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Abstract

In this paper, a method of theorem proving
dual to resolution method is presented in brief.
The investigated method is called backward
dual resolution or bd-re solution, for short. The
main idea of bd-resolution consists in proving
validity of a formula in disjunctive normal form,
by generating an empty tautology formula from
it; it is shown that the initial formula is a logical
consequence of the obtained tautology. An idea
of the theorem proving method is outlined, and
its application to checking completeness of rule-
based systems is investigated. A formal defini-
tion of completeness and specific completeness
are stated and an algorithm for completeness
verification is proposed. Moreover, a general-
ized bd-resolution aimed at proving complete-
ness under intended interpretation is defined.

1 Introduction

Resolution theorem proving has gained a great popular-
ity after it was first described by Robinson [1965]. The
method combines in a single rule the power of other rules,
and, due to its uniformity, can be easily implemented for
automated theorem proving with computers.

In this paper, an idea of a theorem proving method
dual to classical resolution is investigated in brief. The
method can be related to the inverse method of Maslov
[Maslov, 1964] (see also [Maslov, 1968] for the most com-
plete presentation), and according to [Kuehner, 1971]
it can be derived from the inverse method; in fact, it
falls into the class of localized inverse methods [Kuehner,
1971; Maslov, 1971]. However, it seems most straightfor-
ward to introduce the investigated method as one dual
to classical resolution.

The presented method is called backward dual resolu-
tion or bd-resolution, for short. The proposed method
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is analogous to resolution method. Instead of checking
unsatisfiabiltty of a set of clauses we rather try to prove
validity of a given formula in disjunctive normal form.
Thus, the initial form is in fact dual to the one in reso-
lution method. Further, the proposed method works in
fact backwards. This means that during the process of
derivation one generates new formulae from parent for-
mulae starting from the initial formula to be proved - but
with regard to logical inference, the alternative of parent
formulae is a logical consequence of the derived formula!
Thus, at any step of reasoning the derivation process
is reversed with regard to finding logical consequences.
The process of derivation is successful if it eventually
ends up with an empty tautology formula which (here) is
always true - in this case, the initial formula, as a logical
consequence of it, is proved. Since the method is dual to
resolution, all but necessary technical details and proofs
are omitted here; one can find them in [Lige.za, 1992b]."

The motivation for bd-resolution follows from logical
investigation of rule-based control systems. Throughout
this paper, by a rule-based control system (knowledge-
based control system) we shall understand a system de-
signed to control some object and consisting of a set of
rules defining the possible control actions. A rule-based
control system is assumed to operate according to the
following scheme: the current state of the controlled sys-
tem is observed, then a rule with satisfied preconditions
is selected, and the specified by this rule control action
is executed; the basic cycle is repeated in an "endless
loop" until it is stopped (either by some of the rules or
as a result of some external interrupt). Such systems
were discussed in [Tzafestas and Lige/za, 1989] and more

thoroughly in [Lige,za, 1992b].

BD-resolution was initially introduced as a basic rea-
soning paradigm for knowledge-based control systems
[Ligeza, 1992a; Ligeza, 1992b]. There are at least three
standard issues concerning logical investigation of such
systems; these are: (l) checking if logical description of
the current situation satisfies the formula defining pre-
conditions of a rule (i.e. checking if a rule can be fired),
(1) checking if some two formulae defining preconditions
of two rules may be simultaneously satisfied (i.e. check-
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ing if some two rules can succeed for the same state
in such a case the system is indeterministic and there
is a need for conflict resolution), and (Ill) checking if
the alternative of precondition formulae of all the rules
constitutes a tautology (i.e. checking if the control sys-
tem can react in any state an so it is complete). The
above tasks can be approached with use of different in-
ference mechanisms (including the classical resolution),
but it seems that bd-resolution fits best the purpose.
The advantage of bd-resolution consist in the possibil-
ity of direct reasoning with formulae describing situa-
tions and preconditions in a most natural way. Further,
in case of incomplete systems formulae defining specific
completeness are directly generated. Here we investi-
gate only the possible application of bd-resolution con-
cerning completeness verification of rule-based systems
(problem (I11)). The other problems and related issues
are presented in some details in [Ligeza, 1992b].

The problem of logical checking of completeness, con-
sistency, and related issues seems to be of both theoreti-
cal interest and practical importance, but simultaneously
largely ignored in the literature. A comprehensive recent
review providing a recapitulation of the problems and
summarizing current results is given in [Andert, 1992];
almost complete list of problem literature can be found
there as well.

