On the Polynomial Transparency of Resolution

4

Reinhold Letz
Institut fur Informatik
Technische Universitat Munchen
Arcisstr. 21, 8000 Munchen 2
Germany

Abstract

In this paper a framework is developed for mea-
suring the complexities of deductions in an ab-
stract and computationally perspicuous man-
ner. As a notion of central importance appears
the so-called polynomial transparency of a cal-
culus. If a logic calculus possesses this prop-
erty, then the complexity of any deduction can
be correctly measured in terms of its inference
steps. The resolution calculus lacks this prop-
erty. It is proven that the number of inference
steps of a resolution proof does not give a rep-
resentative measure of the actual complexity
of the proof, even if only shortest proofs are
considered. We use a class of formulae which
have proofs with a polynomial number of in-
ference steps, but for which the size of any
proof is exponential. The polynomial intrans-
parency of resolution is due to the renaming
of derived clauses, which is a fundamental de-
duction mechanism. This result motivates the
development of new data structures for the rep-
resentation of logical formulae.

1 Introduction

The competitiveness of logic calculi is essentially deter-
mined by two complementary factors; on the one hand,
by the ability to provide compact proofs, and on the
other, by the effort needed for finding such proofs, that
is, by the search spaces induced by the indeterminism
inherent in the calculi. In this paper, we shall system-
atically address the problem how to measure the first of
these two capabilities of a calculus—its in deterministic
power—in an abstract and nevertheless computationally
reliable manner.

The paper consists of two parts, a conceptual part and
an application part. In the conceptual part, we present
a general framework for measuring the computational
complexities of arbitrary transition relations and deduc-
tions, which are treated as particular transition relations.
In order to be able to compare complexities on a level

*This work was financially supported by the Esprit Basic
Research Actions 3125 Medlar | and 6471 Medlar I1.

which is as abstract as possible, we subscribe to abstrac-
tions modulo polynomials, as usual in complexity theory.
The central notions emerging this way are the properties
of polynomial transparency and weak polynomial trans-
parency. The polynomial transparency of a transition
relation guarantees that the number of rewrite steps in
any transition sequence represents an adequate measure
for the actual computational complexity of the sequence.
Weak polynomial transparency is the adequate concept
for evaluating the tndetermintstic powers of special tran-
sition relations, called proof relations, by restricting at-
tention to shortest proofs only.

The benefit of the framework is twofold, not only does
it facilitate the classification of deduction systems, it also
may give advice how to improve the systems. This is il-
lustrated in the application part of this paper where the
developed notions are used on the resolution calculus. It
is proven that resolution lacks polynomial transparency,
both in the strong and in the weak sense. As a conse-
quence, the number of inference steps of a shortest res-
olution proof does not give a representative measure of
the actual complexity of the proof. The use of number
terms in the object language can remedy this weakness
for a certain class of formulae. Whether a general rem-
edy exists remains an open problem.

2 Complexity Measures for Deductions

The indeterministic power of a calculus is determined
by the complexities of shortest proofs. This raises the
fundamental question how the complexities of proofs and
deductions in general should be measured.

2.1 Deduction Processes as Transition
Relations

For investigations into the computational complexity of
logic calculi, it is important to realize that deductions
can be given a declarative and a process interpretation.
According to the declarative reading, deductions are typ-
ically defined as sequences of formulae I} = Fp,..., F,
where each F;, 1 <€ ¢ < n, is derivable by applying an
inference rule to formulae in D with an index stricly less
than t. Another popular interpretation is to define de-
ductions as trees of formulae where each parent node
can be derived from its immediate successors. There is
no limitation to further ways of defining deductions. De-

Letz 123



ductions as static objects of the type mentioned above
tend to be non-operational, in the sense that they do not
prescribe the precise methodology according to which
they have to be constructed. A deduction process can
be viewed as one particular way of building up a de-
duction object. From a complexity point of view, the
deduction process is the more fundamental notion and
the deduction object is just a—even though extremely
useful—by-product of the deduction process.1

