terminates suc-
cessfully. Of course, exhaustive application of one of the
associativity rules would also suffice, but there are ad-
vantages in using difference unification and rippling. To
begin with, one needn't completely normalize terms, rip-
pling proceeds only as far as is required to reduce the
difference. Moreover, as both left and right associativity
may be used, fewer rewrite steps may be required. More
significantly, there are theories where we need both and
where normalization would therefore loop. The combi-
nation of difference unification and rippling is often an
effective heuristic in theories where rewrite based proce-
dures do not exist; the next example, aside from being
more general, illustrate this.

2.2 Series

Difference unification and rippling have proved also very
useful in summing series. Consider, for example, the
problem of finding a closed form sum for

m ]
Sk s
X &
=" () (s(:)
using the standard result (such results are computed au-
tomatically in [WNB92])

i 1 1 . 1
— T Ty — Tt 5
L2 0() T s(s(9) s(s(V)) ©
We encode the problem of finding a closed form sum as
the task of proving a theorem of the form,

3 3 ke i = S

FJ=0 k=0

where the existential witness S is restricted to be in
closed form. To prove this theorem, we first eliminate
the existential quantifier. The standard form method
[WNB92] then difference unifies the dequantified goal
with (5) giving the minimal annotations

N[ 1 1
2@ |T ey b

=0 —=

m n 1
SISk =5

j=0| k=0 s(5) x s(s(5))

To ripple these differences away we use the wave-rules;

B D D B
Sivul - oyl ©
izAl k=C k=C j=A

B B
> Cx3 U (1)

i
x
[
l

y=A j=A
- N N S (8)
s(U) x s(s(U)) V) s(s(U))

118 Automated Reasoning

where C and D are constant with respect to j. Note
that (6) could not be used in a procedure based on ex-
haustive rewriting since, like associativity when used in
both directions, it would loop.

The standard form method first applies wave-rule (6)
to the goal dividing its wave-front into two,

n m™m 1
l—Zka ' - = S

k=0 =0 fﬂ.l)_ x 8(s(7))

then wave-rule (7),

i 1

[ Zn:kxz - - = &
k=0

§=0 fQ) x &5(5(7))

and finally (8), after which rippling no longer applies,

L 2lm o =

i=0

We therefore re-difference unify goal and hypothesis to
give, as with the associativity example, a larger skeleton,

N

1 1 1
2o G = ey

n ” 1 1
DD D e

k=0 =0

Rippling, though unable to move the differences up com-
pletely, has reduced the inner difference. Indeed, the dif-
ference has been so reduced that we can now substitute
the standard result into the goal,

= 1
F gk x (1 - )

The standard form method now difference unifies against
the standard result for the sum of the first n integers,
and ripples with (7) to complete the proof.

2.3 Other applications

We have explored a number of other applications of dif-
ference unification that, for lack of space, we cannot de-
velop here. For example, in [BW92a; BBH93] we show
how difference unification can be used to guide rewriting
in so called proof by consistency techniques. Other re-
searchers have also explored applications of these ideas.
Hutter has recently reported on applying associative
commutative difference unification and rippling to solve
SAMs lemma in the INKA system [CH92J.

3 Specification

To specify difference unification we must be more precise
about the representation of annotations. As in [BW92]
annotations are represented in a normal form in which



every wavefront has an immediate subterm deleted (i.e.
all wavefronts are one functor thick); this is without loss
of generality as “thicker” wavefronts can be represented
by nested wavefronts. In addition, rather than superim-
poseing a particular representation on terms, annotations
will be abstracted out and represented separately; this
makes it much easier to specify and describe a differ-
ence unification algorithm (although we will continue to
use the “box-and-hole” for aiding visualisation of anno-
tation sets). Annotations will therefore be represented
by the set of positions of the wave-holes; as the wave-
fronts are always one functor thick, the position of the
wave-hole uniquely determines the wavefront. Positions
are defined recursively as follows: the set of positions
in the term t is Pos(t) where Pos(f(sy,...,5n)) equals
{Aufip|1<i<n A p€ Pos(s;}}. So A represents
the empty sequence and “” concatenation. The sub-
term of a term { at position p is ¢t/p where t/A =t and
f(s1, ..., 8,)/t.p = s;/p. For example, annotations for
e ), g(b) |) are given by the set {1.1.1,2.1}. In
what follows we only work with sets of annotations that
are well-formed with respect to given terms. That is ad-
dresses refer only to positions inside the expression tree,
and no two addresses differ only in the final address po-
sition (which would correspond to a wave-front with two
wave-holes).