With regard to completeness of rule-based systems
two basic approaches can be noticed. The most pop-
ular one consists in, roughly speaking, an exhaustive
enumeration of possible input data and systematic in-
spection of a given set of rules versus a table con-
taining all possible parameters and conditions combi-
nations. This kind of approach can be called an ex-
haustive completeness check [Andert, 1992]. Some exam-
ples of this approach are presented in [Suwa et a/, 1984;
Cragun and Steudel, 1987]. A basic approach ([Suwa et
al, 1984]) consists in finding all parameters used in con-
ditions of rules, generating a table displaying all possible
combinations of parameter values, and checking the set
of rules against the table so as to verify completeness
and detect missing rules. This kind of approach can be
also referred to as static verification of the set of rules.

The other approach consists in a run-time validation
and verification of the expert system with use of selected
set of test cases [Tepandi, 1990]. The selected example
problems should also provide an exhaustive list of pos-
sible cases. Some other approaches of this kind are also
discussed in [Andert, 1992]. Methods of this sort can be
referred to as dynamic verification of rule-based system.

In this paper another logic-based approach is pro-
posed. The approach neither requires the generation and
use of tables containing possible condition/parameter
combinations, nor it is based on exhaustive test of pos-
sible cases. Note that, in case of use of full first-order
logic for building preconditions of the system rules an
exhaustive check would seldom be feasible, since even
for a language containing only one function symbol the
Herbrand universe ([Chang and Lee, 1973]) is infinite.

The proposed approach can be applied directly to sys-
tems in which rules are constructed with use of predicate
logic notation such that conjunction is the basic connec-

tor between facts (conditions); more complex formulae
are built with use alternative. The negation is to be ex-
pressed explicitly, i.e. facts of the form p and -p should
be used. The method can be used for rules constituting
a "single-layer" of reasoning, i.e. during reasoning one of
the rules from a considered set is to be selected and fired;
thus, the proposed approach is especially convenient
for knowledge-based control systems [Ligeza, 1992b;

Tzafestas and Lige,za, 1989].

2 BD-Resolution

Let us briefly recapitulate the main idea of resolution
theorem proving (the resclution method is presented in
eg. |Chang and Lee, 1973; Genesereth and Nilsson,
1987]). Throughout the paper we shall made use of some
commonly used logical symbols, including | (=) for
denoting logical satisfaction (satisfaction under interpre-
tation I} and I for provability ([Genesereth and Nilsson,
1987]). An empty tautology formula {always true!} will
be denoted with T.

Without going into details, resolution theorem proving
proceeds as follows. Let A denote a set of given axioms
(from logical point of view, a conjunction), and let @ be
a formuia to be proved. Thus, one is to prove that

A= (1)

is a valid formula. In classical resolution method, in-
stead of proving (1), one takes the negation of it, i.e.

AN-D @)

and tries to show that (2) is unsatisfiable. In practice
(2) is transformed into so-called clausal form, i.e. to a set
(conjunction) of clauses (disjunctions of literals). Now,
in order to show that a set of clauses is unsatisfiable, one
attempts to derive from it an empty clause (here: always
unsatisfiable). The derivation is carried out with use
of resolution rule, which preserves logical consequence.
Thus, any newly derived clause is a logical consequence
of its parent clauses. If an empty clause is eventually
derived, the unsatisfiability of the initial set of clauses is
proved.

A great advantage of the classical resolution method
consists in leaving the set of axioms A almost unchanged.
In most of practical cases there is a set (conjunction) of
separate axioms, and each of them can be converted into
clausal form independently from the others. This ap-
proach saves computational effort and fits most of classi-
cal problems in a naturally efficient way. However, from
theoretical point of view, one can also try to prove va-
lidity of (1) directly. Below, we present the basic idea in
some details.

First, instead of converting a formula to its clausal
form one can transform the initial formulato a dual form,
consisting of an alternative of conjunctions of literals.
Now we shall need the two following definitions.