The most natural and general specification approach
for the description of deduction processes is to model
them as binary transilion relations between siruclures
of logical expressions, which play the role of the states
in the transition relations. Typically, these states are
finite sels of formulae, in general, they may be arbitrary
finitistic set-theoretic objects, or strings encoding such
objects. The binary transition relation + of the deduc-
tion processes defined by a calculus is determined by the
inference rules of the caleulus.? Like for the logical con-
sequence relation, the notions of deductions - -we will call
them derivations—-and proefs can be introduced for the
state transition relation k. A dertvation in a transition
relation + is a sequence [ of states such that for each
pair of successive states S; and S in D0 5; F 54,
Proofs can be defined by associating with a given tran-
sition relation F a collection of inpul states £, and a
distinguished state §2, named the success state. We shall
call such transition relations proef relations. Then, any
finite dertvation in F with an initial state § € ¥ and
terminal state £} is said to be a proof of $ in k. Using
some notation from the field of reduction relations, given
a transition relation -, we abbreviate with F* the k-fold
composition of . The {mirimal) distance between any
pair (S, 5’} of states in the transitive closure of a tran-
sition relation & is defined as min({k | S +* S'}), and
abbreviated with 6(5, §',+).

2.2 Three Natural Measures for Derivations

For evaluating the complexity of a derivation Sy, ..., S,
in a transition relation I, three different measures are
the obvious alternatives, which correspond to three dif-
ferent degrees of precision. The finest measure charges
the minimal computing cost needed in a dasic machine
model to come from the initial state Sy to the terminal
state 5, via the given intermediate states in the deriva-
tion. The computing cost of rewriting a state 5 to a
state S;4, may be, for example, the minimal number of
configurations of a nondetermmistic Turing machine {or
the machine operations of the indeterministic version of
any alternative realistic machine model)3 to transform S;

1This evaluation can be justified by recalling under which
conditions a given object is accepted as a deduction of a type
5, namely, if there exists a procedure which decides whether
the object has type S. And the true complexity of a deduc-
tion object is the complexity of this verification procedure
(for further motivation, consult [Letz, 1993]).

2As a matter of fact, r- does not denote the standard log-
ical consequence relation.

3A realistic machine model can be defined to be any ma-
chine model in which the elementary operations are poly-
nomially related to the configurations of Turing machines

124 Automated Reasoning

into Si+i. Conceptually, the chosen basic machine model
can be viewed as another (more elementary) transition
relation, written —». Then, the elementary computing
cost of the derivation D — So, * ¢, Sn can be defined as

n—1
cost(D) = ) (5, Siys,—).

i=0

Taking the elementary computing cost of a derivation
as the measure of its complexity has certain disadvan-
tages. First, for the standard realistic machine models,
the measure is too detailed to be interesting as a quantity
of comparison on a higher level of abstraction. Second,
its value may vary strongly, depending on the chosen re-
alistic machine model—even though only up to polyno-
mials. Lastly, it may be very difficult to actually obtain
the realistic computing cost, because the mapping down
of high-level transition steps into basic machine opera-
tions is normally not carried out explicitly, instead one
is satisfied with knowing about the possibility of such a
transformation and its computational invariances.

An advance is offered by disregarding the elementary
computing cost and restricting oneself to a higher level of
representation, by only considering the size of a deriva-
tion D = So,..., Sn, which is simply the sum of the
(string) sizes of the states in D:

size(D) = Xn:size(S,-).

=0

The highest abstraction level even ignores the size of a
derivation D — So, ¢ -., Sn and considers only the number
of rewrite steps in the top-level transition relation h, in
terms of logic calculi, the number of inference steps:

steps(D) = n.

Eventually, it is this measure that is being striven for.
It has been used successfully for analyzing the indeter-
ministic powers of many propositional calculi, for exam-
ple, in [Reckhow, 1976], [Haken, 1985], and various other
papers. The abstraction performed by these authors is
an abstraction modulo polynomials; they make plausi-
ble that the elementary computing cost is polynomially
bounded by the number of inferences. Such an abstrac-
tion is very natural in that it takes into account the
problem area of NP vs coNP, on the one hand, and ad-
ditionally leaves aside uninteresting subpolynomial dif-
ferences which result from the choice of the realistic ma-
chine model, on the other.