A few remaining auxiliary definitions are needed. By
recursion on terms it is simple to define a function
skel(t, A;) which takes a term ¢ and a set of annotations
for that term A;, and returns the unannotated part of the

term. For example, the skeleton of f(g(| f(a.b)]).| g(b) )

is f(g(a),b). We say that ¢ extends p iff ¢ = p.i, or ¢
extends some r and r extends p.

Difference unification is a relation, du(s, i, A,, Aq, 7),
that satisfies the property

a(skel(s, A,)) = o(skelt, Ar)),

where ¢ is a most general unifier. Note that this is rather
different from the much harder homomorphic embedding
problem [NS87) where the substitution is applied before
deleting function symbols possibly including those intro-
duced by the substitution.

As in the examples, we often demand a minimality
condition on the annotations. Annotations are minimal
if they are the least amount of annotation necessary to
make terms unifiable (just as a most general unifier is the
least amount of substitution needed to make the terms
identical). Thete is a choice though concerning whether
annctations are minimal with respect to a given sub-
stitution, or with respect to all possible substitutions.
This choice has important consequences both for ap-
plications of difference unification, and as we will later
demonstrate, for the algorithm's search properties.
Definition 1 (weak minimality) A, and
A¢ are weakly minimal annotations of 5 and t and o iff
~34; C A,, A} C Ay with o(skel(s, A,)) = o(skel(t, AL))
Definition 2 (strong minimality) A, end A, are
strongly minimal annotations of s and ¢t iff —-3A,, A}
with (A, C A,, A} C Ay) or (A, C A,, A, C A;) and
skel(s, AL) unifiable with skel(t, A})

For example, 1| f(X) ., f(a)} is weakly minimal with sub-
stitution {f(a)/X} but not strongly minimal, whilst

0 /(X)L F(XY) |} is neither weakly minimal nor strongly

minimal (the only strongly minimal difference unification
ia no annotation). A simple consequence of the defini-
tions is that strongly minimal solutions are also weakly
minimal and in the ground case (e.g., wave-rule parsing)
they coincide. Note that all difference matches (variables
and annctations only on one of the two terms) are weakly
minimal. As we illustrated in the applications, we can
often avoid many useless difference unifiers by restricting
our attention just to minimal difference unifiers.

4 Algorithm

As 18 common practice in the unification community
(e.g., [JK91]), we give an algorithm for difference uni-
fication by means of transformation rules and (in the
next section) a search strategy for applying these rules.
To difference unify s with ¢, we reduce the quadruple
{s=t/AA}L{}{}. (D to ({},0,4,,A) where 0 5 2
set of substitutions, and A, and A; are the annotations
of s and t. The notation “/” marks positions of terms
within s and t; these record annotation addresses.

The rules for difference unification are given in Fig-
ure 1. The predicates velid,(p) and valid:(p) are de-
fined relative to the input terms s and ¢ and are defined
as p € Pos(s) and p € Pos(l) respectively.

These rules need to be applied non-deterministically.
For example, in difference unifying f{z,a) with
flg(a}, z} if we apply DECOMPOSE and ELIMINATE;
committing to {g(a)/z}, we fail to get a solution. The
rules are closely related to rules for matching, differ-
ence matching and unification. Matching is implemented
by DELETE, DECOMPOSE, ELIMINATE,,; difference
matching is implemented by DELETE, DECOMPOSE,
ELIMINATE;, HIDEy; and unification is imple-
mented by DELETE, DECOMPOSE, ELIMINATE,,
ELIMINATER. Therefore matching and unification are
special cases of difference unification. Note that unifi-
cation can also use rules, often called CONFLICT and
CHECK, which cause unification te fail immediately
when the outermost functions disagree or an occurs
check error happens. In difference unification we can-
not use such rules and must fail only when the search
space has been exhaustively traversed. The IMITATEL
and IMITATEgR rules can also be used in unification,
although ELIMINATE;, and ELIMINATEgR will always
work (more efficiently) in their place without losing the
completeness of unification. Difference unification does,
however, need IMITATE;, and IMITATER for complete-
ness: consider difference unifying X and f(g(a)), re-
turning the substitution {f(a)/X} and the annotations
F{ g(a) D The DUNIFY rules can be seen as the merg-
ing of the rules for unification and the rules DELETE,
DECOMPOSE, HIDEL, and HIDEg which add an arbi-
trary annotation; since the rules for recursing through
the term structure are common to both these rule sets,
their merging is more efficient than a naive “generate
annotations” and “unify skeletons”.