Definition 1 Let q),92,...,q: be literals. A formula
¢=qAgeA.. . Aq 15 called a simple formula. Further,
let ¢y, ¢2,. .., dn be some simple formulae. Any formula
= Vda V...V, wil be called ¢ normal formula.
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Thue, a simple formula is a finite conjunction of lit-
erals; simple formulae will be frequently denoted with
the letters ¢ and ¢¥. A normal formula s also called in
literature a formula in disjunctive normal form (DNF):
normal formulae will be most frequently denoted with
the leiters ¢ and ¥,

For further considerations we assume that the formula
to be proved is a normal formula. Note that all the vari-
ables in the formula are (implicitly) existentially quan-
tified (dually to classical resolution method). Thus, the
formula can be writlen as

¥=Y Vi ViaV.. ¥, (3)

Let ¢! and ¢? be two simple formulac of ¥. Bd-
resolution is defined as follows.

Definition 2 {Backward dual resolvent) Let ¢! =
V<> A gl and ¥? = ¢<?> A —g? and let there cxist a
most general unifier (mgu) ¢ for q* and ¢°>. Then, a
formula ¢

¢=w“’a/\¢'“>0 (4}
will be called a backward dual resolvent (bd-resolvent)

of ¥ and o2,

Now, we shall prove that in fact for any bd-resolvent
(4), the alternative of the parent formulae ¥! and ¢ is
its logical consequence.

Theorem 1 {Soundness of bd-resolution) Let ¢ be
the bd-resolvent defined as above ({). Then ¢! V ¢? s
the logical consequence of 4.

Proof Let us assume that 3 is satisfied nnder some in-
terpretation [, i.e. |y ¢. Thus both |7 ¥<!'>¢ and
k7 ¥<*>¢. Obviously, for any pair of complementary
literals g'c and ~q2c, there is either |=f ¥<'> 0 A ¢lo
of r ¥<22¢ A —~¢?c . Thus the alternative of the two
above is satisfied. Since changing the terms substituted
by & into existentiially quantified variables does not vio-
late satisfiability { extstential quantifier introduciion), the
alternative ¢! v ¥? is satisfied under I, Q.E.D.

In order to pass to theorem proving with bd-resolution
let us define an idea of derivation with use of bd-
resolution. Below, by a factor of a formula we shall un-
derstand the result of applying some substitution to the
formula in order to replace certain variables with terms.
Any formula is logical consequence of any of its factors.

Definition 3 (BD-derivation) A bd-denivation for
derivation, for short} of a simple formula ¢ from a nor-
mal formula W given by (3) is any sequence of simple
formulae 1 42, . ¥* satisfying the following condi-
tions:

o for anyi € {1,2,....k}, ¢' 1s a bd-resolvent or a
factor of simple formulae either belonging to ¥ or
generated carher bd-resolvents,

. Y= ¢k,
Formula ¢ is said o be derived from ¥.

For conventence, if £ = 1 (¢ € W) we shall also say
that ¥ is derived from ¥.
Now, we can state the following theorem.
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Theorem 2 (Soundness of bd-derivation) Let ¥ be
a normal formula defined by (3). If an empty taulology
formula (elways true, denoted with T ) can be derived
Jrom ¥, then ¥ is valid (is a taulology).

Proof For any simple formula ¢ derived from ¥ there is
¢ | ¥. If the empty tautology formula is derived from
¥, then we have T = ¥. Thus ¥ is valid, Q.E.D.

We are not investigating here the problem of com-
pleteness of bd-resolution; however, one can expect that
due to duality to resolution method the bd-resolution
method is potentially complete, as well. The proof can
be found in [Ligeza, 1992b].

3 Completeness and generalized
resolution

For intuition, a knowledge-based system of rules is com-
plete if it "covers" all the possible cases to which the
rules are aimed to be applied. Obviously, a set of rules
should be complete in order to assure the possibility of
dealing with any occurring case. We shall refer to any
such case as a state. A set of states will be referred to
as situation?’ To any state there is assigned a unique
formula describing this state, to be called state formula.
Any situation can have more than one describing for-
mula, to be called situation formulae. Of course, if a
state s having state formula ¢ belongs to a situation S
having situation formula ®, there is ¢ = ®.

A definition of completeness requires some more pre-
cise statement with regard to logical notions introduced.
Generally speaking, from logical point of view, a com-
plete system of rules is one having the potential power
of dealing with any occurring state formula. This, in
fact, means that the alternative of the rule precondition
formulae should constitute an empty tautology formula
(always true). In such a case, for any potentially possible
formula describing some state s described with state for-
mula ¢, some of the precondition formulae must "cover"
¢; logically, the condition can be written as ¢ f: ‘F,‘,
where W; is a normal formula defining preconditions of
some i-th rule. Note however, that the strictly logical
completeness will in most cases be too strong for prac-
tical applications. This is so, because most of the sys-
tems are incomplete with regard to possible state rep-
resentation [Ligeza, 1992b], and thus, there is no need
to "cover" all the "potential" states but only the really
existing ones.