2.3 Polynomial Size- and Step-Transparency

The following two notions are fundamental for a general
theory of the abstraction modulo polynomials. First,
we consider the abstraction step from the elementary
computing cost to the size of a derivation, and state
under which condition such an abstraction is permissible.

Definition 1 [Polynomial size-transparency] A transi-
tion relation |- is called polynomially size-transparent if

(cf. the further remarks in [van Emde Boas, 1990] and [Letz,
1993]).



there is a polynomial p such that for every derivation
D =8p,...,8,nk:

cost{ D) < p(size(D)).

If a transition relation h is polynomially size-
transparent, then the size of any derivation gives a rep-
resentative complexity measure of its elementary com-
puting cost, as long as we are interested in complexities
modulo polynomials. Polynomial size-transparency gen-
eralizes a basic concept introduced by Cook and Reck-
how in [Cook and Reckhow, 1974]. They define a (com-
plete) proof system as a (surjective) in polynomial time
computable function from the set of strings to the set of
valid formulae. Apparently, any proof system is polyno-
mially size-transparent.

In order to define a general criterion which guarantees
that we can even abstract from the size of a derivation,
it is necessary to use polynomials in two arguments.

Definition 2 [Polynomial (step-)transparency] A tran-
sition relation |- is called polynomially step-transparent
or just polynomially transparent if there is a polyno-

mial p in two arguments such that for every derivation
D =8p,...,9, ink:

cost{D)) < p(size(Sp), n).

If a transition relation is polynomially transparent,
then the input size and the number of rewrite steps of
any derivation give a representative measure of the com-
plexity of the derivation.

Note It is apparent that indeed a polynomial in two
arguments is needed, demanding that cost(D) < p(n)
does not result in a useful notion. As an example, con-
sider a calculus which solely can check whether a log-
ical formula has the structure F v —~F. According to
the intended reading of inference steps, we wish to say
ethat the calculus can verify its input in a single infer-
ence step. However, there is no complexity function (and
hence no polynomial) which bounds the elementary com-
puting cost for verifying formulae of arbitrary size that
have the shape F Vv - F.

Clearly, ifa transition relation I- is polynomially trans-
parent, then |- is polynomially size-transparent.

2.4 A Sufficient Condition for Polynomial
Transparency

It is apparent that polynomial transparency is a highly
desirable property.4 The question is now how to deter-
mine whether a transition relation is polynomially trans-
parent. Polynomial transparency is a property defined
on derivations of arbitrary lengths. It would be very
comfortable if the polynomial transparency of a tran-
sition relation could be derived from more elementary

4 Also, the concept of polynomial transparency leads to
a natural generalization of the notion of a realistic machine
model. By a generalized realistic machine model we can un-
derstand any computation model which, as a transition re-
lation, is polynomially transparent and has the expressive
power of Turing machines.

properties of the transition relation. A very useful suffi-
cient condition for polynomial transparency, which only
takes into account the step behaviour of a transition re-
lation, can be defined as follows.

Definition 3 [Polynomial time step-reliability] A transi-
tion relation F is called polynomial time step-reliable if
there is a polynomial p such that for any one-step deriva-
tion D = S,8' ink:

cost( D) < p(size(S)).

Note The development of data structures and algo-
rithms for polynomial unification can be viewed as the
attempt to achieve the polynomial time step-reliability
of deduction systems using unification.

Unfortunately, polynomial time step-reliability is not
sufficient for guaranteeing polynomial transparency. Ad-
ditionally, a size increase condition is needed. The fol-
lowing very general one will do.

Definition 4 [Logarithmic polynomial size step-reliability]
A transition relation I- is called logarithmic polynomial
size step-reliable, or just logp size step-reliable, ifthere is
an integer 6 > 1 and a polynomial p such that for every
pair {S,S') €l-:

size(5’) < (log, p (size(S))) + size(S).

The following proposition (a proof can be found in
[Letz, 1993]) is fundamental for the theory of abstraction
modulo polynomials.

Proposition 1 If a transition relation |- is polynomial
time step-reliable and logp size step-reliable, then I- is
polynomially transparent.