Basin and Walsh 119



(S. a, A.l' At)

(SU{si=1L fpi,qi|1<s<n} 0 A, A)
(S[X — &],o o0 {t/X], A., A} if moccurs(X,1)
{S5]X v s],0 0 {s/ X}, As, At} if —occurs(X,s)
{S1X v f(xl:"-:xﬂ)] U{Xi=ti/pigi|1<ixg n},
oo {f(Xl, ey Xn)/X},Al, A:,) i Vie [1,!‘&] validg(q.i)
{SIX v f(Xy, o X)JU{si =X fpa,gi | 1 €i €0,
o {f(Xi,...,Xn)/X}, A, ALY W€ 1, 0] valid, (p.4)
(SU{s =t/pi, g} e, A, U {pi}, A) if valid,(p3)

DELETE {(SU{s=2a/p.g},0,A, A} =
DECOMPOSE {SU {f(s1,-8n) = f{t1,...,tn) / 7.0}, 0, As, A;}) =
ELIMINATEL {SU{X =t/p,g}),a, A,, A} =
ELIMINATER Es U{s=X/p ¢} o A, A) =
IMITATEL SU{X = f(ts, e tn}/ Py g}, 0, Auy Ad) 2
IMITATER (SULf(81,....n) = X [p, g}, 0, A, A} =>
HIDEL (SU{F(81,....32) =t/ p,q} 0, A, A} =
HIDER <SU {" = f(hs sy ‘ﬂ){P! q}“i A, A‘) =

{(Su{s=1t/p g1}, 0, A, AU {q.i}} if validi(q.i}

Figure 1: DUNIFY : transformation rules for difference unifying s and ¢

These rules have been implemented in Prolog. The
following table gives 8 out of the 24 results of difference
unifying (X+Y) + Z with X + (Y + Z). Note that for
readability we have merged adjacent wavefronts in the
"box and hole" presentation.

[ No. ] L4 &
1 (X+Y)+ 2 X+|(X_+Z}[ {}
2 I{X+X)]+Z X+{Y+2) {}
s{{E+M]+z | X +](r+2) 0
1[I X+V)+2) | X+ (Y +2) {3
5[(X+X)+2[ |1 X+(¥+2) {}
6| [(X+Y)+2Z|[[X+(Y+2) {}
THX+Y)+Z2| [ | X+ X +2)) | {Y+2/X}
8 ([ X+Y)+ 2 X+(Y+2)| | {X+Y/2)

The first three annotations are strongly minimal and
give the only wave-rules (oriented appropriately). The
fourth, fifth and sixth annotations are neither weakly nor
strongly minimal. The last two annotations are weakly
but not strongly minimal. This once again demonstrates
that difference unification is not unitary, even when re-
stricted to strong or weak minimality.

The following is a sample execution trace of the first
result. It results from applying the rules: HIDEL,
DECOMPOSE, DELETE, HIDER, and DELETE.

({X+Y)+Z2=X+(Y+2Z}/AAL{L{}LD
{X=X)/111,Y =Y+ Z/12,2}, (1}, (1. {})
{Y =Y /1221}, {1}, {21}, {})
(L0225 ()

5 Left-first Search

The transformation rules, when exhaustively and non-
deterministically applied, generate all possible difference
unifications, not just those that are weakly or strongly
minimal. This is both time consuming and almost always
unnecessary. We have therefore implemented a search al-
gorithm (i.e., a meta-interpreter) for traversing the space
defined by these rules so that we are guaranteed to en-
counter just the weakly or strongly minimal difference

120  Automated Reasoning

unifications. In the strongly minimal case, potentially
an exponential amount of search is saved.