With regard to the above considerations the following
definition of completeness is stated.

Definition 4 (Completeness) Let us consider a
knowiedge-based syslem consisting of a set T of k produc-
tion rules, cach of them having its precondition formula
¥,,i=1,2,..., k. The system 1s:
o logically complete, if and only if the alternative of
the preconditions formulae salisfies the following
condition:

=Y VW V. VT,

*Formal definitions and a detailed presentation of prob-
lem concerning states and situations can be found in [Ligeza,

1992b].



{in other words, W, VW, V.. V¥, is a lautology),

s physically complete, if and only if for any ezisting
slate 5 described with formula ¢ there extsts at least
one rule in T applicable to s, 1.e. there 1s

¢ =W

for some i {1,2,... k)

Definition 5 (Specific completeness) Consider a
knowledge-based system as above. The system is:

s apecifically logically complete with regard to formula
V¥, 1f and only 1f the followtng condition holds

q’l:‘lHV‘PQV,HV\Fk

» specifically physically complete with regard to situa-
tton S described with formula ¥, if and only of for
any stale 8 described with formuln ¢ and such that
8 €85 (¢ | V) there erisis al least one rule in T
apphicable to s, t.e. the following rondition holdys for
some i

¢ ¥

With regard to the above definitions, a set of rules can
be complele in a strictly logical sense (logical complete-
ness) or complete in reference to the particular universe
of discourse. Of course, the logical completeness consti-
tutes a stronger requirement; it always implies physical
completeness, while the reverse statement is not true.

Beth logical and physical completeness can refer to a
general case (the former definition) or to a specific case
(the latter one). The latter definition provides in faci a
weak requirement for completeness. Intuitively speaking,
specific completeness means that the scope of possible
situations in which the systcms s intended to operate is
a priori restricted to the onec described with formula ¥.
Of course logical (physical) completeness always implics
specific logical (physical) completeness. Morecover, spe-
cific logical completeness with regard Lo formula ¥ im-
plies the appropriate specific physical completeness with
regard to the sitnation described with V.

The above definitions of completeness (erther logical or
physical) are, to certain degree similar; they become the
same for & being the situation of all the existing states
(for example, for the appropriate situation formula being
Vg2 V...V b, where ¢y, ¢2,...,0, are the state
formulae of all the states, or respectively ¥ being the
empty Lantology formula (always true).

The aim of building complete systems is that it should
be possible for the control system to react m and further
transform any physical state. This means that the set of
rules (the preconditions of them) should cover the whole
state-space of the system. Since in practical applications
not all the possible to describe stales are feasible, it is
useful to define a weak completeness, .. completeness
with regard 1o some specified formula ¥ (situation §).
Of course, situation S should contain all the physically
possible states, 1.e. ¥ should be chosen in such a way
that ¢; V¢ V...V ¢, E ¥. Simultancously, the “more
detailed” ¥ is, the easier the design of a complele system
should be. if all the state formulae are given explicitly,
it would be enough to take them as preconditions of the

transformation rules directly (at least potentially; in re-
alistic case the formulae, would be probably very long
and there would be quite a large number of them).

Note that the presented above definition of logical
completeness does not refer to any specific interpreta-
tion. Thus one may regard it as too abstract; in fact,
it will be usually too strong - and therefore rarely (or
never) satisfied - for realistic systems. In the context
of practical applications the definition of physical com-
pleteness is much more in place. However, this definition
refers implicitly to the intended interpretation, the one
under which the formulae describing states refer to the
universe of interest (can be read) in a reasonable way.

Let us notice that in the case of verifying physi-
cal completeness purely logical methods are likely to
be insufficient. These methods are based on syntactic
structure of formulae and do not refer to interpreta-
tion. Thus, a formula like switch(on)Vswitch(off)
will never be regarded as tautology, while with refer-
ence to the obvious intended interpretation it is always
true - the switch must be either in on or off posi-
tion. Further, the approaches to completeness verifi-
cation given in literature [Cragun and Steudel, 1987;
Suwa e.t al, 1984] based on inspection of possible cases
(states) do, in principle, make use of the physical com-
pleteness. Thus, it may be in order to modify the defini-
tion of bd-resolution towards covering this case, as well.
Below, a formal definition of generalized bd-resolution is
proposed.