2.5 Weak Polynomial Transparency

There are transition relations for which polynomial
transparency cannot be guaranteed for arbitrary deriva-
tions, so that not in any case the input size and the
steps of a derivation give a representative measure of its
complexity. But, one may argue, when the indetermin-
istic power of the transition relation defined by a logic
calculus is concerned, then it is legitimate to consider
solely those derivations which are shortest proofs of the
inputs. The question is how to define 'short’, in terms of
elementary computing cost, in terms of derivation size,
or number of steps. Also, the shortest proof, in anyone
of these models, may violate the condition of polynomial
transparency, but the second shortest may fit. In order
to facilitate the formulation of reasonably tolerant gener-
alizations of polynomial transparency, we define minimal
proofs with respect to polynomials.

Definition 5 [p-(step-)minimal proof] Given a proofre-
lation - and a polynomial p. A proof D ofan input state
S in} is said to be p-minimal in ¥ if for any proof D'
of 5 in I

cost(D) < p(cost{D"));
and D is called p-step-minimal in I- if for any proof D'
of S int:

steps( D) < p(size(S),steps(D")).

Letz 125



Now, polynomial difference in complexity poses no
problems, not the absolutely shortest proof must be
taken, any proof will do which p-simulates the shortest
one. Using p-step-minimal proofs the notion of polyno-
mial transparency can be weakened as follows.

Definition 6 [Weak polynomial (step-)transparency] A
proof relation |- is called weakly polynomially step-
transparent or just weakly polynomially transparent if
there are polynomials p and p’' such that for every in-
put state S there exists a p-step-minimal proof D of S
in I- with

cost(D) < p'(size(5),steps(D)).

Note One could even be more liberal and only demand
the existence of p-minimal proofs in the definition above.
We think that the resulting notion would become too
weak, for the following reason. With the notion of weak
polynomial transparency we intend to express that the
abstraction level of inference steps indeed provides a rep-
resentative complexity measure for the indeterministic
power of a proof relation, even though not for the ab-
solutely shortest proofs, so at least for one of the short
proofs. But the class of short proofs should be defined
in terms of inference steps, this way demonstrating the
usefulness of the abstraction level.

3 Transparency Properties of
Resolution

As a typical representative of a logic calculus relying

on the use of lemmata, we shall study the transparency

properties of the resolution calculus,® The resolution cal-

culus [Robinson, 1965] can be formulated as a system of
a single but complex inference rule of the shape

{Al,u-,Am}Uf] {_'Bls"'i_'Bﬂ}Urﬂ
8 U rqf

where & is a most general unifier for the set of atomic
formulae {Ay,...,Am,By,...,Bn}, and r; and r; are
clauses; implicitly assumed is the renaming of the vari-
ables in one of the input clauses of the rule.

Let us illustrate at this example the distinction be-
tween the declarative and the process interpretation of a
deduction. While a deduction of the former type is sim-
ply a sequence D of clauses where each element of D is
either from the input set or derived from earlier elements
of D, the deduction process consists of a sequence of in-
creasing clause sets. If the deduction process is based on
unrestricted resolution—which is free of reduction rules
like subsumption deletion—, then any state of the deduc-
tion process is just a deduction of the declarative type.
Thi36 property holds for all calculi which are accumula-
tive

The transparency properties of other calculi are studied
in [Letz, 1993].

®In general, however, the states of a deduction process
need not represent declarative deduction objects, even if no
reduction rules, like subsumption deletion, are applied. This
example also exhibits a certain disadvantage of measuring
the size of a deduction as the sum of the sizes of the states

126 Automated Reasoning

3.1 Resolution and Polynomial Transparency

While polynomial size-transparency can be guaranteed
for resolution—provided polynomial unification algo-
rithms are used—, it is evident that resolution is not
polynomially transparent.

Proposition 2 Resolution for first-order logic is not
polynomially  transparent.

Proof Consider the following formula F consisting of
three clauses’ of the shape

~P(z)

P(e(z)) v ~P(z)

P(0)

Example 1

where 0 denotes a constant. By performing self-
resolution on the second clause co of F and then repeat-
edly applying self-resolution to the deduced resolvents,
in k steps one can generate a clause ck of size > 2k
From ¢, the empty clause can be deduced in two fur-
ther resolution steps. Clearly for any polynomial p there
exists a proof D = Dy,..., Dy of this type such that
size(£?) > p(size(F),m), that is, the size of D cannot
be bounded by any polynomial on the size of the input
formula and the number of resolution steps. D

Consequently, in contrast to propositional logic, for
first-order logic the number of resolution steps is not
an adequate measure for the complexities of resolution
derivations and proofs. The apparent reason is the fol-
lowing. Due to the renaming of derived clauses, resolu-
tion violates the logp size step-reliability.?