We first describe the structure of the search space.

Nodes correspond to the quadruples giving the current
state. Arcs to the left result from applying one of the
unification rules: DELETE, DECOMPOSE, IMITATE,,
IMITATER, EL1MINATE,, and ELIMINATER. Arcs to
the right result from applying a hiding rule: HIDEL and
HIDER. The key to returning minimal difference unifi-
cations is observing that a non-minimal difference uni-
fication uses more applications of the hiding rules than
a minimal one, though it may use a greater, lesser or
equal number of unification rules. Thus, in searching
the tree we want to minimize right arcs since each adds
more annotation. We call a search algorithm which does
this left-first search. At the n + 1-th ply of the search
we explore all those nodes whose path back to the root
includes n right arcs. This search strategy returns min-
imal cost solutions where hiding rules (right-rules) have
(unit) cost and other rules (left-rules) having no cost.
We have implemented a meta-interpreter that performs
this search as follows. Given a set of nodes TV, left*(N)
returns the set of nodes reachable from the nodes in N by
taking any number of left arcs. The function right(N)
returns the set of nodes reachable from the nodes in N
by taking one right arc. Finally solutions{N) returns
any answers in the set of nodes N. Figure 2 gives the
algorithm and illustrates the order in which nodes in a
binary tree are explored under left-first search.
For strongly minimal difference unifications, this algo-
rithm returns the first set of answers and stops. For
weakly minimal difference unifications, we must save the
answers generated, and continues to search comparing
new answers for weak minimality against previous ones.
Unfortunately, to return all the weakly minimal differ-
ence unifications we must search the whole tree. The
advantage of left-first search is that we can immediately
tell whether an answer is weakly minimal.

6 Properties

Let us introduce some notation that will be used to prove

properties of difference unification and the DUNIFY rule
D

set. We write {E,0, 4,, A} = (E', ¢/, AL, A}) to in-

dicate that there is a derivation D (that is, a possi-

bly empty sequence of DUNIFY rule applications) which



function left-first(Start);
Nodes := lefi*({Start});
loop :
Ans ;= solutions(Nodes);
if Ans # {} then return Aas;
Node = left*(right(Nodes)),
goto loop;

22 32 33 4

Figure 2: Algorithm and Search Tree

transforms (£, o, A,, A,} into {E', ¢/, A}, A3},

We now sketch proofs of soundness and completeness;
that is, proofs that the rules return all and only the
difference unifiers. Full proofs are given in [BW92a).

Theorem 1 {Soundness)

I s=t/AALD)L L) =

du(s,t, A,, Ay, o).
Proof (sketch): We first establish a lemma:
Z (E! U.A',Ai) Dﬁ

I {(s=t/AAM{JA{L{)) =
{{},o', A, A}) thenforall s’ = t' /p,g € E,

o' (skel(s', strip(A), p))) = o' (skel(t’, strip(Aj, 9))),

where strip is a function that “adjusts” an annota-
tion set by deleting prefixes from addresses. That is,
strip(A, A) = A and strip(A,p) = {¢ | p.g € A}. Sound-
ness follows from the lemma provided the unifier ¢ is a
most general unifier. This holds since we can construct
a derivation which unifies skel(s, A,} and skel(t, A(} by
deleting every hide rule from I} and applying the remain-
ing unification rules. This builds the same unifier ¢ and,
as the underlying unification algeorithm returns mgus, it
follows that ¢ is a mgu.

The lemma follows by induction on the length of D".
The base case is trivial. In the step case, unification
rules are ecasily seen to preserve sound solutions. The
HIDEy rule replaces an equation like f{s,,...5,) =t/ p, ¢
by si =t/pi, ¢ and adds p.i to A,. By definition,
skel( f(51, ..., 8n), strip(A},p))} = 5, and by hypothe-
sis, o'(skel(s;, strip(Al, p.i})) = o'(skel(t, sirip( A}, ¢))).
Conclude that o'(skel(f(s,...,8n),strip(A],p))) =
o'(skelt, strip( Ay}, q))) and the theorem follows. HIDEg
is analogous. O