Definition 6 (Generalized bd-resolution)

Let 1 92 .. ¢* be some simple formulae, such that
! = T.f’(l> /\ql_. 'f'? — 1}"(2> qul wk — w(k) A q"
and let there exist @ mos!t general wnifier (mgu) o for ¢,
¢°. ... q*. Let I denole the imntended inferpretation. If
Er¢'oveiov.. . Ve¥o then, a formula ¢

=< a AP e AL AYSEP, (5)

will be called ¢ generalized backward dual resolvent
{generalized bd-resolvent} of ¥, ¥, ., r.

Wo shall prove that with regard to the intended in-
terpretation 7 the alternative of the parent formulae ¥,
¥2, .., y* is a logical consequence of the generalized
bd-resolvent defined by (5).

Theorem 3 (Correctness of generalized bd-reso-
lution) Let ¢ be a generalized bd-resolvent defined as
above (5). Then, if =y ¢ then =p ¢ VYTV . v ¢k,

Proof Let us assume that 4 is satisfied under interpre-
tation I, which is the intended one, 1.e. k=3 . Thus
Er ¥<?o, by <0, .., 1 ¥<*>¢. From assump-
tion, 1 ¢'e vV g2o V ...V ¢*o, and thus for at least
one i € {1,2,...,k} there is =y ¢'o. Hence, obviously
k=1 <> Ag'o for at least one i € {1,2,...,k}, as well.
Since turning constants (lerms) into existentially quan-
tified variables only “improves” satisfiability { existentral
quantifier introduction), there is also =5 ¥* for at least
onei€ {1,2,...,k) and obviously ;¥ VY2 v .. vk,
i.e. the alternative of initial formulae is satisfied, Q.E.D.

With regard to the presented logical approach, the fol-
lowing algorithm can be suggested for checking specific
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completeness with regard to a given formula ¥. Note
that for checking logical completeness it is enough to
replace ¥ with T.

Algorithm for checking compleieness

1. Build a formula desacribing the sum of all the appro-
priate precondition formulae {the normal formula of
the form ¥, V¥ v.. . v ;).

2. Perform any possible derivation of bd-resolvent, e.g.
by applying the level-saturation method [Chang and
Lee, 1973], or any other complete strategy so as to
provethat W E ¥ V¥ V... V¥,

3. If the above logical satisfaction is eventually proved,
then the system is complete with regard to ¥.

4. In other case (due to the completeness of the bd-
resolution) the system is incomplete. The derived
formulae describe the situations which are "served”
{i.e. the system is complete with regard to al least
the obtained formulae).

Note, that the generation of hd-resolvents is not guar-
anteed to stop. However, for finite physical systems the
number of possible states is finite, and thus the num-
ber of situations is finite as well. Since our goal 1s to
"cover” the state space, the situation formulae less than
or equally general to some previously generated ones can
be eliminated from further derivation. Taking into ac-
count that any bd-resolvent is less than or equally gen-
etal to the alternative of the two "mother” formulae one
can expect to eventually ‘cut’ all the branches of the tree
of potential dertvations.

4 Examples

Let us analyze an example given in [Cragun and Steudel,
1987], p.635. in TABLE 1. There are given seven rujes
with the following Boolean preconditions R1-R7.
Rl= chatter A edge deformation,
R2= chatter A ~edge deformation A tool breakags,
R3= chatter A ~edge deformationA —tool breakage,
R4= -~chatter A edge deformation A tool breakags,
R5= —chatter A edge deformationA —tool breakage,
R6= —chatter A-edge deformationA tool breakage,
R7=
—chatter A ~edge. deformation A ~tool breakage.
Let us apply the above algorithm to check whether
the set of rules of the above preconditions is complete.
The following example inferences can be performed (in
parentheses parent formulae are given):

1. chatter A tocl breakage (R1, R2)
2. chatter A ~tool breakage (R1, R3)
J. edga_deformation A tool breakage (R1, R4)
4. edge deformation A ~tool breakage (R1, R5)
5. chatter (1,2)
6. edge deformation (3, 4)
7. ~edge deformation A ~tool breakage (5, R7)
8. ~edge deformation A tool breakage {5, R6)
9. ~tool breakage (6,7)
10. tool breakage {6, 8)
1. T (9, 10)
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Since an empty tautology formula was deduced with
use of bd-resolution, the set of rules is complete.