But one may object that a resolution proofofthe spec-
ified type is not an optimal one, and that there exists
a shorter resolution proof for F which immediately de-
rives the empty clause, by simply resolving the two facts
- P(2) and P(0). For this short proof the relation be-
tween the proof size and the proof steps is polynomial
modulo the input size.

3.2 Resolution and Weak Polynomial
Transparency

The question is now whether for shortest resolution
proofs the sizes and the inference steps are always poly-
nomially related, or in our terminology, whether weak
polynomial transparency can be guaranteed for resolu-
tion. Unfortunately, the answer to this question is no,
too. There is an infinite formula class for which every
resolution proofis exponential in size with respect to the
input formula, whereas there are proofs that get by on
polynomially many resolution steps.

The next example specifies a formula class with this
property. Assume in the following that, for any 1 < * <

in the deduction process, since untouched parts of the states
are counted multiply. A finer model would count only the
touched parts of the non-initial states.

7 For reasons of readability, we prefer to write clauses as
disjunctions of literals; furthermore, we use the term 'for-
mula' for sets of clauses.

81t should be emphasized that the reason is indeed the
renaming of derived clauses and not their multiple use as
parent clauses.



n, P; is the value of the i-th prime number, and that
#*(x) abbreviates a term of the structure (- -&(z)-- ).
N

k—times

Example 2 For any positive integer n, let Fn denote
a Horn formula consisting of the following structure:

—Py(s(z)} V- -V -P,(s(z))

Pi(e%1(z)) vV -Pi(2)

Po(8P(2)) V ~Pu(2)

Pi(0

Po(0).

If in this class of Horn formulae the function symbol

8 is interpreted as the successor function, and if the de-
notation of a predicate P, is the set of natural numbers
divisible by the i-th prime number, then such a formula
can be used to compute common multiples of primes.

Apparently, from these considerations we can derive the
following lemma.

Lemma 3 Given a formula Fn of the type specified in
Example 2, let ¢# be any ground instance of the first
clause ¢ € Fn such that {(F\ {¢}} U {c8} is unsatisfiable.
Then the largest occurring term in cO must denote a
common multiple of the first n prime numbers.

Since the least common multiple of a sequence
PBi,. ... P, of primes equals l_[?=, P, the following ob-
vious result gains importance.

Lemma 4 There is no polynomial p such that for every
positive integer n:

PP > [I%.

An immediate consequence of this result is that
H;‘=1 B; cannot be polynomially bounded by the size
.of the input formula Fn.

Lemma 5 There is no polynomial p such that for every
positive integer n: p(size(#5)} > []i=; Ps, where Fn is
a formula of the type specified in Example 2.

The formula class described
tractable for resolution.

in Example 2 is in-

Proposition 6 There is no polynomial p such that for
every positive integer n: p(size(Fn)) 25 greater than the
size of any resolution refutation for Fn.

In the proof of this proposition we shall exploit the
fact that the formula class in question consists of Horn
clause formulae, for which the following lemma holds.

Lemma 7 // / is a resolution refutation dag9 for a
Horn clause formula, then t contains one branch b —
called the negative branch—on which exactly the nega-
tive clauses of the refutation lie, i.e., those clauses which
are void of positive literals.

9A resolution dag (directed acyclic graph) is a rooted dag
whose nodes are labelled with clauses such that every non-
leaf node N has two outgoing edges to nodes N\, N2, and
the clause at N is a resolvent of the clauses at N1 and N2
A resolution refutation dag is a resolution dag whose root is
labelled with the empty clause.

Proof of Lemma 7 It suffices to notice that, on the
one hand, in such a dag no non-negative clause can dom-
inate a negative clause, and, on the other hand, every
negative clause must be derived from a negative and a
non-negative clause.