({}' o, An As) then

Theorem 2 (Completeness) [f du(s,1, A, A¢, o)
then ({s = 1/ 4,0}, {}, {}, ) = ({}, 0, 4,, 40},

Proof (sketch): It suffices to consider the DUNIFY
rules with DELETE restricted to delete only equations
between atoms and ELIMINATE, and ELIMINATEg re-
gtricted to cases when the non-variable term is atomic.
These restricted rules are complete for unification and
so (without the hiding rules) return o as a mgu for
skel(s, A,) and skel(t, A;}. The theorem follows by show-
ing that the unification rules applied in computing this
unifier can be applied (in the same order) to compute
the same unifier for s and ¢ while being interleaved with
hiding rules which hide the addresses in A, and A;. This

in turn follows from our restrictions on the deletion and
elimination rule; they guarantee that every term posi-
tion in Pos(B) and Pos(t) eventually appears in some
equation in the derivation D. Since elements of A, are a
subset of Pos(s) corresponding to addresses of function
arguments in s, and likewise for A, appropriate hiding
rule can always be applied. O

The soundness and completeness arguments only rely
on the underlying unification algorithm being sound,
complete, and "decompositional" in the sense that ev-
ery position in the original terms eventually appears in
the course of the derivation. Hence, if we replace the un-
derlying unification algorithm with something stronger,
e.g., incorporating equations that preserve these proper-
ties for some equational theory, then again we will have a
sound and complete algorithm with respect to that the-
ory. We suspect that there are many natural applications
of equational difference unification, e.g., the previously
mentioned work of Hutter.

Theorem 3 (Termination) The DUNIFY rule set al-
ways terminates.

Proof (sketch): Given input s and i, use a lex-
icographic ordering on the triple (I, V, F) were / is
|[Pos(s)| + |Pos()tl — /', V is the number of imitation
steps performed in a sequence of rule applications, V is
the number of distinct variables in the (current) equation
set, and F is the number of function symbols (including
constants) in the (current) equation set. &

7 Complexity

DUNIFY has been given as a set of rules. Ifthey are ap-
plied non-deterministically, it is easy to see that it can
take exponential time to find a solution to a problem as
we may, using the hide and imitate rules, consider all
the ways of hiding function symbols." A term of size
n (n function symbols) has O(n) interior (neither con-
stants or variables) function symbols that can be hidden
in 0(2") different ways; hence, naive execution can be
exponential. It is natural to ask whether this the best
that we can do, and which are the tractible cases. In
asking such questions we must distinguish between the

'Also note that unification algorithms which explicitly
represent substitutions are not efficient. This can, how-
ever, be avoided by using a rule-based approach such as
[JK9I] at the cost of rules with rather more complicated side-
conditions.

Basin and Walsh 121



problem of generating all solutions and that of generat-
ing a solution or knowing if one exists. The first problem
is easily seen to require exponential size even in the very
restricted of case of ground difference matching.

Theorem 4 There are difference matching problems re-
quiring exponential time.

Proof: Consider difference matching (s,t) where 5 =
[(a) and t = f7(a) (f™(a) is the m-fold application
of f to a). The solutions correspond to choosing n out
of 2n occurrence of f in ¢t to hide. That is there are
{201 /((nH)?) which is O(2™). Note that all of these are
strongly minimal. O

Problems generating exponential numbers of solutions
are exceptional as they involve unusual amounts of re-
peated structure. In general, there are far fewer matches
and unifiers; so it is interesting to investigate the com-
plexity of returning a single solution, or determining if
one exists. The first problem is polynomial time solvable
for ground terms.
Theorem 5 Given terms s and t we can determine ifs
difference matches t (s may be annotated with skeleton
t) or s difference unifies with t in polynomial time.

Proof (sketch): In [NS87] an algorithm based on dy-
namic programming is given for solving the homomor-
phic embedding problem of one ground term into another
in polynomial time. This problem is the same problem
as ground difference matching. It is easy to modify this
idea to provide an algorithm for ground difference uni-
fication. Furthermore, these algorithms can be easily
modified to return sets of answers as well as indicating
if answers exist [BW92a].