Now, let us consider a more complex example. Let
there be given a rule-based system for automatic con-
trol of some object. The rules define the actions which
are to be performed while certain input signals occur.
There are three input signals, namely inputi, input?2,
and input3. Each input signal can be of low, medium, or
high intensity. To denote the level of certain signal we
shall use the predicate level(<signal>,<intensity>).
There are four control rules which define admissible ac-
tions to be performed. The preconditions of the rules
are given by the following formulae:

Pl level(inputi, low)} A <—level(input2 high) A
—level(input3 high},

P2 level{inputl high} A
~level({input3, low),

—level{input2,low) A

P3 level(inputl,medium)
P4 level(X,low) A level(Y high).

We attempt to check if the specified rules are complete,
t.e. If in any state, there is at least one rule which can
be applied. The bd-derivation can proceed as follows:

1. 1level(inputi,low) A ~level{input2 high); (PI,
P4)
the unifying substitution is {Y/input3}. Fac-
torization is performed by applying substitution
{X/input1},

2. level{inputi,low); (1, P4)
the unifying substitution is {Y/input2}. Again,
factorization is performed by applying substitution
{X/input1},

3. level(inputi, high) A —~level(input2,low});, (P2,
P4)
the unifying substitution is {X/input3}. Fac-
torization is performed by applying substitution
{Y/input1}.

4. level{inputi, high) (3, P4)
the unifying substitution is {X/input2}. Again,
factorization is performed by applying substitution
{Y/inputi}.

At this stage, one can notice that any physical
state will be served by the system, since formulae
P3, 2, and 4 cover all the possible states (the whole
state-space). In fact, the alternative of these formu-
lae iz level(inputi,low) V level{inputl, medium) V
level(inputi, high), and there are no other possibilities
in our system. However, in order to prove this formally,
one is to replace P3 with the following formula:

P3’ —level{inputi,low)A —level(input], high},

which, according to the interpretation of the consid-
ered system is logically equivalent to P3. Now, the de-
duction can be completed:
5. -level(inputi, high), (2, P3)
6 T. {4, 9)

Thuse, the above system of rules is complete; i.e. n
any state at least one of the rules is applicable.



Note that with use of generalized bd-resolution one
can directly generate 6 from P3, 2 and 4. In
fact, by putting ¢' = level(inputi, low), ¢° =
level(input1, medium), and ¢* = level(input?l, high)
we have =y qr1 v q'2 v qs, where / is the assumed in-
terpretation. The direct application of generalized bd-
resolution simplifies the proof and makes it shorter.

In case of incomplete systems, bd-resolution can be
used for generating formulae which describe the states
for which there are some actions specified, i.e. for prov-
ing specific completeness. Some other application exam-
ples can be found in [Ligeza, 1992b].

5 Conclusions

The proposed approach based on first order logic and
theorem proving dual to resolution method provides the-
oretical bases for improving the design of knowledge
based systems. It suggests a possibility of checking the
system for completeness based on first-order logic rather
than simple exhaustive inspection of possible parame-
ters/conditions combinations. However, as shown in the
above examples, it is likely that for practical applica-
tions the proposed algorithms should be equipped with
domain-specific knowledge concerning the intended in-
terpretation. Moreover, hierarchization mechanisms and
possibly - heuristics would further improve the efficiency
of this method.

The advantage of bd-resolution over classical one with
respect to completeness verification consists in direct ap-
plication of the method to formulae describing situations
and preconditions in a simple, consistent with intuition
way. Moreover, in case of incomplete systems, gener-
ation of formulae describing specific completeness (the
states actually served) is straightforward.

The approach can be applied to rule-based systems,
where precondition formulae are in the form of normal
formulae defined here. Logical explicit negation should
be used rather than the implicit one. For practical rea-
sons, the proposed generalized bd-resolution taking the
advantage of knowing the intended interpretation is pro-
posed; its application can improve efficiency of the pro-
posed paradigm.

The outlined method is primarily aimed at applica-
tion to "single-layer" rules (such as the ones applied for
control in knowledge-based control systems - see, for ex-
ample [Tzafestas and Ligcjza, 1989, Lige.za, 1992b]); how-
ever, it seems that it can be useful for other systems with
chaining rules if a hierarchization with regard to a con-
text similar to the one of [Cragun and Steudel, 1987] is
performed. Further, it is likely that the combination of
the described approach with methods based on exhaus-
tive test can be promising.
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