Proof of Proposition 6 Let t be an arbitrary reso-
lution refutation dag for a formula Fn, and let b be the
negative branch of t, which exists by Lemma 7. Clearly,
each occurrence of a negative clause on 6 is used only
once as a parent clause in t. Consequently, replacing all
clauses on the branch 6 by appropriate ground instances
does not alter the length of the branch, while the result-
ing dag remains a refutation—ofresolution with free, i.e.,
not necessarily most general, unification rule. If this par-
tial instantiation is performed on t, the negative branch
b' of the resulting refutation dag t' must contain ground
instances

SPI(E(0)) V -V o PR (s5(0))

of the first clause ¢ € F,,. Let cp,...,ci be the clauses
on the initial segment of the branch &' from the root
labelled with ey (the empty clause) up to the first in-
stance ¢ of ¢. Obtain ¢" by making ¢; a leaf of ¢/ (it
may already be one) plus removing the nodes and edges
which are no more accessible from the root. Apparently,
1" still remains a refutation dag. Since ¢; is the only
instance of ¢ in t”, (Fa \ {¢}) U {¢;} must be unsat-
isfiable. From Lemma 3 follows that in c; the maximal
term depth £ > H:-L] P,. Consider now the non-negative
clauses 5,,...,8; in the refutation ¢* which are resolu-
tion partners of the clauses ¢, ..., c; respectively—let
us call those non-negative clauses the side clauses. The
structure of F, guarantees that each side clause either
has the form

Pi(s'(2)) V ~Pi(z)
or the form

Pi(s'(0)).

Consequently, if ascending the branch &' by one step to-
wards the root from ¢; to ¢,_1, 1 <1 < k, the clause size
can only decrease by at most the size of the respective
side clause s; (disregarding the logical symbols):

size{c;_ 1) > size(c;) — size(s;).

Therefore,

k
size(cp) > size(cy) — Zsize(si).

i=1

Because size{cy) = 1, and since the side clauses have not
been modified by the partial instantiation operation, we
get that

k n
size(t) > Esize(s.-) >size(cg) — 1> H':p.-.

i=1 =1

An application of Lemma 5 completes the proof. O

The existence of intractable formula classes for reso-
lution is nothing exceptional, even for the propositional

Letz 127



case (at least since Haken’s work [Haken, 1985]). The
special property of the formula class considered here con-
cerns the relation between the proof sizes and the num-
bers of derivation steps. Although all resolution proofs
for the formula class are superpolynomial, there are short
proofs in terms of imference steps.

Proposition B There is a polynomial p such {hat for
every formula F, from the class specified tn Example 2
there exists a resolution refutation Dy,...,Dp of Fy
such that m < p(size(Fy)).

Proof Let £ = ][_, Pi, i.e., the least common multiple
of the primes Py, ..., Pn. Then a polynomial-step proof
can be constructed as follows. For every clause of the
type

Pis™(2)) V =Pi(z)
perform self-resolution and repeatedly apply sell-
resolution to the respective resolvents. Within & steps
this operation deduces clauses in which the number of
occurrences of the function symbol s in the positive lit-
erals successively takes the values 95, 21, 93,22 .. P, 2%
This is done as long as 9PB; 2* < £. Then, after at most
k further resolution steps which use clauses from this
derivation, each clause at most once, a formula of the
structure

Pi(s8(z)) v ~Pi(z)
can be deduced. Accordingly, for any 1 < i < n, we need
at most 2log, -f- steps, which is less than 2log, £, hence

for all #: less than 2nlog, £. Lastly, in further 2n resolu-
tion steps the empty clause can be derived by resolving
these clauses with the facts and the resulting n facts
Pi(55(0)), 1 <€ i < n, with the first clause. The whole
refutation takes less than 2n + (2nlog, £) < 4nlog, ¢
steps. It remains to be shown that this value is polyno-
mially bounded by the size of F,,. For this purpose we
may just use { = 3 .-, P as a lower bound for the size
of F, and consider the chain

- i B Y ¢
4nlog, H‘I!.' < 4niog, (-——'51———) = 4n’log, =~ < 4¢3
i=1 n n
The first inequality holds because of properties of the
arithmetical mean, while the others are trivial. o

The Propositions 6 and 8 have as an immediate con-
sequence that, even if only step-minimal proofs are con-
sidered, the number of steps of a resolution proof may
not be a representative measure for the complexity of
the proof.