As a side note, observe that while the above ground
difference unification algorithm can be easily modified to
yield minimal answers, there is a trivial linear time al-
gorithm for determining difference unifiability although
it does not give minimal answers. That is, s and t will
difference unify iff they share at least one constant (of
arity 0). In the non-ground case, s and t are difference
unifiable iff they share one constant or if either contains
a variable. In this respect, difference unification is, per-
haps surprisingly, easier than difference matching.

In general, difference unification and all its subprob-
lems are trivially in NP since we can guess annotations
and then unify or match resulting skeletons in polyno-
mial time. In the nonground case, when variables are
added determining the existence of a solution is NP hard.

Theorem 6 Difference unifying s and t, with annota-
tion on only one side is NP hard.

The proofis given in [BW92a] and uses a reduction from
3SAT similar to that used in the proof of the NP hard-
ness of set-matching given in [KN86].

8 Conclusions

In [Rob89], J.A. Robinson presented a simple account of
unification in terms of difference reduction. He observed:

"Unifiers remove differences We repeatedly re-
duce the difference between the two given expressions
by applying to them an arbitrary reduction of the dif-
ference and accumulate the product of these reductions.

122 Automated Reasoning

This process eventually halts when the difference ts no
longer negotiable [via an assignment]; at which point the
outcome depends on whether the difference is empty or
nonempty."

In this light, our research can be seen as a direct ex-
tension of Robinson's notion of difference reduction: we
reduce differences not just by variable assignment, but
also by term structure annotation. What makes our ex-
tended notion of unification tenable, indeed attractive,
is that this annotation is precisely what is required for
rippling to remove this difference.

References

R. Barnett, D. Basin and J. Hesketh. A re-
cursion planning analysis of inductive comple-
tion. Annals of Maths, and Al, 8(3-4), 1993.
K. Hans Blasius and J. Siekmann. Partial uni-
fication for graph based equational reasoning.
In 9th CADE, 397-414, 1988.

A. Bundy, A. Stevens, F. van Harmelen,
A. Ireland and A. Smaill. Rippling: A heuris-
tic for guiding inductive proofs. To appear in
Artificial Intelligence, 1993.

A. Bundy. The use of explicit plans to guide
inductive proofs.In 9th CADE, 111 120, 1988
D. Basin and T. Walsh. Difference matching.
In 11th CADE, 295-309, 1992.

D. Basin and T. Walsh. Difference unification.
Technical Report MPI-1-92-247, Max-Planck-
Institute fur Informatik, 1992.

[CH92] J. Cleve and D. Hutter. A new method-
ology for equational reasoning. Univerity
Saarbriicken Technical Report, 1993.

V. Digricoli. The management of heuristic
search in boolean experiments with RUE res-
olution. In 9th IJCAI, 1154-1161, 1985.

D. Hutter. Guiding inductive proofs. In 10th
CADE, 147-161, 1990.

J.-P. Jouannaud and C. Kirchner. Solv-
ing Equations in Abstract Algebras: A
Rule Based Survey of Unification. In J.-L.
Lassez and G. Plotkin, eds., Computational
Logic. MIT Press, 1991.

D. Kapur and P. Narendran. NP-completeness
of the set unification and matching problems.
In 8th CADE, 489-495, 1986.

J. Morris. E-resolution: an extension of res-
olution to include the equality relation. In
Proceedings of the 1JCA1-69, 1969.

P. Narendran and J. Stillman. In Fifth Int.
Conf on Applied Algebra and Error Correct-
ing Codes, Menorca, Spain, 1987.

A. Newell, J.C. Shaw and H.A. Simon. The
logic theory machine. In Feigenbaum and
Feldman, editors, Computers and Thought.
McGraw-Hill, 1963.

J.A. Robinson. Notes on resolution. In F.L.
Bauer, editor, Logic, Algebra, and Computa-
tion, pages 109-151. Springer Verlag, 1989.
[WNB92] T. Walsh, A. Nunes and A. Bundy. The use
of proof plans to sum series. In 11th CADE,
325-339, 1992.

[BBH93]

[BS88]

[BS+92]

[Bun8s]

[BW92]

[BW92a]

[Dig85]

[Hut90]

[JK91]

[KN86]

[Mor69]

INS87]

INSS63]

[Rob89]