Theorem 9 Resolution for first-order logic is  not
weakly  polynomially transparent.

The violation of the logp size step-reliability turns out
to be fatal, even if only short proofs are counted.

3.3 Methods for Obtaining Polynomial
Transparency

The situation is quite instructive, because we can illus-
trate at the example of resolution the three principal
solution methodologies when facing the polynomial in-
transparency of a transition relation K

128 Automated Reasoning

The first approach is to weaken the transition relation
F and to define a transition relation I-', for example,
by taking out each pair (S, S) which violates the logp
size step-reliability, since this may be the problematic
property, like in the case of resolution. The most radical
method to perform this modification on the resolution
calculus is to forbid the renaming or even the multiple
use of lemmata. The latter results in the calculus of tree
resolution. Tree resolution is polynomially transparent,
even in the strict sense (a proof can be found, e.g., in
[Eder, 1992] or in [Letz, 1993]). But unfortunately, this
has the unacceptable consequence that many proofs are
thrown out which are short in steps and small in size.

Also, eliminating problematic pairs from a transition
relation does not work for arbitrary transition relations.
This leads to the second alternative. In order to pre-
serve the problem solving functionality of the relation,
that is, to guarantee that the transitive closures—or at
least the provable states—of both transition relations re-
main identical, in the general case, each problematic step
must be replaced by a series of computationally innocu-
ous steps. For logic calculi, this amounts to a redefinition
of the notion of an inference step.

Both methods are relatively unappealing for the prac-
tical working with logic calculi, since in no case the w-
determintstic power of a calculus is increased, either it
is weakened or it remains unchanged, and only the pre-
sentation structure of the calculus is modified.

The real importance of the notion of polynomial trans-
parency for the advance of science is that it can moti-
vate research following the third approach. The third
approach is to let the general structure of a transition
relation as it is, and to try to remedy the polynomial in-
transparency of the transition relation. Since the typical
stumble-block for attaining polynomial transparency is
the violation of the logp size step-reliability, a promising
research direction consists of improving the data struc-
tures of the elements in the transition relation in such a
way that they can be represented with less space than
in the original relation, with the hope to gain polyno-
mial transparency this way. The advantage of such an
attempt, ifit succeeds, is that the distances between the
elements in the transition relation can be preserved while
the real computing cost and sizes properly decrease.

The difference between the solution methodologies is
that the second approach always succeeds, whereas the
third one may fail in principle.10

3.4 Improvements of the Representation of
Formulae

Similar to the case of the unification operation, which, in
order to attain the polynomial time step-reliability of an
inference system, has enforced the necessity to represent
logical terms as dags, one should think about the devel-
opment of more sophisticated mechanisms which would
admit a notation for resolvents polynomially bounded in

“Such an impossibility result for resolution is proven in
[Letz, 1993]. There it is shown that there can be no data
structure for achieving the strong polynomial transparency
of resolution, if not the factoring rule is modified. This result
indeed enforces a redefinition of the resolution inference step.



size by the number of their derivation steps, with respect
to the input formula.

An obvious improvement is to integrate into the ob-
ject language the same vocabulary of upper indices we
already used in our meta-language for the purpose of
polynomially specifying terms of exponential depth. It
is apparent that with the use of such number terms the
transparency problems of the Examples 1 and 2 can be
solved, even polynomial transparency in the strong sense
can be achieved for these examples. One can predict that
number terms will play an important role in future au-
tomated deduction systems.11

We shall not pursue further the attempt of extending
the representation of logical formulae, instead we want
to present a critical example class which may turn out to
be a hard problem for the efforts to achieve polynomial
transparency- These new formulae are obtained from the
previous class of Example 2 by augmenting the arity of
the function symbol s by 1. This means that the previous
formula class is just an abstraction of the new class.

Example 3 For any positive integer n, let F, denote
a Horn formula of the following structure:

SPy(s(z,y) V-V Fuls(z, )

PI(S(S(I! yl)v y?)) A _'Pl(x)

Po(s(s(s{z,y1), 42), y3)) V ~Pa(7)
Pa(s(s(s(s(s(x, 1) . y2) y3). pa), ¥5)) V ~F5(z)

Pu(s{s(--a(s(z. ;) y2), - ¥n-1) i) V o Pa{z)
Nt rnimnns’

Pn—times
Pi(0)
P.(0).

In the new class the second argument of the function
symbol s does not play any role at all, the variables
at these positions are just dummy variables. Conse-
quently, the results concerning proof steps and proof
lengths carry over from Example 2 to this example.
But there is a crucial difference between both examples,
which becomes apparent when self-resolution is applied
to a clause of the mixed type in Example 3. Let us
demonstrate this with the input clause corresponding to
the prime number 3:

Pa(s(s(s(z, 1 ) y2), ¥3)) V —Pa(2).

In its self-resolvent

Pz(S(S(S(S(ﬁ(S(l‘, h )v 9‘2): ya)a y‘i)s yS)) yﬂ)) v _'Pz('t)

the number of distinct dummy variables has doubled.
In general, in any such self-resolution step the resolvent
contains 2n — 1 more distinct variables than the orig-
inal clause. Accordingly, for this class of formulae, in

""Much more than polynomial unification algorithms,
which have turned out to be relatively unimportant for the
practice of deduction systems. This can be verified by observ-
ing that the examples (particularly Example 1) for demon-
strating the necessity of number terms are much simpler and
occur more frequently in practice than the ones which de-
mand polynomial unification techniques.

any polynomial-step proof of an instance F,, clauses are
needed in which not only the term depth is exponen-
tial (which could be remedied by using number terms
in the object language) but also the number of distinct
variables. And to this problem no obvious solution is in

sight.”?

Conclusion and Further Research

This paper has illustrated that a formalization of intu-
itively existing abstraction concepts for logic calculi can
be very fruitful. The developed notion of polynomial
transparency promises to serve as a useful and research-
stimulating property of deduction systems, and of tran-
sition relations in general. The main technical result
of this paper is the demonstration that the number of
inference steps of resolution proofs do not give a repre-
sentative measure of the actual proof complexities, even
if only shortest proofs are considered.

As further obvious research perspectives concerning
the transparency problem of resolution and other cal-
culi using the renaming of lemmata, we wish to mention
the development of more sophisticated data structures
than number terms; the clarification of the relation be-
tween strong and weak polynomial transparency; and
finally, the study of the difficulties of rendering particu-
lar calculi polynomially transparent and the connection
of these difficulties with certain problem classes in the
polynomial hierarchy.

References

[Cook and Reckhow, 1974] S. A. Cook and R. A. Reckhow.
On the Lengths of Proofs in the Propositional Calculus.
Proceedings of the Sixth Annual ACM Symposium on The-
ory of Computing, Seattle, Washington, pp. 135-148, 1974
(corrections are in SIGACT News 6(3):15-22, 1974).

[Eder, 1992] E. Eder. Relative Complexities of First-Order
Calculi. Vieweg, 1992.

[Haken, 1985] A. Haken. The Intractability of Resolution.
Theoretical Computer Science, 39:297-308, 1985.

[Letz, 1993] R. Letz. First-Order Calculi and Proof Proce-
dures for Automated Deduction. PhD thesis, Technische
Hochschule Darmstadt, to appear in Summer 1993.

[Reckhow, 1976] R. A. Reckhow. On the Lenghts of Proofs
in the Propositional Calculus. PhD thesis, University of
Toronto, 1976.

[Robinson, 1965] J. A. Robinson. A Machine-oriented Logic
Based on the Resolution Principle. Journal of the Associ-
ation for Computing Machinery, 12:23-41, 1965.

[van Emde Boas, 1990] P. van Emde Boas. Machine Mod-
els and Simulations. Handbook of Theoretical Computer
Science, pages 1-66, Elsevier Science Publishers, 1990.

2There seems to be an interesting analogy between decid-
ability and complexity properties with respect to the distinc-
tion of clause formulae containing unary function symbols
only from those containing binary function symbols. While
the former are decidable and permit the successful applica-
tion of number terms, the latter axe undecidable and polyno-
mial transparency cannot be achieved using number terms.

Letz 129



